Search results for: Local Binary Patterns (LBP)
2441 Fusing Local Binary Patterns with Wavelet Features for Ethnicity Identification
Authors: S. Hma Salah, H. Du, N. Al-Jawad
Abstract:
Ethnicity identification of face images is of interest in many areas of application, but existing methods are few and limited. This paper presents a fusion scheme that uses block-based uniform local binary patterns and Haar wavelet transform to combine local and global features. In particular, the LL subband coefficients of the whole face are fused with the histograms of uniform local binary patterns from block partitions of the face. We applied the principal component analysis on the fused features and managed to reduce the dimensionality of the feature space from 536 down to around 15 without sacrificing too much accuracy. We have conducted a number of preliminary experiments using a collection of 746 subject face images. The test results show good accuracy and demonstrate the potential of fusing global and local features. The fusion approach is robust, making it easy to further improve the identification at both feature and score levels.
Keywords: Ethnicity identification, fusion, local binary patterns, wavelet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29992440 Speech Enhancement Using Wavelet Coefficients Masking with Local Binary Patterns
Authors: Christian Arcos, Marley Vellasco, Abraham Alcaim
Abstract:
In this paper, we present a wavelet coefficients masking based on Local Binary Patterns (WLBP) approach to enhance the temporal spectra of the wavelet coefficients for speech enhancement. This technique exploits the wavelet denoising scheme, which splits the degraded speech into pyramidal subband components and extracts frequency information without losing temporal information. Speech enhancement in each high-frequency subband is performed by binary labels through the local binary pattern masking that encodes the ratio between the original value of each coefficient and the values of the neighbour coefficients. This approach enhances the high-frequency spectra of the wavelet transform instead of eliminating them through a threshold. A comparative analysis is carried out with conventional speech enhancement algorithms, demonstrating that the proposed technique achieves significant improvements in terms of PESQ, an international recommendation of objective measure for estimating subjective speech quality. Informal listening tests also show that the proposed method in an acoustic context improves the quality of speech, avoiding the annoying musical noise present in other speech enhancement techniques. Experimental results obtained with a DNN based speech recognizer in noisy environments corroborate the superiority of the proposed scheme in the robust speech recognition scenario.Keywords: Binary labels, local binary patterns, mask, wavelet coefficients, speech enhancement, speech recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10312439 An Improved Face Recognition Algorithm Using Histogram-Based Features in Spatial and Frequency Domains
Authors: Qiu Chen, Koji Kotani, Feifei Lee, Tadahiro Ohmi
Abstract:
In this paper, we propose an improved face recognition algorithm using histogram-based features in spatial and frequency domains. For adding spatial information of the face to improve recognition performance, a region-division (RD) method is utilized. The facial area is firstly divided into several regions, then feature vectors of each facial part are generated by Binary Vector Quantization (BVQ) histogram using DCT coefficients in low frequency domains, as well as Local Binary Pattern (LBP) histogram in spatial domain. Recognition results with different regions are first obtained separately and then fused by weighted averaging. Publicly available ORL database is used for the evaluation of our proposed algorithm, which is consisted of 40 subjects with 10 images per subject containing variations in lighting, posing, and expressions. It is demonstrated that face recognition using RD method can achieve much higher recognition rate.
Keywords: Face recognition, Binary vector quantization (BVQ), Local Binary Patterns (LBP), DCT coefficients.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16242438 Hit-or-Miss Transform as a Tool for Similar Shape Detection
Authors: Osama Mohamed Elrajubi, Idris El-Feghi, Mohamed Abu Baker Saghayer
Abstract:
This paper describes an identification of specific shapes within binary images using the morphological Hit-or-Miss Transform (HMT). Hit-or-Miss transform is a general binary morphological operation that can be used in searching of particular patterns of foreground and background pixels in an image. It is actually a basic operation of binary morphology since almost all other binary morphological operators are derived from it. The input of this method is a binary image and a structuring element (a template which will be searched in a binary image) while the output is another binary image. In this paper a modification of Hit-or-Miss transform has been proposed. The accuracy of algorithm is adjusted according to the similarity of the template and the sought template. The implementation of this method has been done by C language. The algorithm has been tested on several images and the results have shown that this new method can be used for similar shape detection.
