Search results for: Volterra integro-differential equations
1282 Development of Extended Trapezoidal Method for Numerical Solution of Volterra Integro-Differential Equations
Authors: Fuziyah Ishak, Siti Norazura Ahmad
Abstract:
Volterra integro-differential equations appear in many models for real life phenomena. Since analytical solutions for this type of differential equations are hard and at times impossible to attain, engineers and scientists resort to numerical solutions that can be made as accurately as possible. Conventionally, numerical methods for ordinary differential equations are adapted to solve Volterra integro-differential equations. In this paper, numerical solution for solving Volterra integro-differential equation using extended trapezoidal method is described. Formulae for the integral and differential parts of the equation are presented. Numerical results show that the extended method is suitable for solving first order Volterra integro-differential equations.
Keywords: Accuracy, extended trapezoidal method, numerical solution, Volterra integro-differential equations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16551281 Application of the Hybrid Methods to Solving Volterra Integro-Differential Equations
Authors: G.Mehdiyeva, M.Imanova, V.Ibrahimov
Abstract:
Beginning from the creator of integro-differential equations Volterra, many scientists have investigated these equations. Classic method for solving integro-differential equations is the quadratures method that is successfully applied up today. Unlike these methods, Makroglou applied hybrid methods that are modified and generalized in this paper and applied to the numerical solution of Volterra integro-differential equations. The way for defining the coefficients of the suggested method is also given.Keywords: Integro-differential equations, initial value problem, hybrid methods, predictor-corrector method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17311280 Spline Collocation for Solving System of Fredholm and Volterra Integral Equations
Authors: N. Ebrahimi, J. Rashidinia
Abstract:
In this paper, numerical solution of system of Fredholm and Volterra integral equations by means of the Spline collocation method is considered. This approximation reduces the system of integral equations to an explicit system of algebraic equations. The solution is collocated by cubic B-spline and the integrand is approximated by the Newton-Cotes formula. The error analysis of proposed numerical method is studied theoretically. The results are compared with the results obtained by other methods to illustrate the accuracy and the implementation of our method.
Keywords: Convergence analysis, Cubic B-spline, Newton- Cotes formula, System of Fredholm and Volterra integral equations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21971279 Research of a Multistep Method Applied to Numerical Solution of Volterra Integro-Differential Equation
Authors: M.Imanova, G.Mehdiyeva, V.Ibrahimov
Abstract:
Solution of some practical problems is reduced to the solution of the integro-differential equations. But for the numerical solution of such equations basically quadrature methods or its combination with multistep or one-step methods are used. The quadrature methods basically is applied to calculation of the integral participating in right hand side of integro-differential equations. As this integral is of Volterra type, it is obvious that at replacement with its integrated sum the upper limit of the sum depends on a current point in which values of the integral are defined. Thus we receive the integrated sum with variable boundary, to work with is hardly. Therefore multistep method with the constant coefficients, which is free from noted lack and gives the way for finding it-s coefficients is present.Keywords: Volterra integro-differential equations, multistepmethods, finite-difference methods, initial value problem
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15031278 Comparing the Efficiency of Simpson’s 1/3 and 3/8 Rules for the Numerical Solution of First Order Volterra Integro-Differential Equations
Authors: N. M. Kamoh, D. G. Gyemang, M. C. Soomiyol
Abstract:
This paper compared the efficiency of Simpson’s 1/3 and 3/8 rules for the numerical solution of first order Volterra integro-differential equations. In developing the solution, collocation approximation method was adopted using the shifted Legendre polynomial as basis function. A block method approach is preferred to the predictor corrector method for being self-starting. Experimental results confirmed that the Simpson’s 3/8 rule is more efficient than the Simpson’s 1/3 rule.
Keywords: Collocation shifted Legendre polynomials, Simpson’s rule and Volterra integro-differential equations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9741277 Numerical Solution of Volterra Integro-differential Equations of Fractional Order by Laplace Decomposition Method
Authors: Changqing Yang, Jianhua Hou
Abstract:
In this paper the Laplace Decomposition method is developed to solve linear and nonlinear fractional integro- differential equations of Volterra type.The fractional derivative is described in the Caputo sense.The Laplace decomposition method is found to be fast and accurate.Illustrative examples are included to demonstrate the validity and applicability of presented technique and comparasion is made with exacting results.
