Search results for: biological data
7816 Biological Data Integration using SOA
Authors: Noura Meshaan Al-Otaibi, Amin Yousef Noaman
Abstract:
Nowadays scientific data is inevitably digital and stored in a wide variety of formats in heterogeneous systems. Scientists need to access an integrated view of remote or local heterogeneous data sources with advanced data accessing, analyzing, and visualization tools. This research suggests the use of Service Oriented Architecture (SOA) to integrate biological data from different data sources. This work shows SOA will solve the problems that facing integration process and if the biologist scientists can access the biological data in easier way. There are several methods to implement SOA but web service is the most popular method. The Microsoft .Net Framework used to implement proposed architecture.Keywords: Bioinformatics, Biological data, Data Integration, SOA and Web Services.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24747815 A Survey of Semantic Integration Approaches in Bioinformatics
Authors: Chaimaa Messaoudi, Rachida Fissoune, Hassan Badir
Abstract:
Technological advances of computer science and data analysis are helping to provide continuously huge volumes of biological data, which are available on the web. Such advances involve and require powerful techniques for data integration to extract pertinent knowledge and information for a specific question. Biomedical exploration of these big data often requires the use of complex queries across multiple autonomous, heterogeneous and distributed data sources. Semantic integration is an active area of research in several disciplines, such as databases, information-integration, and ontology. We provide a survey of some approaches and techniques for integrating biological data, we focus on those developed in the ontology community.Keywords: Semantic data integration, biological ontology, linked data, semantic web, OWL, RDF.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18197814 An Ant-based Clustering System for Knowledge Discovery in DNA Chip Analysis Data
Authors: Minsoo Lee, Yun-mi Kim, Yearn Jeong Kim, Yoon-kyung Lee, Hyejung Yoon
Abstract:
Biological data has several characteristics that strongly differentiate it from typical business data. It is much more complex, usually large in size, and continuously changes. Until recently business data has been the main target for discovering trends, patterns or future expectations. However, with the recent rise in biotechnology, the powerful technology that was used for analyzing business data is now being applied to biological data. With the advanced technology at hand, the main trend in biological research is rapidly changing from structural DNA analysis to understanding cellular functions of the DNA sequences. DNA chips are now being used to perform experiments and DNA analysis processes are being used by researchers. Clustering is one of the important processes used for grouping together similar entities. There are many clustering algorithms such as hierarchical clustering, self-organizing maps, K-means clustering and so on. In this paper, we propose a clustering algorithm that imitates the ecosystem taking into account the features of biological data. We implemented the system using an Ant-Colony clustering algorithm. The system decides the number of clusters automatically. The system processes the input biological data, runs the Ant-Colony algorithm, draws the Topic Map, assigns clusters to the genes and displays the output. We tested the algorithm with a test data of 100 to1000 genes and 24 samples and show promising results for applying this algorithm to clustering DNA chip data.