Keywords: Hit-or/and-Miss Operator/Transform, HMT, binary morphological operation, shape detection, binary images processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 51382437 Improved Feature Extraction Technique for Handling Occlusion in Automatic Facial Expression Recognition
Authors: Khadijat T. Bamigbade, Olufade F. W. Onifade
Abstract:
The field of automatic facial expression analysis has been an active research area in the last two decades. Its vast applicability in various domains has drawn so much attention into developing techniques and dataset that mirror real life scenarios. Many techniques such as Local Binary Patterns and its variants (CLBP, LBP-TOP) and lately, deep learning techniques, have been used for facial expression recognition. However, the problem of occlusion has not been sufficiently handled, making their results not applicable in real life situations. This paper develops a simple, yet highly efficient method tagged Local Binary Pattern-Histogram of Gradient (LBP-HOG) with occlusion detection in face image, using a multi-class SVM for Action Unit and in turn expression recognition. Our method was evaluated on three publicly available datasets which are JAFFE, CK, SFEW. Experimental results showed that our approach performed considerably well when compared with state-of-the-art algorithms and gave insight to occlusion detection as a key step to handling expression in wild.
Keywords: Automatic facial expression analysis, local binary pattern, LBP-HOG, occlusion detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7922436 Gray Level Image Encryption
Authors: Roza Afarin, Saeed Mozaffari
Abstract:
The aim of this paper is image encryption using Genetic Algorithm (GA). The proposed encryption method consists of two phases. In modification phase, pixels locations are altered to reduce correlation among adjacent pixels. Then, pixels values are changed in the diffusion phase to encrypt the input image. Both phases are performed by GA with binary chromosomes. For modification phase, these binary patterns are generated by Local Binary Pattern (LBP) operator while for diffusion phase binary chromosomes are obtained by Bit Plane Slicing (BPS). Initial population in GA includes rows and columns of the input image. Instead of subjective selection of parents from this initial population, a random generator with predefined key is utilized. It is necessary to decrypt the coded image and reconstruct the initial input image. Fitness function is defined as average of transition from 0 to 1 in LBP image and histogram uniformity in modification and diffusion phases, respectively. Randomness of the encrypted image is measured by entropy, correlation coefficients and histogram analysis. Experimental results show that the proposed method is fast enough and can be used effectively for image encryption.
Keywords: Correlation coefficients, Genetic algorithm, Image encryption, Image entropy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22462435 Hardware Implementation of Local Binary Pattern Based Two-Bit Transform Motion Estimation
Authors: Seda Yavuz, Anıl Çelebi, Aysun Taşyapı Çelebi, Oğuzhan Urhan
Abstract:
Nowadays, demand for using real-time video transmission capable devices is ever-increasing. So, high resolution videos have made efficient video compression techniques an essential component for capturing and transmitting video data. Motion estimation has a critical role in encoding raw video. Hence, various motion estimation methods are introduced to efficiently compress the video. Low bit‑depth representation based motion estimation methods facilitate computation of matching criteria and thus, provide small hardware footprint. In this paper, a hardware implementation of a two-bit transformation based low-complexity motion estimation method using local binary pattern approach is proposed. Image frames are represented in two-bit depth instead of full-depth by making use of the local binary pattern as a binarization approach and the binarization part of the hardware architecture is explained in detail. Experimental results demonstrate the difference between the proposed hardware architecture and the architectures of well-known low-complexity motion estimation methods in terms of important aspects such as resource utilization, energy and power consumption.
Keywords: Binarization, hardware architecture, local binary pattern, motion estimation, two-bit transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13832434 Content Based Image Retrieval of Brain MR Images across Different Classes
Authors: Abraham Varghese, Kannan Balakrishnan, Reji R. Varghese, Joseph S. Paul
Abstract:
Magnetic Resonance Imaging play a vital role in the decision-diagnosis process of brain MR images. For an accurate diagnosis of brain related problems, the experts mostly compares both T1 and T2 weighted images as the information presented in these two images are complementary. In this paper, rotational and translational invariant form of Local binary Pattern (LBP) with additional gray scale information is used to retrieve similar slices of T1 weighted images from T2 weighted images or vice versa. The incorporation of additional gray scale information on LBP can extract more local texture information. The accuracy of retrieval can be improved by extracting moment features of LBP and reweighting the features based on users feedback. Here retrieval is done in a single subject scenario where similar images of a particular subject at a particular level are retrieved, and multiple subjects scenario where relevant images at a particular level across the subjects are retrieved.
