Search results for: Titanium alloy
397 Effect of Structure on Properties of Incrementally Formed Titanium Alloy Sheets
Authors: Lucie Novakova, Petr Homola, Vaclav Kafka
Abstract:
Asymmetric incremental sheet forming (AISF) could significantly reduce costs incurred by the fabrication of complex industrial components with a minimal environmental impact. The AISF experiments were carried out on commercially pure titanium (Ti-Gr2), Timetal (15-3-3-3) alloy, and Ti-6Al-4V (Ti-Gr5) alloy. A special testing geometry was used to characterize the titanium alloys properties from the point of view of the forming zone and titanium structure effect. The structure and properties of the materials were assessed by means of metallographic analyses and microhardness measurements.The highest differences in the parameters assessed as a function of the sampling zone were observed in the case of alpha-phase Ti-Gr2at the expense of the most substantial sheet thinning occurrence. A springback causes a smaller stored deformation in Timetal (β alloy) resulting in less pronounced microstructure refinement and microhardness increase. Ti-6Al-4V alloy exhibited early failure due to its poor formability at ambient temperature.
Keywords: Incremental forming, metallography, hardness, titanium alloys.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2643396 Surface Modification of Titanium Alloy with Laser Treatment
Authors: Nassier A. Nassir, Robert Birch, D. Rico Sierra, S. P. Edwardson, G. Dearden, Zhongwei Guan
Abstract:
The effect of laser surface treatment parameters on the residual strength of titanium alloy has been investigated. The influence of the laser surface treatment on the bonding strength between the titanium and poly-ether-ketone-ketone (PEKK) surfaces was also evaluated and compared to those offered by titanium foils without surface treatment to optimize the laser parameters. Material characterization using an optical microscope was carried out to study the microstructure and to measure the mean roughness value of the titanium surface. The results showed that the surface roughness shows a significant dependency on the laser power parameters in which surface roughness increases with the laser power increment. Moreover, the results of the tensile tests have shown that there is no significant dropping in tensile strength for the treated samples comparing to the virgin ones. In order to optimize the laser parameter as well as the corresponding surface roughness, single-lap shear tests were conducted on pairs of the laser treated titanium stripes. The results showed that the bonding shear strength between titanium alloy and PEKK film increased with the surface roughness increment to a specific limit. After this point, it is interesting to note that there was no significant effect for the laser parameter on the bonding strength. This evidence suggests that it is not necessary to use very high power of laser to treat titanium surface to achieve a good bonding strength between titanium alloy and the PEKK film.
Keywords: Bonding strength, laser surface treatment, PEKK, titanium alloy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 862395 The Effect of Nose Radius on Cutting Force and Temperature during Machining Titanium Alloy (Ti-6Al-4V)
Authors: Moaz H. Ali, M. N. M. Ansari
Abstract:
This paper presents a study the effect of nose radius (Rz-mm) on cutting force components and temperatures during the machining simulation in an orthogonal cutting process for titanium alloy (Ti-6Al-4V). The cutting process was performed at various nose radiuses (Rz-mm) while the depth of cut (d-mm), feed rate (fmm/ tooth) and cutting speed (vc-m/ min) were remained constant. The main cutting force (Fc), feed cutting force (Ft) and temperatures were estimated by using finite element modeling (FEM) through ABAQUS/EXPLICIT software and the simulation was developed the two-dimension via an orthogonal cutting process during machining titanium alloy (Ti-6Al-4V). The results led to the conclusion that the nose radius (Rz-mm) has affected directly on the cutting force components. However, temperature gave no indication or has no significant relation with nose radius during machining titanium alloy (Ti-6Al-4V). Hence, any increase or decrease in the nose radius (Rzmm) during machining operation led to effect on the cutting forces and thus it will be effective on surface finish, quality, and quantity of products.