Keywords: Integro-differential equations, Laplace transform, fractional derivative, adomian polynomials, pade appoximants.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16651276 On One Application of Hybrid Methods For Solving Volterra Integral Equations
Authors: G.Mehdiyeva, V.Ibrahimov, M.Imanova
Abstract:
As is known, one of the priority directions of research works of natural sciences is introduction of applied section of contemporary mathematics as approximate and numerical methods to solving integral equation into practice. We fare with the solving of integral equation while studying many phenomena of nature to whose numerically solving by the methods of quadrature are mainly applied. Taking into account some deficiency of methods of quadrature for finding the solution of integral equation some sciences suggested of the multistep methods with constant coefficients. Unlike these papers, here we consider application of hybrid methods to the numerical solution of Volterra integral equation. The efficiency of the suggested method is proved and a concrete method with accuracy order p = 4 is constructed. This method in more precise than the corresponding known methods.Keywords: Volterra integral equation, hybrid methods, stability and degree, methods of quadrature
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13931275 Volterra Filtering Techniques for Removal of Gaussian and Mixed Gaussian-Impulse Noise
Authors: M. B. Meenavathi, K. Rajesh
Abstract:
In this paper, we propose a new class of Volterra series based filters for image enhancement and restoration. Generally the linear filters reduce the noise and cause blurring at the edges. Some nonlinear filters based on median operator or rank operator deal with only impulse noise and fail to cancel the most common Gaussian distributed noise. A class of second order Volterra filters is proposed to optimize the trade-off between noise removal and edge preservation. In this paper, we consider both the Gaussian and mixed Gaussian-impulse noise to test the robustness of the filter. Image enhancement and restoration results using the proposed Volterra filter are found to be superior to those obtained with standard linear and nonlinear filters.
Keywords: Gaussian noise, Image enhancement, Imagerestoration, Linear filters, Nonlinear filters, Volterra series.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27311274 Volterra Filter for Color Image Segmentation
Authors: M. B. Meenavathi, K. Rajesh
Abstract:
Color image segmentation plays an important role in computer vision and image processing areas. In this paper, the features of Volterra filter are utilized for color image segmentation. The discrete Volterra filter exhibits both linear and nonlinear characteristics. The linear part smoothes the image features in uniform gray zones and is used for getting a gross representation of objects of interest. The nonlinear term compensates for the blurring due to the linear term and preserves the edges which are mainly used to distinguish the various objects. The truncated quadratic Volterra filters are mainly used for edge preserving along with Gaussian noise cancellation. In our approach, the segmentation is based on K-means clustering algorithm in HSI space. Both the hue and the intensity components are fully utilized. For hue clustering, the special cyclic property of the hue component is taken into consideration. The experimental results show that the proposed technique segments the color image while preserving significant features and removing noise effects.Keywords: Color image segmentation, HSI space, K–means clustering, Volterra filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18561273 A Nonconforming Mixed Finite Element Method for Semilinear Pseudo-Hyperbolic Partial Integro-Differential Equations
Authors: Jingbo Yang, Hong Li, Yang Liu, Siriguleng He
Abstract:
In this paper, a nonconforming mixed finite element method is studied for semilinear pseudo-hyperbolic partial integrodifferential equations. By use of the interpolation technique instead of the generalized elliptic projection, the optimal error estimates of the corresponding unknown function are given.
Keywords: Pseudo-hyperbolic partial integro-differential equations, Nonconforming mixed element method, Semilinear, Error estimates.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16391272 Effect of Implementation of Nonlinear Sequence Transformations on Power Series Expansion for a Class of Non-Linear Abel Equations
Authors: Javad Abdalkhani
Abstract:
Convergence of power series solutions for a class of non-linear Abel type equations, including an equation that arises in nonlinear cooling of semi-infinite rods, is very slow inside their small radius of convergence. Beyond that the corresponding power series are wildly divergent. Implementation of nonlinear sequence transformation allow effortless evaluation of these power series on very large intervals..Keywords: Nonlinear transformation, Abel Volterra Equations, Mathematica
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13041271 Blow up in Polynomial Differential Equations
Authors: Rudolf Csikja, Janos Toth
Abstract:
Methods to detect and localize time singularities of polynomial and quasi-polynomial ordinary differential equations are systematically presented and developed. They are applied to examples taken form different fields of applications and they are also compared to better known methods such as those based on the existence of linear first integrals or Lyapunov functions.
Keywords: blow up, finite escape time, polynomial ODE, singularity, Lotka–Volterra equation, Painleve analysis, Ψ-series, global existence
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21811270 2n Positive Periodic Solutions to n Species Non-autonomous Lotka-Volterra Competition Systems with Harvesting Terms
Authors: Yongkun Li, Kaihong Zhao
Abstract:
By using Mawhin-s continuation theorem of coincidence degree theory, we establish the existence of 2n positive periodic solutions for n species non-autonomous Lotka-Volterra competition systems with harvesting terms. An example is given to illustrate the effectiveness of our results.