Keywords: Ant colony system, biological data, clustering, DNA chip.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19757813 GeNS: a Biological Data Integration Platform
Authors: Joel Arrais, João E. Pereira, João Fernandes, José Luís Oliveira
Abstract:
The scientific achievements coming from molecular biology depend greatly on the capability of computational applications to analyze the laboratorial results. A comprehensive analysis of an experiment requires typically the simultaneous study of the obtained dataset with data that is available in several distinct public databases. Nevertheless, developing a centralized access to these distributed databases rises up a set of challenges such as: what is the best integration strategy, how to solve nomenclature clashes, how to solve database overlapping data and how to deal with huge datasets. In this paper we present GeNS, a system that uses a simple and yet innovative approach to address several biological data integration issues. Compared with existing systems, the main advantages of GeNS are related to its maintenance simplicity and to its coverage and scalability, in terms of number of supported databases and data types. To support our claims we present the current use of GeNS in two concrete applications. GeNS currently contains more than 140 million of biological relations and it can be publicly downloaded or remotely access through SOAP web services.Keywords: Data integration, biological databases
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16337812 Human Growth Curve Estimation through a Combination of Longitudinal and Cross-sectional Data
Authors: Sedigheh Mirzaei S., Debasis Sengupta
Abstract:
Parametric models have been quite popular for studying human growth, particularly in relation to biological parameters such as peak size velocity and age at peak size velocity. Longitudinal data are generally considered to be vital for fittinga parametric model to individual-specific data, and for studying the distribution of these biological parameters in a human population. However, cross-sectional data are easier to obtain than longitudinal data. In this paper, we present a method of combining longitudinal and cross-sectional data for the purpose of estimating the distribution of the biological parameters. We demonstrate, through simulations in the special case ofthePreece Baines model, how estimates based on longitudinal data can be improved upon by harnessing the information contained in cross-sectional data.We study the extent of improvement for different mixes of the two types of data, and finally illustrate the use of the method through data collected by the Indian Statistical Institute.Keywords: Preece-Baines growth model, MCMC method, Mixed effect model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21407811 Analysis and Prototyping of Biological Systems: the Abstract Biological Process Model
Authors: Antonio Di Leva, Roberto Berchi, Gianpiero Pescarmona, Michele Sonnessa
Abstract:
The aim of a biological model is to understand the integrated structure and behavior of complex biological systems as a function of the underlying molecular networks to achieve simulation and forecast of their operation. Although several approaches have been introduced to take into account structural and environment related features, relatively little attention has been given to represent the behavior of biological systems. The Abstract Biological Process (ABP) model illustrated in this paper is an object-oriented model based on UML (the standard object-oriented language). Its main objective is to bring into focus the functional aspects of the biological system under analysis.Keywords: Biological processes, system dynamics, systemmodeling, UML.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16407810 Attenuation in Transferred RF Power to a Biomedical Implant due to the Absorption of Biological Tissue
Authors: Batel Noureddine, Mehenni Mohamed, Kouadik Smain
Abstract:
In a transcutanious inductive coupling of a biomedical implant, a new formula is given for the study of the Radio Frequency power attenuation by the biological tissue. The loss of the signal power is related to its interaction with the biological tissue and the composition of this one. A confrontation with the practical measurements done with a synthetic muscle into a Faraday cage, allowed a checking of the obtained theoretical results. The supply/data transfer systems used in the case of biomedical implants, can be well dimensioned by taking in account this type of power attenuation.Keywords: Biological tissue, coupled coils, implanted device, power attenuation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23247809 Perceptions of Greenhouse Vegetable Growers Regarding Use of Biological Control Practices: A Case Study in Jiroft County, Iran
Authors: Hossein Shabanali Fami, Omid Sharifi, Javad Ghasemi, Mahtab Pouratashi, Mona Sadat Moghadasian
Abstract:
The main purpose of this study was to investigate perception of greenhouse vegetable growers regarding use of biological control practices during the growing season. The statistical population of the study included greenhouse vegetable growers in Jiroft county (N=1862). A sample of 137 vegetable growers was selected, using random sampling method. Data were collected via a questionnaire. The validity of the instrument was obtained by the faculty members of the Department of Agricultural Development and Management in the University of Tehran. Cronbach’s alpha was applied to estimate the reliability which showed a high reliability for the instrument. Data was analyzed using SPSS/Windows 13.5. The results revealed that greenhouse vegetable growers had moderate level of perception regarding biological control practices. Levels of vegetable growers’ perceptions regarding biological control practices were different on the basis of their academic qualifications as well as educational level and job. In addition, the results indicated that about 54.1% of variations in vegetable growers’ perceptions could be explained by variables such as awareness of biological control practices, knowledge on pests, annual production and age.Keywords: Greenhouse, biological control, biological agents, perception, vegetable grower.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17067808 Multidimensional Visualization Tools for Analysis of Expression Data