Keywords: Finite element modeling (FEM), nose radius, cutting force, temperature, titanium alloy (Ti-6Al-4V).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3013394 Modeling of Titanium Alloy Implant for Fractured Distal Femur
Authors: Abhishek Soni, Bhagat Singh
Abstract:
In the present work, reverse engineering (RE) approach has been used to create a 3D model of a fractured femur bone using the computed tomography (CT) scan data. Thereafter, counter fit fixation plates of Titanium alloy (Ti6Al4V) have been designed and analyzed considering physiological static loading conditions. From the analysis, it has been inferred that the stresses and deformation developed are quite low. It implies that these designed customized fixation plates are able to provide stable fixation resulting in improved fracture union.Keywords: Biomechanical evaluations, customized implant, reverse engineering, titanium alloy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 726393 Finite Element Modeling to Predict the Effect of Nose Radius on the Equivalent Strain (PEEQ) for Titanium Alloy (Ti-6Al-4V)
Authors: Moaz H. Ali, M. N. M. Ansari, Pang Jing Shen
Abstract:
In present work, prediction the effect of nose radius, rz (mm) on the equivalent strain (PEEQ) and surface finish during the machining of titanium alloy (Ti-6Al-4V) through orthogonal cutting process. The results were performed at several of the nose radiuses, rz (mm) while the cutting speed, vc (m/min), feed rate, f (mm/tooth) and depth of cut, d (mm) were remained constant. The equivalent plastic strain (PEEQ) was estimated by using finite element modeling (FEM) and applied through ABAQUS/EXPLICIT software. The simulation results led to conclude that the equivalent plastic strain (PEEQ) was increased and surface roughness (Ra) decreased when increasing nose radius, rz (mm) during the machining of titanium alloy (Ti–6Al–4V) in dry cutting conditions.
Keywords: Finite element modeling (FEM), nose radius, plastic strain (PEEQ), titanium alloy (Ti-6Al-4V).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2489392 Precipitation Hardening Behavior of Directly Cold Rolled Al-6Mg Alloy Containing Ternary Sc and Quaternary Zi/Ti
Authors: M. S. Kaiser
Abstract:
Ageing of 75% cold rolled Al-6Mg alloy with ternary 0.4 wt% scandium and quaternary zirconium and titanium has been carried out. Alloy samples are naturally, isochronally and isothermally aged for different time and temperatures. Hardness values of the differently processed alloys have been measured to understand the ageing behavior of Al-6Mg alloy with scandium and quaternary zirconium and titanium addition. Resistivity changes with annealing time and temperature were measured to understand the precipitation behavior and recovery of strain of the alloy. Attempts were also made to understand the grain refining effect of scandium in Al-6Mg alloy. It is observed that significant hardening takes place in the aged alloys due to the precipitation of scandium aluminides and the dendrites of the Al-6Mg alloy have been refined significantly due to addition of scandium.
Keywords: Al-Mg alloys, age hardening, resistivity, metastable phase.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2089391 Influence of Titanium Addition on Wear Properties of AM60 Magnesium Alloy
Authors: H. Zengin, M. E. Turan, Y. Turen, H. Ahlatci, Y. Sun
Abstract:
This study aimed for improving wear resistance of AM60 magnesium alloy by Ti addition (0, 0.2, 0.5, 1wt%Ti). An electric resistance furnace was used to produce alloys. Pure Mg together with Al, Al-Ti and Al-Mn were melted at 750 0C in a stainless steel crucible under controlled Ar gas atmosphere and then poured into a metal mould preheated at 250 0C. Microstructure characterizations were performed by light optical (LOM) and scanning electron microscope (SEM) after the wear test. Wear rates and friction coefficients were measured with a pin-on-disk type UTS-10 Tribometer test device under a load of 20N. The results showed that Ti addition altered the morphology and the amount of b-Mg17Al12 phase in the microstructure of AM60 alloy. b-Mg17Al12 phases on the grain boundaries were refined with increasing amount of Ti. An improvement in wear resistance of AM60 alloy was observed due to the alteration in the microstructure by Ti addition.Keywords: Magnesium alloy, titanium, SEM, wear.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1811390 Effect of Gas-Diffusion Oxynitriding on Microstructure and Hardness of Ti-6Al-4V Alloys
Authors: Dong Bok Lee, Min Jung Kim
Abstract:
The commercially available titanium alloy, Ti-6Al-4V, was oxynitrided in the deoxygenated nitrogen gas at high temperatures followed by cooling in oxygen-containing nitrogen in order to analyze the influence of oxynitriding parameters on the phase modification, hardness, and the microstructural evolution of the oxynitrided coating. The surface microhardness of the oxynitrided alloy increased due to the strengthening effect of the formed titanium oxynitrides, TiNxOy. The maximum microhardness was obtained, when TiNxOy had near equiatomic composition of nitrogen and oxygen. It could be attained under the optimum oxygen partial pressure and temperature-time condition.