Keywords: Local Binary pattern (LBP), Modified Local Binary pattern (MOD-LBP), T1 and T2 weighted images, Moment features.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23872433 Local Steerable Pyramid Binary Pattern Sequence LSPBPS for Face Recognition Method
Authors: Mohamed El Aroussi, Mohammed El Hassouni, Sanaa Ghouzali, Mohammed Rziza, Driss Aboutajdine
Abstract:
In this paper the problem of face recognition under variable illumination conditions is considered. Most of the works in the literature exhibit good performance under strictly controlled acquisition conditions, but the performance drastically drop when changes in pose and illumination occur, so that recently number of approaches have been proposed to deal with such variability. The aim of this work is to introduce an efficient local appearance feature extraction method based steerable pyramid (SP) for face recognition. Local information is extracted from SP sub-bands using LBP(Local binary Pattern). The underlying statistics allow us to reduce the required amount of data to be stored. The experiments carried out on different face databases confirm the effectiveness of the proposed approach.
Keywords: Face recognition (FR), Steerable pyramid (SP), localBinary Pattern (LBP).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21962432 Variable vs. Fixed Window Width Code Correlation Reference Waveform Receivers for Multipath Mitigation in Global Navigation Satellite Systems with Binary Offset Carrier and Multiplexed Binary Offset Carrier Signals
Authors: Fahad Alhussein, Huaping Liu
Abstract:
This paper compares the multipath mitigation performance of code correlation reference waveform receivers with variable and fixed window width, for binary offset carrier and multiplexed binary offset carrier signals typically used in global navigation satellite systems. In the variable window width method, such width is iteratively reduced until the distortion on the discriminator with multipath is eliminated. This distortion is measured as the Euclidean distance between the actual discriminator (obtained with the incoming signal), and the local discriminator (generated with a local copy of the signal). The variable window width have shown better performance compared to the fixed window width. In particular, the former yields zero error for all delays for the BOC and MBOC signals considered, while the latter gives rather large nonzero errors for small delays in all cases. Due to its computational simplicity, the variable window width method is perfectly suitable for implementation in low-cost receivers.Keywords: Correlation reference waveform receivers, binary offset carrier, multiplexed binary offset carrier, global navigation satellite systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4912431 Systematic Unit-Memory Binary Convolutional Codes from Linear Block Codes over F2r + vF2r
Authors: John Mark Lampos, Virgilio Sison
Abstract:
Two constructions of unit-memory binary convolutional codes from linear block codes over the finite semi-local ring F2r +vF2r , where v2 = v, are presented. In both cases, if the linear block code is systematic, then the resulting convolutional encoder is systematic, minimal, basic and non-catastrophic. The Hamming free distance of the convolutional code is bounded below by the minimum Hamming distance of the block code. New examples of binary convolutional codes that meet the Heller upper bound for systematic codes are given.Keywords: Convolutional codes, semi-local ring, free distance, Heller bound.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16572430 Kinetics of Aggregation in Media with Memory
Authors: A. Brener, B. Balabekov, N. Zhumataev
Abstract:
In the paper we submit the non-local modification of kinetic Smoluchowski equation for binary aggregation applying to dispersed media having memory. Our supposition consists in that that intensity of evolution of clusters is supposed to be a function of the product of concentrations of the lowest orders clusters at different moments. The new form of kinetic equation for aggregation is derived on the base of the transfer kernels approach. This approach allows considering the influence of relaxation times hierarchy on kinetics of aggregation process in media with memory.Keywords: Binary aggregation, Media with memory, Non-local model, Relaxation times
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13972429 A New Biometric Human Identification Based On Fusion Fingerprints and Finger Veins Using monoLBP Descriptor
Authors: Alima Damak Masmoudi, Randa Boukhris Trabelsi, Dorra Sellami Masmoudi
Abstract:
Single biometric modality recognition is not able to meet the high performance supplies in most cases with its application become more and more broadly. Multimodal biometrics identification represents an emerging trend recently. This paper investigates a novel algorithm based on fusion of both fingerprint and fingervein biometrics. For both biometric recognition, we employ the Monogenic Local Binary Pattern (MonoLBP). This operator integrate the orginal LBP (Local Binary Pattern ) with both other rotation invariant measures: local phase and local surface type. Experimental results confirm that a weighted sum based proposed fusion achieves excellent identification performances opposite unimodal biometric systems. The AUC of proposed approach based on combining the two modalities has very close to unity (0.93).