Authors: Urska Cvek, Marjan Trutschl, Randolph Stone II, Zanobia Syed, John L. Clifford, Anita L. Sabichi
Abstract:
Expression data analysis is based mostly on the statistical approaches that are indispensable for the study of biological systems. Large amounts of multidimensional data resulting from the high-throughput technologies are not completely served by biostatistical techniques and are usually complemented with visual, knowledge discovery and other computational tools. In many cases, in biological systems we only speculate on the processes that are causing the changes, and it is the visual explorative analysis of data during which a hypothesis is formed. We would like to show the usability of multidimensional visualization tools and promote their use in life sciences. We survey and show some of the multidimensional visualization tools in the process of data exploration, such as parallel coordinates and radviz and we extend them by combining them with the self-organizing map algorithm. We use a time course data set of transitional cell carcinoma of the bladder in our examples. Analysis of data with these tools has the potential to uncover additional relationships and non-trivial structures.Keywords: microarrays, visualization, parallel coordinates, radviz, self-organizing maps.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25097807 Weighted k-Nearest-Neighbor Techniques for High Throughput Screening Data
Authors: Kozak K, M. Kozak, K. Stapor
Abstract:
The k-nearest neighbors (knn) is a simple but effective method of classification. In this paper we present an extended version of this technique for chemical compounds used in High Throughput Screening, where the distances of the nearest neighbors can be taken into account. Our algorithm uses kernel weight functions as guidance for the process of defining activity in screening data. Proposed kernel weight function aims to combine properties of graphical structure and molecule descriptors of screening compounds. We apply the modified knn method on several experimental data from biological screens. The experimental results confirm the effectiveness of the proposed method.
Keywords: biological screening, kernel methods, KNN, QSAR
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22777806 Secondary School Students- Perceptions about Biological Issues in South Korea
Authors: Jung-Hyun Kim, Kew-Cheol Shim, Shin-Cheol Song, Kyoungho Kim, Nam-Il Kim, Jinho Bae, Keum-Hyun So
Abstract:
The purpose of present paper was to investigate perceptions of Korean secondary school students about social issues related to biological sciences. Twenty issues were selected based on topics of articles in the newspaper from 2005 to 2010. The issues were categorized into biotechnology, health-disease and environment domains. Subjects were 541 high school students (male 253 and female 288). On the survey, students were asked to answer on 5-point Lickert scales how they thought of the effect of biological phenomena or events related to biological issues on the individual life and the society. They perceived that the biological issues would be more effectible on the society than on the individual life. Female students had a little more perceptions than males.Keywords: biological issue, biological sciences, perception, secondary school
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17957805 Effect of Influent COD on Biological Ammonia Removal Efficiency
Authors: S. H. Mirhossaini, H. Godini, A. Jafari
Abstract:
Biological Ammonia removal (nitrification), the oxidation of ammonia to nitrate catalyzed by bacteria, is a key part of global nitrogen cycling. In the first step of nitrification, chemolithoautotrophic ammonia oxidizer transform ammonia to nitrite, this subsequently oxidized to nitrate by nitrite oxidizing bacteria. This process can be affected by several factors. In this study the effect of influent COD on biological ammonia removal in a bench-scale biological reactor was investigated. Experiments were carried out using synthetic wastewater. The initial ammonium concentration was 25mgNH4 +-N L-1. The effect of COD between 247.55±1.8 and 601.08±3.24mgL-1 on biological ammonia removal was investigated by varying the COD loading supplied to reactor. From the results obtained in this study it could be concluded in the range of 247.55±1.8 to 351.35±2.05mgL-1, there is a direct relationship between amount of COD and ammonia removal. However more than 351.35±2.05 up to 601.08±3.24mgL-1 were found an indirect relationship between them.Keywords: Ammonia biological removal, Nitrification, InfluentCOD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38827804 Annotations of Gene Pathways Images in Biomedical Publications Using Siamese Network
Authors: Micheal Olaolu Arowolo, Muhammad Azam, Fei He, Mihail Popescu, Dong Xu
Abstract:
As the quantity of biological articles rises, so does the number of biological route figures. Each route figure shows gene names and relationships. Manually annotating pathway diagrams is time-consuming. Advanced image understanding models could speed up curation, but they must be more precise. There is rich information in biological pathway figures. The first step to performing image understanding of these figures is to recognize gene names automatically. Classical optical character recognition methods have been employed for gene name recognition, but they are not optimized for literature mining data. This study devised a method to recognize an image bounding box of gene name as a photo using deep Siamese neural network models to outperform the existing methods using ResNet, DenseNet and Inception architectures, the results obtained about 84% accuracy.