Keywords: Oxynitriding, surface microhardness, titanium alloys, Ti-6Al-4V.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1158389 Deformability of the Rare Earth Metal Modified Metastable-β Alloy Ti-15Mo
Authors: F. Brunke, L. Waalkes, C. Siemers
Abstract:
Due to reduced stiffness, research on second generation titanium alloys for implant applications, like the metastable β-titanium alloy Ti-15Mo, become more and more important in the recent years. The machinability of these alloys is generally poor leading to problems during implant production and comparably large production costs. Therefore, in the present study, Ti-15Mo was alloyed with 0.8 wt.-% of the rare earth metals lanthanum (Ti-15Mo+0.8La) and neodymium (Ti-15Mo+0.8Nd) to improve its machinability. Their microstructure consisted of a titanium matrix and micrometer-size particles of the rare earth metals and two of their oxides. The particles stabilized the microstructure as grain growth was minimized. As especially the ductility might be affected by the precipitates, the behavior of Ti-15Mo+0.8La and Ti- 15Mo+0.8Nd was investigated during static and dynamic deformation at elevated temperature to develop a processing route. The resulting mechanical properties (static strength and ductility) were similar in all investigated alloys.
Keywords: Ti-15Mo, Titanium alloys, Rare earth metals, Free-machining alloy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3734388 Sintering Properties of Mechanically Alloyed Ti-5Al-2.5Fe
Authors: Ridvan Yamanoglu, Erdinc Efendi, Ismail Daoud
Abstract:
In this study, Ti-5Al-2.5Fe alloy was prepared by powder metallurgy. The elemental titanium, aluminum, and iron powders were mechanically alloyed for 10 h in a vacuum atmosphere. A stainless steel jar and stainless steel balls were used for mechanical alloying. The alloyed powders were then sintered by vacuum hot pressing at 950 °C for a soaking time of 30 minutes. Pure titanium was also sintered at the same conditions for comparison of mechanical properties and microstructural behavior. The samples were investigated by scanning electron microscopy, XRD analysis, and optical microscopy. Results showed that, after mechanical alloying, a homogeneous distribution of the elements was obtained, and desired a-b structure was determined. Ti-5Al-2.5Fe alloy was successfully produced, and the alloy showed enhanced mechanical properties compared to the commercial pure titanium.Keywords: Ti5Al2.5Fe, mechanical alloying, hot pressing, sintering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1275387 Combined Effect of Cold Rolling and Heat Treatment on the Mechanical Properties of Al-Ti Alloy
Authors: Adeosun S. Oluropo, Sekunowo O. Israel, Talabi S. Isaac
Abstract:
This study investigated the combined effect of cold rolling and heat treatment on the mechanical properties of Al-Ti alloy. Samples of the alloy are cast in metal mould to obtain 0.94-2.19wt% mixes of titanium. These samples are grouped into untreated (as-cast) and those that are cold rolled to fifty percent reduction, homogenized at 5000C and soaked for one hour. The cold rolled and heat treated samples are normalized (RTn) and quench-tempered (RTq-t) at 1000C. All these samples are subjected to tensile, micro-hardness and microstructural evaluation. Results show remarkable improvement in the mechanical properties of the cold rolled and heat treated samples compared to the as-cast. In particular, the RTq-t samples containing titanium in the range of 1.7-2.2% demonstrates improve tensile strength by 24.7%, yield strength, 28%, elastic modulus, 38.3% and micro-hardness, 20.5%. The Al3Ti phase being the most stable precipitate in the α-Al matrix appears to have been responsible for the significant improvement in the alloy’s mechanical properties. It is concluded that quench and temper heat treatment is an effective method of improving the strength-strain ratio of cold rolled Al-.0.9-2.2%Ti alloy.