Keywords: fingerprint, fingervein, LBP, MonoLBP, fusion, biometric trait.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23962428 Local Mesh Co-Occurrence Pattern for Content Based Image Retrieval
Authors: C. Yesubai Rubavathi, R. Ravi
Abstract:
This paper presents the local mesh co-occurrence patterns (LMCoP) using HSV color space for image retrieval system. HSV color space is used in this method to utilize color, intensity and brightness of images. Local mesh patterns are applied to define the local information of image and gray level co-occurrence is used to obtain the co-occurrence of LMeP pixels. Local mesh co-occurrence pattern extracts the local directional information from local mesh pattern and converts it into a well-mannered feature vector using gray level co-occurrence matrix. The proposed method is tested on three different databases called MIT VisTex, Corel, and STex. Also, this algorithm is compared with existing methods, and results in terms of precision and recall are shown in this paper.Keywords: Content-based image retrieval system, HSV color space, gray level co-occurrence matrix, local mesh pattern.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22272427 Personalizing Human Physical Life Routines Recognition over Cloud-Based Sensor Data Via Machine Learning
Authors: Kaushik Sathupadi, Sandesh Achar
Abstract:
Pervasive computing is a growing research field that aims to acknowledge human physical life routines (HPLR) based on body-worn sensors such as MEMS (Micro-Electro-Mechanical Systems) sensors-based technologies. The use of these technologies for human activity recognition is progressively increasing. On the other hand, personalizing human life routines using numerous machine-learning techniques has always been an intriguing topic. In contrast, various methods have demonstrated the ability to recognize basic movement patterns. However, it still needs to be improved to anticipate the dynamics of human living patterns. This study presents state-of-the-art techniques for recognizing static and dynamic patterns and forecasting those challenging activities from multi-fused sensors. Furthermore, numerous MEMS signals are extracted from one self-annotated IM-WSHA dataset and two benchmarked datasets. First, raw data were processed with z-normalization and denoiser methods. Then, we adopted statistical, local binary pattern, auto-regressive model, and intrinsic time scale decomposition major features for feature extraction from different domains. Next, the acquired features are optimized using maximum relevance and minimum redundancy (mRMR). Finally, the artificial neural network is applied to analyze the whole system's performance. As a result, we attained a 90.27% recognition rate for the self-annotated dataset, while the HARTH and KU-HAR achieved 83% on nine living activities and 90.94% on 18 static and dynamic routines. Thus, the proposed HPLR system outperformed other state-of-the-art systems when evaluated with other methods in the literature.