Keywords: Biological pathway, gene identification, object detection, Siamese network, ResNet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2497803 Physiological Action of Anthraquinone-Containing Preparations
Authors: Dmitry Yu. Korulkin, Raissa A. Muzychkina, Evgenii N. Kojaev
Abstract:
In review the generalized data about biological activity of anthraquinone-containing plants and specimens on their basis is presented. Data of traditional medicine, results of bioscreening and clinical researches of specimens are analyzed.
Keywords: Anthraquinones, physiologically active substances, phytopreparation, Ramon.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20707802 Sequential Partitioning Brainbow Image Segmentation Using Bayesian
Authors: Yayun Hsu, Henry Horng-Shing Lu
Abstract:
This paper proposes a data-driven, biology-inspired neural segmentation method of 3D drosophila Brainbow images. We use Bayesian Sequential Partitioning algorithm for probabilistic modeling, which can be used to detect somas and to eliminate crosstalk effects. This work attempts to develop an automatic methodology for neuron image segmentation, which nowadays still lacks a complete solution due to the complexity of the image. The proposed method does not need any predetermined, risk-prone thresholds, since biological information is inherently included inside the image processing procedure. Therefore, it is less sensitive to variations in neuron morphology; meanwhile, its flexibility would be beneficial for tracing the intertwining structure of neurons.
Keywords: Brainbow, 3D imaging, image segmentation, neuron morphology, biological data mining, non-parametric learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22617801 Evaluation of Clustering Based on Preprocessing in Gene Expression Data
Authors: Seo Young Kim, Toshimitsu Hamasaki
Abstract:
Microarrays have become the effective, broadly used tools in biological and medical research to address a wide range of problems, including classification of disease subtypes and tumors. Many statistical methods are available for analyzing and systematizing these complex data into meaningful information, and one of the main goals in analyzing gene expression data is the detection of samples or genes with similar expression patterns. In this paper, we express and compare the performance of several clustering methods based on data preprocessing including strategies of normalization or noise clearness. We also evaluate each of these clustering methods with validation measures for both simulated data and real gene expression data. Consequently, clustering methods which are common used in microarray data analysis are affected by normalization and degree of noise and clearness for datasets.
Keywords: Gene expression, clustering, data preprocessing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17417800 An Improved K-Means Algorithm for Gene Expression Data Clustering
Authors: Billel Kenidra, Mohamed Benmohammed
Abstract:
Data mining technique used in the field of clustering is a subject of active research and assists in biological pattern recognition and extraction of new knowledge from raw data. Clustering means the act of partitioning an unlabeled dataset into groups of similar objects. Each group, called a cluster, consists of objects that are similar between themselves and dissimilar to objects of other groups. Several clustering methods are based on partitional clustering. This category attempts to directly decompose the dataset into a set of disjoint clusters leading to an integer number of clusters that optimizes a given criterion function. The criterion function may emphasize a local or a global structure of the data, and its optimization is an iterative relocation procedure. The K-Means algorithm is one of the most widely used partitional clustering techniques. Since K-Means is extremely sensitive to the initial choice of centers and a poor choice of centers may lead to a local optimum that is quite inferior to the global optimum, we propose a strategy to initiate K-Means centers. The improved K-Means algorithm is compared with the original K-Means, and the results prove how the efficiency has been significantly improved.