Keywords: Positive periodic solutions, Lotka-Volterra competition system, coincidence degree, harvesting term.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14431269 Nonlinear Acoustic Echo Cancellation Using Volterra Filtering with a Variable Step-Size GS-PAP Algorithm
Authors: J. B. Seo, K. J. Kim, S. W. Nam
Abstract:
In this paper, a nonlinear acoustic echo cancellation (AEC) system is proposed, whereby 3rd order Volterra filtering is utilized along with a variable step-size Gauss-Seidel pseudo affine projection (VSSGS-PAP) algorithm. In particular, the proposed nonlinear AEC system is developed by considering a double-talk situation with near-end signal variation. Simulation results demonstrate that the proposed approach yields better nonlinear AEC performance than conventional approaches.Keywords: Acoustic echo cancellation (AEC), Volterra filtering, variable step-size, GS-PAP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18131268 Multiple Positive Periodic Solutions of a Competitor-Competitor-Mutualist Lotka-Volterra System with Harvesting Terms
Authors: Yongkun Li, Erliang Xu
Abstract:
In this paper, by using Mawhin-s continuation theorem of coincidence degree theory, we establish the existence of multiple positive periodic solutions of a competitor-competitor-mutualist Lotka-Volterra system with harvesting terms. Finally, an example is given to illustrate our results.
Keywords: Positive periodic solutions, competitor-competitor mutualist Lotka-Volterra systems, coincidence degree, harvesting term.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13521267 Existence of Multiple Positive Periodic Solutions to n Species Nonautonomous Lotka-Volterra Cooperative Systems with Harvesting Terms
Authors: Kaihong Zhao
Abstract:
In this paper, the existence of 2n positive periodic solutions for n species non-autonomous Lotka-Volterra cooperative systems with harvesting terms is established by using Mawhin-s continuation theorem of coincidence degree theory and matrix inequality. An example is given to illustrate the effectiveness of our results.
Keywords: Multiple positive periodic solutions, Nonautonomous Lotka-Volterra cooperative system, Coincidence degree, Harvesting term.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13351266 A Laplace Transform Dual-Reciprocity Boundary Element Method for Axisymmetric Elastodynamic Problems
Authors: B. I. Yun
Abstract:
A dual-reciprocity boundary element method is presented for the numerical solution of a class of axisymmetric elastodynamic problems. The domain integrals that arise in the integrodifferential formulation are converted to line integrals by using the dual-reciprocity method together suitably constructed interpolating functions. The second order time derivatives of the displacement in the governing partial differential equations are suppressed by using Laplace transformation. In the Laplace transform domain, the problem under consideration is eventually reduced to solving a system of linear algebraic equations. Once the linear algebraic equations are solved, the displacement and stress fields in the physical domain can be recovered by using a numerical technique for inverting Laplace transforms.Keywords: Axisymmetric elasticity, boundary element method, dual-reciprocity method, Laplace transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16691265 Optimal Control of Volterra Integro-Differential Systems Based On Legendre Wavelets and Collocation Method
Authors: Khosrow Maleknejad, Asyieh Ebrahimzadeh
Abstract:
In this paper, the numerical solution of optimal control problem (OCP) for systems governed by Volterra integro-differential (VID) equation is considered. The method is developed by means of the Legendre wavelet approximation and collocation method. The properties of Legendre wavelet together with Gaussian integration method are utilized to reduce the problem to the solution of nonlinear programming one. Some numerical examples are given to confirm the accuracy and ease of implementation of the method.
Keywords: Collocation method, Legendre wavelet, optimal control, Volterra integro-differential equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28931264 Almost Periodicity in a Harvesting Lotka-Volterra Recurrent Neural Networks with Time-Varying Delays
Authors: Yongzhi Liao
Abstract:
By using the theory of exponential dichotomy and Banach fixed point theorem, this paper is concerned with the problem of the existence and uniqueness of positive almost periodic solution in a delayed Lotka-Volterra recurrent neural networks with harvesting terms. To a certain extent, our work in this paper corrects some result in recent years. Finally, an example is given to illustrate the feasibility and effectiveness of the main result.