Keywords: Artificial intelligence, machine learning, gait analysis, local binary pattern, statistical features, micro-electro-mechanical systems, maximum relevance and minimum redundancy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 422426 Robot Path Planning in 3D Space Using Binary Integer Programming
Authors: Ellips Masehian, Golnaz Habibi
Abstract:
This paper presents a novel algorithm for path planning of mobile robots in known 3D environments using Binary Integer Programming (BIP). In this approach the problem of path planning is formulated as a BIP with variables taken from 3D Delaunay Triangulation of the Free Configuration Space and solved to obtain an optimal channel made of connected tetrahedrons. The 3D channel is then partitioned into convex fragments which are used to build safe and short paths within from Start to Goal. The algorithm is simple, complete, does not suffer from local minima, and is applicable to different workspaces with convex and concave polyhedral obstacles. The noticeable feature of this algorithm is that it is simply extendable to n-D Configuration spaces.Keywords: 3D C-space, Binary Integer Programming (BIP), Delaunay Tessellation, Robot Motion Planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24852425 Medical Image Segmentation Using Deformable Models and Local Fitting Binary
Authors: B. Bagheri Nakhjavanlo, T. J. Ellis, P. Raoofi, J. Dehmeshki
Abstract:
This paper presents a customized deformable model for the segmentation of abdominal and thoracic aortic aneurysms in CTA datasets. An important challenge in reliably detecting aortic aneurysm is the need to overcome problems associated with intensity inhomogeneities and image noise. Level sets are part of an important class of methods that utilize partial differential equations (PDEs) and have been extensively applied in image segmentation. A Gaussian kernel function in the level set formulation, which extracts the local intensity information, aids the suppression of noise in the extracted regions of interest and then guides the motion of the evolving contour for the detection of weak boundaries. The speed of curve evolution has been significantly improved with a resulting decrease in segmentation time compared with previous implementations of level sets. The results indicate the method is more effective than other approaches in coping with intensity inhomogeneities.Keywords: Abdominal and thoracic aortic aneurysms, intensityinhomogeneity, level sets, local fitting binary.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18242424 Comparative Performance of Artificial Bee Colony Based Algorithms for Wind-Thermal Unit Commitment
Authors: P. K. Singhal, R. Naresh, V. Sharma
Abstract:
This paper presents the three optimization models, namely New Binary Artificial Bee Colony (NBABC) algorithm, NBABC with Local Search (NBABC-LS), and NBABC with Genetic Crossover (NBABC-GC) for solving the Wind-Thermal Unit Commitment (WTUC) problem. The uncertain nature of the wind power is incorporated using the Weibull probability density function, which is used to calculate the overestimation and underestimation costs associated with the wind power fluctuation. The NBABC algorithm utilizes a mechanism based on the dissimilarity measure between binary strings for generating the binary solutions in WTUC problem. In NBABC algorithm, an intelligent scout bee phase is proposed that replaces the abandoned solution with the global best solution. The local search operator exploits the neighboring region of the current solutions, whereas the integration of genetic crossover with the NBABC algorithm increases the diversity in the search space and thus avoids the problem of local trappings encountered with the NBABC algorithm. These models are then used to decide the units on/off status, whereas the lambda iteration method is used to dispatch the hourly load demand among the committed units. The effectiveness of the proposed models is validated on an IEEE 10-unit thermal system combined with a wind farm over the planning period of 24 hours.Keywords: Artificial bee colony algorithm, economic dispatch, unit commitment, wind power.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10862423 Comparative Performance of Artificial Bee Colony Based Algorithms for Wind-Thermal Unit Commitment
Authors: P. K. Singhal, R. Naresh, V. Sharma
Abstract:
This paper presents the three optimization models, namely New Binary Artificial Bee Colony (NBABC) algorithm, NBABC with Local Search (NBABC-LS), and NBABC with Genetic Crossover (NBABC-GC) for solving the Wind-Thermal Unit Commitment (WTUC) problem. The uncertain nature of the wind power is incorporated using the Weibull probability density function, which is used to calculate the overestimation and underestimation costs associated with the wind power fluctuation. The NBABC algorithm utilizes a mechanism based on the dissimilarity measure between binary strings for generating the binary solutions in WTUC problem. In NBABC algorithm, an intelligent scout bee phase is proposed that replaces the abandoned solution with the global best solution. The local search operator exploits the neighboring region of the current solutions, whereas the integration of genetic crossover with the NBABC algorithm increases the diversity in the search space and thus avoids the problem of local trappings encountered with the NBABC algorithm. These models are then used to decide the units on/off status, whereas the lambda iteration method is used to dispatch the hourly load demand among the committed units. The effectiveness of the proposed models is validated on an IEEE 10-unit thermal system combined with a wind farm over the planning period of 24 hours.Keywords: Artificial bee colony algorithm, economic dispatch, unit commitment, wind power.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11912422 Binary Classification Tree with Tuned Observation-based Clustering
Authors: Maythapolnun Athimethphat, Boontarika Lerteerawong
Abstract:
There are several approaches for handling multiclass classification. Aside from one-against-one (OAO) and one-against-all (OAA), hierarchical classification technique is also commonly used. A binary classification tree is a hierarchical classification structure that breaks down a k-class problem into binary sub-problems, each solved by a binary classifier. In each node, a set of classes is divided into two subsets. A good class partition should be able to group similar classes together. Many algorithms measure similarity in term of distance between class centroids. Classes are grouped together by a clustering algorithm when distances between their centroids are small. In this paper, we present a binary classification tree with tuned observation-based clustering (BCT-TOB) that finds a class partition by performing clustering on observations instead of class centroids. A merging step is introduced to merge any insignificant class split. The experiment shows that performance of BCT-TOB is comparable to other algorithms.