Keywords: Aluminum-titanium alloy, heat treatment, mechanical properties, precipitate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2763386 Laser Welding of Titanium Alloy Ti64 to Polyamide 6.6: Effects of Welding Parameters on Temperature Profile Evolution
Authors: A. Al-Sayyad, P. Lama, J. Bardon, P. Hirchenhahn, L. Houssiau, P. Plapper
Abstract:
Composite metal–polymer materials, in particular titanium alloy (Ti-6Al-4V) to polyamide (PA6.6), fabricated by laser joining, have gained cogent interest among industries and researchers concerned with aerospace and biomedical applications. This work adopts infrared (IR) thermography technique to investigate effects of laser parameters used in the welding process on the three-dimensional temperature profile at the rear-side of titanium, at the region to be welded with polyamide. Cross sectional analysis of welded joints showed correlations between the morphology of titanium and polyamide at the weld zone with the corresponding temperature profile. In particular, spatial temperature profile was found to be correlated with the laser beam energy density, titanium molten pool width and depth, and polyamide heat affected zone depth.
Keywords: Laser welding, metals to polymers joining, process monitoring, temperature profile, thermography.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 870385 Laser Forming of Titanium and Its Alloys – An Overview
Authors: Esther T. Akinlabi, Mukul Shukla, Stephen A. Akinlabi
Abstract:
Laser beam forming is a novel technique developed for the joining of metallic components. In this study, an overview of the laser beam forming process, areas of application, the basic mechanisms of the laser beam forming process, some recent research studies and the need to focus more research effort on improving the laser-material interaction of laser beam forming of titanium and its alloys are presented.Keywords: Aerospace, Deformation, Laser forming, Mechanisms, Titanium, Titanium alloy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3185384 Nanomechanical Characterization of Titanium Alloy Modified by Nitrogen Ion Implantation
Authors: Josef Sepitka, Petr Vlcak, Tomas Horazdovsky, Vratislav Perina
Abstract:
An ion implantation technique was used for designing the surface area of a titanium alloy and for irradiation-enhanced hardening of the surface. The Ti6Al4V alloy was treated by nitrogen ion implantation at fluences of 2·1017 and 4·1017 cm-2 and at ion energy 90 keV. The depth distribution of the nitrogen was investigated by Rutherford Backscattering Spectroscopy. The gradient of mechanical properties was investigated by nanoindentation. The continuous measurement mode was used to obtain depth profiles of the indentation hardness and the reduced storage modulus of the modified surface area. The reduced storage modulus and the hardness increase with increasing fluence. Increased fluence shifts the peak of the mechanical properties as well as the peak of nitrogen concentration towards to the surface. This effect suggests a direct relationship between mechanical properties and nitrogen distribution.