Keywords: positive almost periodic solution, Lotka-Volterra, neural networks, Banach fixed point theorem, harvesting
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16231263 Study on the Evaluation of the Chaotic Cipher System Using the Improved Volterra Filters and the RBFN Mapping
Authors: Hirotaka Watanabe, Takaaki Kondo, Daiki Yoshida, Ariyoshi Nakayama, Taichi Sato, Shuhei Kuriyama, Hiroyuki Kamata
Abstract:
In this paper, we propose a chaotic cipher system consisting of Improved Volterra Filters and the mapping that is created from the actual voice by using Radial Basis Function Network. In order to achieve a practical system, the system supposes to use the digital communication line, such as the Internet, to maintain the parameter matching between the transmitter and receiver sides. Therefore, in order to withstand the attack from outside, it is necessary that complicate the internal state and improve the sensitivity coefficient. In this paper, we validate the robustness of proposed method from three perspectives of "Chaotic properties", "Randomness", "Coefficient sensitivity".
Keywords: Chaos cipher, 16-bit-length fixed point arithmetic, Volterra filter, Seacret communications, RBF Network
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18201262 The Particle Swarm Optimization Against the Runge’s Phenomenon: Application to the Generalized Integral Quadrature Method
Authors: A. Zerarka, A. Soukeur, N. Khelil
Abstract:
In the present work, we introduce the particle swarm optimization called (PSO in short) to avoid the Runge-s phenomenon occurring in many numerical problems. This new approach is tested with some numerical examples including the generalized integral quadrature method in order to solve the Volterra-s integral equations
Keywords: Integral equation, particle swarm optimization, Runge's phenomenon.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14141261 Pricing European Options under Jump Diffusion Models with Fast L-stable Padé Scheme
Authors: Salah Alrabeei, Mohammad Yousuf
Abstract:
The goal of option pricing theory is to help the investors to manage their money, enhance returns and control their financial future by theoretically valuing their options. Modeling option pricing by Black-School models with jumps guarantees to consider the market movement. However, only numerical methods can solve this model. Furthermore, not all the numerical methods are efficient to solve these models because they have nonsmoothing payoffs or discontinuous derivatives at the exercise price. In this paper, the exponential time differencing (ETD) method is applied for solving partial integrodifferential equations arising in pricing European options under Merton’s and Kou’s jump-diffusion models. Fast Fourier Transform (FFT) algorithm is used as a matrix-vector multiplication solver, which reduces the complexity from O(M2) into O(M logM). A partial fraction form of Pad`e schemes is used to overcome the complexity of inverting polynomial of matrices. These two tools guarantee to get efficient and accurate numerical solutions. We construct a parallel and easy to implement a version of the numerical scheme. Numerical experiments are given to show how fast and accurate is our scheme.Keywords: Integral differential equations, L-stable methods, pricing European options, Jump–diffusion model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4981260 The Dividend Payments for General Claim Size Distributions under Interest Rate
Authors: Li-Li Li, Jinghai Feng, Lixin Song
Abstract:
This paper evaluates the dividend payments for general claim size distributions in the presence of a dividend barrier. The surplus of a company is modeled using the classical risk process perturbed by diffusion, and in addition, it is assumed to accrue interest at a constant rate. After presenting the integro-differential equation with initial conditions that dividend payments satisfies, the paper derives a useful expression of the dividend payments by employing the theory of Volterra equation. Furthermore, the optimal value of dividend barrier is found. Finally, numerical examples illustrate the optimality of optimal dividend barrier and the effects of parameters on dividend payments.Keywords: Dividend payout, Integro-differential equation, Jumpdiffusion model, Volterra equation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17981259 Predicting Foreign Direct Investment of IC Design Firms from Taiwan to East and South China Using Lotka-Volterra Model
Authors: Bi-Huei Tsai
Abstract:
This work explores the inter-region investment behaviors of Integrated Circuit (IC) design industry from Taiwan to China using the amount of foreign direct investment (FDI). According to the mutual dependence among different IC design industrial locations, Lotka-Volterra model is utilized to explore the FDI interactions between South and East China. Effects of inter-regional collaborations on FDI flows into China are considered. The analysis results show that FDIs into South China for IC design industry significantly inspire the subsequent FDIs into East China, while FDIs into East China for Taiwan’s IC design industry significantly hinder the subsequent FDIs into South China. Because the supply chain along IC industry includes upstream IC design, midstream manufacturing, as well as downstream packing and testing enterprises, IC design industry has to cooperate with IC manufacturing, packaging and testing industries in the same area to form a strong IC industrial cluster. Taiwan’s IC design industry implement the largest FDI amount into East China and the second largest FDI amount into South China among the four regions: North, East, Mid-West and South China. If IC design houses undertake more FDIs in South China, those in East China are urged to incrementally implement more FDIs into East China to maintain the competitive advantages of the IC supply chain in East China. On the other hand, as the FDIs in East China rise, the FDIs in South China will successively decline since capitals have concentrated in East China. In addition, this investigation proves that the prediction of Lotka-Volterra model in FDI trends is accurate because the industrial interactions between the two regions are included. Finally, this work confirms that the FDI flows cannot reach a stable equilibrium point, so the FDI inflows into East and South China will expand in the future.Keywords: Lotka-Volterra model, Foreign direct investment, Competitive, Equilibrium analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14701258 Existence of Iterative Cauchy Fractional Differential Equation
Authors: Rabha W. Ibrahim
Abstract:
Our main aim in this paper is to use the technique of non expansive operators to more general iterative and non iterative fractional differential equations (Cauchy type ). The non integer case is taken in sense of Riemann-Liouville fractional operators. Applications are illustrated.