Keywords: multiclass classification, hierarchical classification, binary classification tree, clustering, observation-based clustering
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17412421 Algorithm for Reconstructing 3D-Binary Matrix with Periodicity Constraints from Two Projections
Authors: V. Masilamani, Kamala Krithivasan
Abstract:
We study the problem of reconstructing a three dimensional binary matrices whose interiors are only accessible through few projections. Such question is prominently motivated by the demand in material science for developing tool for reconstruction of crystalline structures from their images obtained by high-resolution transmission electron microscopy. Various approaches have been suggested to reconstruct 3D-object (crystalline structure) by reconstructing slice of the 3D-object. To handle the ill-posedness of the problem, a priori information such as convexity, connectivity and periodicity are used to limit the number of possible solutions. Formally, 3Dobject (crystalline structure) having a priory information is modeled by a class of 3D-binary matrices satisfying a priori information. We consider 3D-binary matrices with periodicity constraints, and we propose a polynomial time algorithm to reconstruct 3D-binary matrices with periodicity constraints from two orthogonal projections.
Keywords: 3D-Binary Matrix Reconstruction, Computed Tomography, Discrete Tomography, Integral Max Flow Problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 49022420 Human Facial Expression Recognition using MANFIS Model
Authors: V. Gomathi, Dr. K. Ramar, A. Santhiyaku Jeevakumar
Abstract:
Facial expression analysis plays a significant role for human computer interaction. Automatic analysis of human facial expression is still a challenging problem with many applications. In this paper, we propose neuro-fuzzy based automatic facial expression recognition system to recognize the human facial expressions like happy, fear, sad, angry, disgust and surprise. Initially facial image is segmented into three regions from which the uniform Local Binary Pattern (LBP) texture features distributions are extracted and represented as a histogram descriptor. The facial expressions are recognized using Multiple Adaptive Neuro Fuzzy Inference System (MANFIS). The proposed system designed and tested with JAFFE face database. The proposed model reports 94.29% of classification accuracy.Keywords: Adaptive neuro-fuzzy inference system, Facialexpression, Local binary pattern, Uniform Histogram
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21092419 A Weighted Approach to Unconstrained Iris Recognition
Authors: Yao-Hong Tsai
Abstract:
This paper presents a weighted approach to unconstrained iris recognition. In nowadays, commercial systems are usually characterized by strong acquisition constraints based on the subject’s cooperation. However, it is not always achievable for real scenarios in our daily life. Researchers have been focused on reducing these constraints and maintaining the performance of the system by new techniques at the same time. With large variation in the environment, there are two main improvements to develop the proposed iris recognition system. For solving extremely uneven lighting condition, statistic based illumination normalization is first used on eye region to increase the accuracy of iris feature. The detection of the iris image is based on Adaboost algorithm. Secondly, the weighted approach is designed by Gaussian functions according to the distance to the center of the iris. Furthermore, local binary pattern (LBP) histogram is then applied to texture classification with the weight. Experiment showed that the proposed system provided users a more flexible and feasible way to interact with the verification system through iris recognition.