Keywords: Microarray data mining, biological pattern recognition, partitional clustering, k-means algorithm, centroid initialization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12867799 Using Artificial Neural Network and Leudeking-Piret Model in the Kinetic Modeling of Microbial Production of Poly-β- Hydroxybutyrate
Authors: A.Qaderi, A. Heydarinasab, M. Ardjmand
Abstract:
Poly-β-hydroxybutyrate (PHB) is one of the most famous biopolymers that has various applications in production of biodegradable carriers. The most important strategy for enhancing efficiency in production process and reducing the price of PHB, is the accurate expression of kinetic model of products formation and parameters that are effective on it, such as Dry Cell Weight (DCW) and substrate consumption. Considering the high capabilities of artificial neural networks in modeling and simulation of non-linear systems such as biological and chemical industries that mainly are multivariable systems, kinetic modeling of microbial production of PHB that is a complex and non-linear biological process, the three layers perceptron neural network model was used in this study. Artificial neural network educates itself and finds the hidden laws behind the data with mapping based on experimental data, of dry cell weight, substrate concentration as input and PHB concentration as output. For training the network, a series of experimental data for PHB production from Hydrogenophaga Pseudoflava by glucose carbon source was used. After training the network, two other experimental data sets that have not intervened in the network education, including dry cell concentration and substrate concentration were applied as inputs to the network, and PHB concentration was predicted by the network. Comparison of predicted data by network and experimental data, indicated a high precision predicted for both fructose and whey carbon sources. Also in present study for better understanding of the ability of neural network in modeling of biological processes, microbial production kinetic of PHB by Leudeking-Piret experimental equation was modeled. The Observed result indicated an accurate prediction of PHB concentration by artificial neural network higher than Leudeking- Piret model.Keywords: Kinetic Modeling, Poly-β-Hydroxybutyrate (PHB), Hydrogenophaga Pseudoflava, Artificial Neural Network, Leudeking-Piret
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 48147798 Comparative Study on Swarm Intelligence Techniques for Biclustering of Microarray Gene Expression Data
Authors: R. Balamurugan, A. M. Natarajan, K. Premalatha
Abstract:
Microarray gene expression data play a vital in biological processes, gene regulation and disease mechanism. Biclustering in gene expression data is a subset of the genes indicating consistent patterns under the subset of the conditions. Finding a biclustering is an optimization problem. In recent years, swarm intelligence techniques are popular due to the fact that many real-world problems are increasingly large, complex and dynamic. By reasons of the size and complexity of the problems, it is necessary to find an optimization technique whose efficiency is measured by finding the near optimal solution within a reasonable amount of time. In this paper, the algorithmic concepts of the Particle Swarm Optimization (PSO), Shuffled Frog Leaping (SFL) and Cuckoo Search (CS) algorithms have been analyzed for the four benchmark gene expression dataset. The experiment results show that CS outperforms PSO and SFL for 3 datasets and SFL give better performance in one dataset. Also this work determines the biological relevance of the biclusters with Gene Ontology in terms of function, process and component.