Keywords: Fractional calculus, fractional differential equation, Cauchy equation, Riemann-Liouville fractional operators, Volterra integral equation, non-expansive mapping, iterative differential equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26831257 A Novel System of Two Coupled Equations for the Longitudinal Components of the Electromagnetic Field in a Waveguide
Authors: Arti Vaish, Harish Parthasarathy
Abstract:
In this paper, a novel wave equation for electromagnetic waves in a medium having anisotropic permittivity has been derived with the help of Maxwell-s curl equations. The x and y components of the Maxwell-s equations are written with the permittivity () being a 3 × 3 symmetric matrix. These equations are solved for Ex , Ey, Hx, Hy in terms of Ez, Hz, and the partial derivatives. The Z components of the Maxwell-s curl are then used to arrive to the generalized Helmholtz equations for Ez and Hz.Keywords: Electromagnetism, Maxwell's Equations, Anisotropic permittivity, Wave equation, Matrix Equation, Permittivity tensor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17011256 New Insight into Fluid Mechanics of Lorenz Equations
Authors: Yu-Kai Ting, Jia-Ying Tu, Chung-Chun Hsiao
Abstract:
New physical insights into the nonlinear Lorenz equations related to flow resistance is discussed in this work. The chaotic dynamics related to Lorenz equations has been studied in many papers, which is due to the sensitivity of Lorenz equations to initial conditions and parameter uncertainties. However, the physical implication arising from Lorenz equations about convectional motion attracts little attention in the relevant literature. Therefore, as a first step to understand the related fluid mechanics of convectional motion, this paper derives the Lorenz equations again with different forced conditions in the model. Simulation work of the modified Lorenz equations without the viscosity or buoyancy force is discussed. The time-domain simulation results may imply that the states of the Lorenz equations are related to certain flow speed and flow resistance. The flow speed of the underlying fluid system increases as the flow resistance reduces. This observation would be helpful to analyze the coupling effects of different fluid parameters in a convectional model in future work.
Keywords: Galerkin method, Lorenz equations, Navier-Stokes equations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23091255 The Approximate Solution of Linear Fuzzy Fredholm Integral Equations of the Second Kind by Using Iterative Interpolation
Authors: N. Parandin, M. A. Fariborzi Araghi
Abstract:
in this paper, we propose a numerical method for the approximate solution of fuzzy Fredholm functional integral equations of the second kind by using an iterative interpolation. For this purpose, we convert the linear fuzzy Fredholm integral equations to a crisp linear system of integral equations. The proposed method is illustrated by some fuzzy integral equations in numerical examples.Keywords: Fuzzy function integral equations, Iterative method, Linear systems, Parametric form of fuzzy number.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14061254 A First Course in Numerical Methods with “Mathematica“
Authors: Andrei A. Kolyshkin
Abstract:
In the present paper some recommendations for the use of software package “Mathematica" in a basic numerical analysis course are presented. The methods which are covered in the course include solution of systems of linear equations, nonlinear equations and systems of nonlinear equations, numerical integration, interpolation and solution of ordinary differential equations. A set of individual assignments developed for the course covering all the topics is discussed in detail.Keywords: Numerical methods, "Mathematica", e-learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36691253 An Efficient Computational Algorithm for Solving the Nonlinear Lane-Emden Type Equations
Authors: Gholamreza Hojjati, Kourosh Parand
Abstract:
In this paper we propose a class of second derivative multistep methods for solving some well-known classes of Lane- Emden type equations which are nonlinear ordinary differential equations on the semi-infinite domain. These methods, which have good stability and accuracy properties, are useful in deal with stiff ODEs. We show superiority of these methods by applying them on the some famous Lane-Emden type equations.
Keywords: Lane-Emden type equations, nonlinear ODE, stiff problems, multistep methods, astrophysics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3177