Keywords: Nitrogen ion implantation, titanium-based nanolayer, storage modulus, hardness, microstructure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1289383 Microstructure and Mechanical Behaviuor of Rotary Friction Welded Titanium Alloys
Authors: M. Avinash, G. V. K. Chaitanya, Dhananjay Kumar Giri, Sarala Upadhya, B. K. Muralidhara
Abstract:
Ti-6Al-4V alloy has demonstrated a high strength to weight ratio as well as good properties at high temperature. The successful application of the alloy in some important areas depends on suitable joining techniques. Friction welding has many advantageous features to be chosen for joining Titanium alloys. The present work investigates the feasibility of producing similar metal joints of this Titanium alloy by rotary friction welding method. The joints are produced at three different speeds and the performances of the welded joints are evaluated by conducting microstructure studies, Vickers Hardness and tensile tests at the joints. It is found that the weld joints produced are sound and the ductile fractures in the tensile weld specimens occur at locations away from the welded joints. It is also found that a rotational speed of 1500 RPM can produce a very good weld, with other parameters kept constant.Keywords: Rotary friction weld, rotational speed, Ti-6Al-4V, weld structures.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2609382 Laser Beam Micro-Drilling Effect on Ti-6Al-4V Titanium Alloy Sheet Properties
Authors: Petr Homola, Roman Růžek
Abstract:
Laser beam micro-drilling (LBMD) is one of the most important non-contact machining processes of materials that are difficult to machine by means oeqf conventional machining methods used in various industries. The paper is focused on LBMD knock-down effect on Ti-6Al-4V (Grade 5) titanium alloy sheets properties. Two various process configurations were verified with a focus on laser damages in back-structure parts affected by the process. The effects of the LBMD on the material properties were assessed by means of tensile and fatigue tests and fracture surface analyses. Fatigue limit of LBMD configurations reached a significantly lower value between 15% and 30% of the static strength as compared to the reference raw material with 58% value. The farther back-structure configuration gives a two-fold fatigue life as compared to the closer LBMD configuration at a given stress applied.
Keywords: Fatigue, fracture surface, laser beam micro-drilling, titanium alloy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 781381 Effect of Incremental Forming Parameters on Titanium Alloys Properties
Authors: Petr Homola, Lucie Novakova, Vaclav Kafka, Mariluz P. Oscoz
Abstract:
Shear spinning is closely related to the asymmetric incremental sheet forming (AISF) that could significantly reduce costs incurred by the fabrication of complex aeronautical components with a minimal environmental impact. The spinning experiments were carried out on commercially pure titanium (Ti-Gr2) and Ti-6Al-4V (Ti-Gr5) alloy. Three forming modes were used to characterize the titanium alloys properties from the point of view of different spinning parameters. The structure and properties of the materials were assessed by means of metallographic analyses and microhardness measurements. The highest value wall angle failure limit was achieved using spinning parameters mode for both materials. The feed rate effect was observed only in the samples from the Ti-Gr2 material, when a refinement of the grain microstructure with lower feed rate and higher tangential speed occurred. Ti-Gr5 alloy exhibited a decrease of the microhardness at higher straining due to recovery processes.
Keywords: Incremental forming, metallography, shear spinning, titanium alloys.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3288380 Investigation of Titanium Oxide Layer in Thermal-Electrochemical Anodizing of Ti6Al4V Alloy
Authors: Z. Abdolldhi, A. A. Ziaee M., A. Afshar
Abstract:
In this paper the combination of thermal oxidation and electrochemical anodizing processes is used to produce titanium oxide layers. The response of titanium alloy Ti6Al4V to oxidation processes at various temperatures and electrochemical anodizing in various voltages are investigated. Scanning electron microscopy (SEM); X-Ray Diffraction (XRD) and porosity determination have been used to characterize the oxide layer thickness, surface morphology, oxide layer-substrate adhesion and porosity. In the first experiment, samples modified by thermal oxidation process then followed by electrochemical anodizing. Second experiment consists of surfaces modified by electrochemical anodizing process and then followed by thermal oxidation. The first method shows better properties than other one. In second experiment, Surfaces modified were achieved by thicker and more adherent thick oxide layers on titanium surface. The existence of an electrochemical anodized oxide layer did not improve the adhesion of thermal oxide layer. The high temperature, thermal formation of an oxide layer leads to a coarse oxide grain morphology and a complete oxidative particle. In addition, in high temperature oxidation porosity content is increased. The oxide layer of thermal oxidation and electrochemical anodizing processes; on Ti–6Al–4V substrate was covered with different colored oxide layers.Keywords: Electrochemically anodizing, Porosity, Thermaloxidation, Ti6Al4 alloy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3381379 Studies on Distortion of Dissimilar Thin Sheet Weld Joints Using Laser Beam Welding
Authors: K. Kalaiselvan, A. Elango
Abstract:
To achieve reliable welds with minimum distortion for the fabrication of components in aerospace industry laser beam welding is attempted. Laser welding can provide a significant benefit for the welding of Titanium and Aluminium thin sheet alloys of its precision and rapid processing capability. For laser welding, pulse shape, energy, duration, repetition rate and peak power are the most important parameters that influence directly the quality of welds. In this experimental work for joining 1mm thick TI6AL4V and AA2024 alloy and JK600 Nd:YAG pulsed laser units used. The distortions at different welding power and speed of titanium and aluminium thin sheet alloys are investigated. Test results reveal that increase in welding speed increases distortion in weldment
Keywords: Laser Beam Welding, Titanium, Aluminium alloy sheets and distortion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2687378 Analyses of Wear Mechanisms Occurring During Machining of the Titanium Alloy Ti- 6Al-2Sn-4Zr-6Mo
Authors: Z. Rihova, K. Saksl, C. Siemers, D. Ostroushko
Abstract:
Titanium alloys like the modern alloy Ti 6Al 2Sn 4Zr 6Mo (Ti-6246) combine excellent specific mechanical properties and corrosion resistance. On the other hand,due to their material characteristics, machining of these alloys is difficult to perform. The aim of the current study is the analyses of wear mechanisms of coated cemented carbide tools applied in orthogonal cutting experiments of Ti-6246 alloy. Round bars were machined with standard coated tools in dry conditions on a CNC latheusing a wide range of cutting speeds and cutting depths. Tool wear mechanisms were afterwards investigated by means of stereo microscopy, optical microscopy, confocal microscopy and scanning electron microscopy. Wear mechanisms included fracture of the tool tip (total failure) and abrasion. Specific wear features like crater wear, micro cracks and built-up edgeformation appeared depending of the mechanical and thermal conditions generated in the workpiece surface by the cutting action.
Keywords: Alloy 6246, machining, tool wear, optical microscopy, SEM, EDX analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1778377 Influence of Ball Milling Time on Mechanical Properties of Porous Ti-20Nb-5Ag Alloy
Authors: M. J. Shivaram, Shashi Bhushan Arya, Jagannath Nayak, Bharat Bhooshan Panigrahi
Abstract:
Titanium and its alloys have become more significant implant materials due to their mechanical properties, excellent biocompatibility and high corrosion resistance. Biomaterials can be produce by using the powder metallurgy (PM) methods and required properties can tailored by varying the processing parameters, such as ball milling time, space holder particles, and sintering temperature. The desired properties such as, structural and mechanical properties can be obtained by powder metallurgy method. In the present study, deals with fabrication of solid and porous Ti-20Nb-5Ag alloy using high energy ball milling for different times (5 and 20 h). The resultant powder particles were used to fabricate solid and porous Ti-20Nb-5Ag alloy by adding space holder particles (NH4HCO3). The resultant powder particles, fabricated solid and porous samples were characterized by scanning electron microscopy (SEM). The compressive strength, elastic modulus and microhardness properties were investigated. Solid and porous Ti-20Nb-5Ag alloy samples showed good mechanical properties for 20 h ball milling time as compare to 5 h ball milling.Keywords: Ball Milling, compressive strengths, microstructure, porous Titanium alloy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 883376 Analytical Model Prediction: Micro-Cutting Tool Forces with the Effect of Friction on Machining Titanium Alloy (Ti-6Al-4V)