Keywords: Particle swarm optimization, Shuffled frog leaping, Cuckoo search, biclustering, gene expression data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26637797 Classifying Bio-Chip Data using an Ant Colony System Algorithm
Authors: Minsoo Lee, Yearn Jeong Kim, Yun-mi Kim, Sujeung Cheong, Sookyung Song
Abstract:
Bio-chips are used for experiments on genes and contain various information such as genes, samples and so on. The two-dimensional bio-chips, in which one axis represent genes and the other represent samples, are widely being used these days. Instead of experimenting with real genes which cost lots of money and much time to get the results, bio-chips are being used for biological experiments. And extracting data from the bio-chips with high accuracy and finding out the patterns or useful information from such data is very important. Bio-chip analysis systems extract data from various kinds of bio-chips and mine the data in order to get useful information. One of the commonly used methods to mine the data is classification. The algorithm that is used to classify the data can be various depending on the data types or number characteristics and so on. Considering that bio-chip data is extremely large, an algorithm that imitates the ecosystem such as the ant algorithm is suitable to use as an algorithm for classification. This paper focuses on finding the classification rules from the bio-chip data using the Ant Colony algorithm which imitates the ecosystem. The developed system takes in consideration the accuracy of the discovered rules when it applies it to the bio-chip data in order to predict the classes.Keywords: Ant Colony System, DNA chip data, Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14707796 Treatment of Chrome Tannery Wastewater by Biological Process - A Mini Review
Authors: Supriyo Goswami, Debabrata Mazumder
Abstract:
Chrome tannery wastewater causes serious environmental hazard due to its high pollution potential. As a result, rigorous treatment is necessary for abatement of pollution from this type of wastewater. There are many research studies on chrome tannery wastewater treatment in the field of physical, chemical, and biological methods. In general, biological treatment process is found ineffective for direct application because of adverse effects by toxic chromium, sulphide, chloride etc. However, biological methods were employed mainly for a few sub processes generating significant amount of organic matter and without chromium, chlorides etc. In this context the present paper reviews the characteristics feature and pollution potential of wastewater generated from chrome tannery units and treatment of the same. The different biological processes used earlier and their chronological development for treatment of the chrome tannery wastewater are thoroughly reviewed in this paper. In this regard, the scope of hybrid bioreactor - an advanced technology option has also been explored, as this kind of treatment is well suited for the wastewater having inhibitory substances.
Keywords: Composite tannery wastewater, biological treatment, Hybrid bioreactor, Organic removal
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42257795 Effect of Magnetic Field on the Biological Clock through the Radical Pair Mechanism
Authors: Chathurika D. Abeyrathne, Malka N. Halgamuge, Peter M. Farrell
Abstract:
There is an ongoing controversy in the literature related to the biological effects of weak, low frequency electromagnetic fields. The physical arguments and interpretation of the experimental evidence are inconsistent, where some physical arguments and experimental demonstrations tend to reject the likelihood of any effect of the fields at extremely low level. The problem arises of explaining, how the low-energy influences of weak magnetic fields can compete with the thermal and electrical noise of cells at normal temperature using the theoretical studies. The magnetoreception in animals involve radical pair mechanism. The same mechanism has been shown to be involved in the circadian rhythm synchronization in mammals. These reactions can be influenced by the weak magnetic fields. Hence, it is postulated the biological clock can be affected by weak magnetic fields and these disruptions to the rhythm can cause adverse biological effects. In this paper, likelihood of altering the biological clock via the radical pair mechanism is analyzed to simplify these studies of controversy.Keywords: Bio-effect, biological clock, magnetoreception, radical pair mechanism, weak magnetic field.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23267794 The Effect of Application of Biological Phosphate Fertilizer (Fertile 2) and Triple Super Phosphate Chemical Fertilizers on Some Morphological Traits of Corn (SC704)
Authors: M. Mojaddam, M. Araei, T. Saki Nejad, M. Soltani Howyzeh
Abstract:
In order to study the effect of different levels of triple super phosphate chemical fertilizer and biological phosphate fertilizer (fertile 2) on some morphological traits of corn this research was carried out in Ahvaz in 2002 as a factorial experiment in randomized complete block design with 4 replications). The experiment included two factors: first, biological phosphate fertilizer (fertile 2) at three levels of 0, 100, 200 g/ha; second, triple super phosphate chemical fertilizer at three levels of 0, 60, 90 kg/ha of pure phosphorus (P2O5). The obtained results indicated that fertilizer treatments had a significant effect on some morphological traits at 1% probability level. In this regard, P2B2 treatment (100 g/ha biological phosphate fertilizer (fertile 2) and 60 kg/ha triple super phosphate fertilizer) had the greatest plant height, stem diameter, number of leaves and ear length. It seems that in Ahvaz weather conditions, decrease of consumption of triple superphosphate chemical fertilizer to less than a half along with the consumption of biological phosphate fertilizer (fertile 2) is highly important in order to achieve optimal results. Therefore, it can be concluded that biological fertilizers can be used as a suitable substitute for some of the chemical fertilizers in sustainable agricultural systems.Keywords: Biological phosphate fertilizer, corn (SC704), morphological, triple super phosphate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18217793 Biological Soil Conservation Planning by Spatial Multi-Criteria Evaluation Techniques (Case Study: Bonkuh Watershed in Iran)
Authors: Ali Akbar Jamali
Abstract:
This paper discusses site selection process for biological soil conservation planning. It was supported by a valuefocused approach and spatial multi-criteria evaluation techniques. A first set of spatial criteria was used to design a number of potential sites. Next, a new set of spatial and non-spatial criteria was employed, including the natural factors and the financial costs, together with the degree of suitability for the Bonkuh watershed to biological soil conservation planning and to recommend the most acceptable program. The whole process was facilitated by a new software tool that supports spatial multiple criteria evaluation, or SMCE in GIS software (ILWIS). The application of this tool, combined with a continual feedback by the public attentions, has provided an effective methodology to solve complex decisional problem in biological soil conservation planning.Keywords: GIS, Biological soil conservation planning, Spatial multi-criteria evaluation, Iran
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17167792 Data-organization Before Learning Multi-Entity Bayesian Networks Structure
Authors: H. Bouhamed, A. Rebai, T. Lecroq, M. Jaoua
Abstract:
The objective of our work is to develop a new approach for discovering knowledge from a large mass of data, the result of applying this approach will be an expert system that will serve as diagnostic tools of a phenomenon related to a huge information system. We first recall the general problem of learning Bayesian network structure from data and suggest a solution for optimizing the complexity by using organizational and optimization methods of data. Afterward we proposed a new heuristic of learning a Multi-Entities Bayesian Networks structures. We have applied our approach to biological facts concerning hereditary complex illnesses where the literatures in biology identify the responsible variables for those diseases. Finally we conclude on the limits arched by this work.
Keywords: Data-organization, data-optimization, automatic knowledge discovery, Multi-Entities Bayesian networks, score merging.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16127791 A Research of the Influence that MP3 Sound Gives EEG of the Person
Authors: Seiya Teshima, Kazushige Magatani
Abstract:
Currently, many types of no-reversible compressed sound source, represented by MP3 (MPEG Audio Layer-3) are popular in the world and they are widely used to make the music file size smaller. The sound data created in this way has less information as compared to pre-compressed data. The objective of this study is by analyzing EEG to determine if people can recognize such difference as differences in sound. A measurement system that can measure and analyze EEG when a subject listens to music were experimentally developed. And ten subjects were studied with this system. In this experiment, a WAVE formatted music data and a MP3 compressed music data that is made from the WAVE formatted data were prepared. Each subject was made to hear these music sources at the same volume. From the results of this experiment, clear differences were confirmed between two wound sources.Keywords: EEG, Biological signal , Sound , MP3
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17777790 Data Mining Classification Methods Applied in Drug Design
Authors: Mária Stachová, Lukáš Sobíšek
Abstract:
Data mining incorporates a group of statistical methods used to analyze a set of information, or a data set. It operates with models and algorithms, which are powerful tools with the great potential. They can help people to understand the patterns in certain chunk of information so it is obvious that the data mining tools have a wide area of applications. For example in the theoretical chemistry data mining tools can be used to predict moleculeproperties or improve computer-assisted drug design. Classification analysis is one of the major data mining methodologies. The aim of thecontribution is to create a classification model, which would be able to deal with a huge data set with high accuracy. For this purpose logistic regression, Bayesian logistic regression and random forest models were built using R software. TheBayesian logistic regression in Latent GOLD software was created as well. These classification methods belong to supervised learning methods. It was necessary to reduce data matrix dimension before construct models and thus the factor analysis (FA) was used. Those models were applied to predict the biological activity of molecules, potential new drug candidates.Keywords: data mining, classification, drug design, QSAR
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28527789 The Relationship between Fluctuation of Biological Signal: Finger Plethysmogram in Conversation and Anthropophobic Tendency
Authors: Haruo Okabayashi
Abstract:
Human biological signals (pulse wave and brain wave, etc.) have a rhythm which shows fluctuations. This study investigates the relationship between fluctuations of biological signals which are shown by a finger plethysmogram (i.e., finger pulse wave) in conversation and anthropophobic tendency, and identifies whether the fluctuation could be an index of mental health. 32 college students participated in the experiment. The finger plethysmogram of each subject was measured in the following conversation situations: Fun memory talking/listening situation and regrettable memory talking/ listening situation for three minutes each. Lyspect 3.5 was used to collect the data of the finger plethysmogram. Since Lyspect calculates the Lyapunov spectrum, it is possible to obtain the largest Lyapunov exponent (LLE). LLE is an indicator of the fluctuation and shows the degree to which a measure is going away from close proximity to the track in a dynamical system. Before the finger plethysmogram experiment, each participant took the psychological test questionnaire “Anthropophobic Scale.” The scale measures the social phobia trend close to the consciousness of social phobia. It is revealed that there is a remarkable relationship between the fluctuation of the finger plethysmography and anthropophobic tendency scale in talking about a regrettable story in conversation: The participants (N=15) who have a low anthropophobic tendency show significantly more fluctuation of finger pulse waves than the participants (N=17) who have a high anthropophobic tendency (F (1, 31) =5.66, p<0.05). That is, the participants who have a low anthropophobic tendency make conversation flexibly using large fluctuation of biological signal; on the other hand, the participants who have a high anthropophobic tendency constrain a conversation because of small fluctuation. Therefore, fluctuation is not an error but an important drive to make better relationships with others and go towards the development of interaction. In considering mental health, the fluctuation of biological signals would be an important indicator.
Keywords: Anthropophobic tendency, finger plethymogram, fluctuation of biological signal, LLE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13347788 Neutralization of Alkaline Waste-Waters using a Blend of Microorganisms
Authors: Rita Kumar, Alka Sharma, Purnima Dhall, Niha M. Kulshreshtha, Anil Kumar
Abstract:
The efficient operation of any biological treatment process requires pre-treatment of incompatible pollutants such as acids, bases, oil, toxic substances, etc. which hamper the treatment of other major components which are otherwise degradable. The pre-treatment of alkaline waste-waters, generated from various industries like textile, paper & pulp, potato-processing industries, etc., having a pH of 10 or higher, is essential. The pre-treatment, i.e., neutralization of such alkaline waste-waters can be achieved by chemical as well as biological means. However, the biological pretreatment offers better package over the chemical means by being safe and economical. The biological pre-treatment can be accomplished by using a blend of microorganisms able to withstand such harsh alkaline conditions. In the present study, for the proper pre-treatment of alkaline waste-waters, a package of alkalophilic bacteria is formulated to neutralise the alkaline pH of the industrial waste-waters. The developed microbial package is cost-effective as well as environmental friendly.Keywords: alkaline, alkalophilic bacteria, biological, pollutants, textile.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30977787 Identifying Network Subgraph-Associated Essential Genes in Molecular Networks
Authors: Efendi Zaenudin, Chien-Hung Huang, Ka-Lok Ng
Abstract:
Essential genes play an important role in the survival of an organism. It has been shown that cancer-associated essential genes are genes necessary for cancer cell proliferation, where these genes are potential therapeutic targets. Also, it was demonstrated that mutations of the cancer-associated essential genes give rise to the resistance of immunotherapy for patients with tumors. In the present study, we focus on studying the biological effects of the essential genes from a network perspective. We hypothesize that one can analyze a biological molecular network by decomposing it into both three-node and four-node digraphs (subgraphs). These network subgraphs encode the regulatory interaction information among the network’s genetic elements. In this study, the frequency of occurrence of the subgraph-associated essential genes in a molecular network was quantified by using the statistical parameter, odds ratio. Biological effects of subgraph-associated essential genes are discussed. In summary, the subgraph approach provides a systematic method for analyzing molecular networks and it can capture useful biological information for biomedical research.
Keywords: Biological molecular networks, essential genes, graph theory, network subgraphs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 497