Authors: Mohd Shahrom Ismail, B.T. Hang Tuah Baharudin, K.K.B. Hon
Abstract:
In this paper, a methodology of a model based on predicting the tool forces oblique machining are introduced by adopting the orthogonal technique. The applied analytical calculation is mostly based on Devries model and some parts of the methodology are employed from Amareggo-Brown model. Model validation is performed by comparing experimental data with the prediction results on machining titanium alloy (Ti-6Al-4V) based on micro-cutting tool perspective. Good agreements with the experiments are observed. A detailed friction form that affected the tool forces also been examined with reasonable results obtained.Keywords: dynamics machining, micro cutting tool, Tool forces
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1690375 Precision Grinding of Titanium (Ti-6Al-4V) Alloy Using Nanolubrication
Authors: Ahmed A. D. Sarhan, Hong Wan Ping, M. Sayuti
Abstract:
In this current era of competitive machinery productions, the industries are designed to place more emphasis on the product quality and reduction of cost whilst abiding by the pollution-preventing policy. In attempting to delve into the concerns, the industries are aware that the effectiveness of existing lubrication systems must be improved to achieve power-efficient and pollution-preventing machining processes. As such, this research is targeted to study on a plausible solution to the issue in grinding titanium alloy (Ti-6Al-4V) by using nanolubrication, as an alternative to flood grinding. The aim of this research is to evaluate the optimum condition of grinding force and surface roughness using MQL lubricating system to deliver nano-oil at different level of weight concentration of Silicon Dioxide (SiO2) mixed normal mineral oil. Taguchi Design of Experiment (DoE) method is carried out using a standard Taguchi orthogonal array of L16(43) to find the optimized combination of weight concentration mixture of SiO2, nozzle orientation and pressure of MQL. Surface roughness and grinding force are also analyzed using signal-to-noise(S/N) ratio to determine the best level of each factor that are tested. Consequently, the best combination of parameters is tested for a period of time and the results are compared with conventional grinding method of dry and flood condition. The results show a positive performance of MQL nanolubrication.
Keywords: Grinding, MQL, precision grinding, Taguchi optimization, titanium alloy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1886374 Studies on Ti/Al Sheet Joint Using Laser Beam Welding – A Review
Authors: K. Kalaiselvan, A. Elango, N. M. Nagarajan, N. Mathiyazagan
Abstract:
Laser beam welding has wide acceptability due to least welding distortion, low labour costs and convenient operation. However, laser welding for dissimilar titanium and aluminium alloys is a new area which is having wider applications in aerospace, aircraft, automotive, electronics and other industries. The present study is concerned with welding parameters namely laser power, welding speed, focusing distance and type of shielding gas and thereby evaluate welding performance of titanium and aluminium alloy thin sheets. This paper reviews the basic concepts associated with different parameters of Ti/Al sheet joint using Laser beam welding.
Keywords: Laser Beam Welding (LBW), Dissimilar joining Titanium and Aluminum sheets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2312373 Chips of Ti-6Al-2Sn-4Zr-6Mo Alloy – A Detailed Geometry Study
Authors: Dmytro Ostroushko, Karel Saksl, Carsten Siemers, Zuzana Rihova
Abstract:
Titanium alloys like Ti-6Al-2Sn-4Zr-6Mo (Ti- 6246) are widely used in aerospace applications. Component manufacturing, however, is difficult and expensive as their machinability is extremely poor. A thorough understanding of the chip formation process is needed to improve related metal cutting operations.In the current study, orthogonal cutting experiments have been performed and theresulting chips were analyzed by optical microscopy and scanning electron microscopy.Chips from aTi- 6246ingot were produced at different cutting speeds and cutting depths. During the experiments, depending of the cutting conditions, continuous or segmented chips were formed. Narrow, highly deformed and grain oriented zones, the so-called shear zone, separated individual segments. Different material properties have been measured in the shear zones and the segments.Keywords: Titanium alloy, Ti-6246, chip formation, machining, shear zone, microstructure
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1743372 Shape Memory alloy Actuator System Optimization for New Hand Prostheses
Authors: Mogeeb A. Ahmed, Mona F. Taher, Sayed M. Metwalli
Abstract:
Shape memory alloy (SMA) actuators have found a wide range of applications due to their unique properties such as high force, small size, lightweight and silent operation. This paper presents the development of compact (SMA) actuator and cooling system in one unit. This actuator is developed for multi-fingered hand. It consists of nickel-titanium (Nitinol) SMA wires in compact forming. The new arrangement insulates SMA wires from the human body by housing it in a heat sink and uses a thermoelectric device for rejecting heat to improve the actuator performance. The study uses optimization methods for selecting the SMA wires geometrical parameters and the material of a heat sink. The experimental work implements the actuator prototype and measures its response.Keywords: Optimization, Prosthetic hand, Shape memory alloy, Thermoelectric device, Actuator system
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2055371 Mechanical and Microstructural Properties of Rotary-Swaged Wire of Commercial-Purity Titanium
Authors: Michal Duchek, Jan Palán, Tomas Kubina
Abstract:
Bars made of titanium grade 2 and grade 4 were subjected to rotary forging with up to 2.2 true strain reduction in the cross-section from 10 to 3.81 mm. During progressive deformation, grain refinement in the transverse direction took place. In the longitudinal direction, ultrafine microstructure has not developed. It has been demonstrated that titanium grade 2 strengthens more than grade 4. The ultimate tensile strength increased from 650 MPa to 1040 MPa in titanium grade 4. Hardness profiles on the cross section in both materials show an increase in the centre of the wire.
Keywords: Commercial-purity titanium, wire, rotary swaging, tensile test, hardness, modulus of elasticity, microstructure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 744370 Hydrothermal Fabrication of Iodine Doped Titanium Oxide Films on Ti Substrate
Authors: M. P. Neupane, T. S. N. Sankara Narayanan, J. E. Park, Y. K. Kim, I. S. Park, K. Y. Song, T. S. Bae, M. H. Lee
Abstract:
Titanium oxide films with different morphologies have for the first time been fabricated through hydrothermal reactions between a titanium substrate and iodine powder in water or ethanol. SEM revealed that iodine supported titanium (Ti-I2) surface shows different morphologies with variable treatment conditions. The mean surface roughness (Ra) was increased in the different groups. Use of surfactant has a role to increase the roughness of the film. The surface roughness was in the range of 0.15 μm-0.42 μm. Furthermore, the electrochemical examinations showed that the Ti-I2 surface fabricated in alcoholic medium has high corrosion resistance than in aqueous medium.
Keywords: Corrosion, Hydrothermal, Surface roughness, Titanium oxide.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1930369 Spectroscopic and SEM Investigation of TCPP in Titanium Matrix
Authors: R.Rahimi, F.Moharrami
Abstract:
Titanium gels doped with water-soluble cationic porphyrin were synthesized by the sol–gel polymerization of Ti (OC4H9)4. In this work we investigate the spectroscopic properties along with SEM images of tetra carboxyl phenyl porphyrin when incorporated into porous matrix produced by the sol–gel technique.
Keywords: TCPP, Titanium matrix, UV/Vis spectroscopy, SEM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1583368 Fluidity of A713 Cast Alloy with and without Scrap Addition using Double Spiral Fluidity Test: A Comparison
Authors: A.K. Birru, D Benny Karunakar, M. M. Mahapatra
Abstract:
Recycling of aluminum alloys often decrease fluidity, consequently influence the castability of the alloy. In this study, the fluidity of Al-Zn alloys, such as the standard A713 alloy with and without scrap addition has been investigated. The scrap added was comprised of contaminated alloy turning chips. Fluidity measurements were performed with double spiral fluidity test consisting of gravity casting of double spirals in green sand moulds with good reproducibility. The influence of recycled alloy on fluidity has been compared with that of the virgin alloy and the results showed that the fluidity decreased with the increase in recycled alloy at minimum pouring temperatures. Interestingly, an appreciable improvement in the fluidity was observed at maximum pouring temperature, especially for coated spirals.Keywords: A713 alloy, Fluidity, Hexachloroethane, Pouring temperature, Recycling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2496