Keywords: Authentication, iris recognition, Adaboost, local binary pattern.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19452418 Efficient Feature Fusion for Noise Iris in Unconstrained Environment
Authors: Yao-Hong Tsai
Abstract:
This paper presents an efficient fusion algorithm for iris images to generate stable feature for recognition in unconstrained environment. Recently, iris recognition systems are focused on real scenarios in our daily life without the subject’s cooperation. Under large variation in the environment, the objective of this paper is to combine information from multiple images of the same iris. The result of image fusion is a new image which is more stable for further iris recognition than each original noise iris image. A wavelet-based approach for multi-resolution image fusion is applied in the fusion process. The detection of the iris image is based on Adaboost algorithm and then local binary pattern (LBP) histogram is then applied to texture classification with the weighting scheme. Experiment showed that the generated features from the proposed fusion algorithm can improve the performance for verification system through iris recognition.
Keywords: Image fusion, iris recognition, local binary pattern, wavelet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22252417 Face Recognition using Features Combination and a New Non-linear Kernel
Authors: Essam Al Daoud
Abstract:
To improve the classification rate of the face recognition, features combination and a novel non-linear kernel are proposed. The feature vector concatenates three different radius of local binary patterns and Gabor wavelet features. Gabor features are the mean, standard deviation and the skew of each scaling and orientation parameter. The aim of the new kernel is to incorporate the power of the kernel methods with the optimal balance between the features. To verify the effectiveness of the proposed method, numerous methods are tested by using four datasets, which are consisting of various emotions, orientations, configuration, expressions and lighting conditions. Empirical results show the superiority of the proposed technique when compared to other methods.Keywords: Face recognition, Gabor wavelet, LBP, Non-linearkerner
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15472416 Medical Image Segmentation Using Deformable Model and Local Fitting Binary: Thoracic Aorta
Authors: B. Bagheri Nakhjavanlo, T. S. Ellis, P.Raoofi, Sh.ziari
Abstract:
This paper presents an application of level sets for the segmentation of abdominal and thoracic aortic aneurysms in CTA datasets. An important challenge in reliably detecting aortic is the need to overcome problems associated with intensity inhomogeneities. Level sets are part of an important class of methods that utilize partial differential equations (PDEs) and have been extensively applied in image segmentation. A kernel function in the level set formulation aids the suppression of noise in the extracted regions of interest and then guides the motion of the evolving contour for the detection of weak boundaries. The speed of curve evolution has been significantly improved with a resulting decrease in segmentation time compared with previous implementations of level sets, and are shown to be more effective than other approaches in coping with intensity inhomogeneities. We have applied the Courant Friedrichs Levy (CFL) condition as stability criterion for our algorithm.Keywords: Image segmentation, Level-sets, Local fitting binary, Thoracic aorta.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14652415 Discovery of Sequential Patterns Based On Constraint Patterns
Authors: Shigeaki Sakurai, Youichi Kitahata, Ryohei Orihara
Abstract:
This paper proposes a method that discovers sequential patterns corresponding to user-s interests from sequential data. This method expresses the interests as constraint patterns. The constraint patterns can define relationships among attributes of the items composing the data. The method recursively decomposes the constraint patterns into constraint subpatterns. The method evaluates the constraint subpatterns in order to efficiently discover sequential patterns satisfying the constraint patterns. Also, this paper applies the method to the sequential data composed of stock price indexes and verifies its effectiveness through comparing it with a method without using the constraint patterns.
Keywords: Sequential pattern mining, Constraint pattern, Attribute constraint, Stock price indexes
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14302414 Quick Similarity Measurement of Binary Images via Probabilistic Pixel Mapping
Authors: Adnan A. Y. Mustafa
Abstract:
In this paper we present a quick technique to measure the similarity between binary images. The technique is based on a probabilistic mapping approach and is fast because only a minute percentage of the image pixels need to be compared to measure the similarity, and not the whole image. We exploit the power of the Probabilistic Matching Model for Binary Images (PMMBI) to arrive at an estimate of the similarity. We show that the estimate is a good approximation of the actual value, and the quality of the estimate can be improved further with increased image mappings. Furthermore, the technique is image size invariant; the similarity between big images can be measured as fast as that for small images. Examples of trials conducted on real images are presented.
Keywords: Big images, binary images, similarity, matching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9302413 Reconstruction of Binary Matrices Satisfying Neighborhood Constraints by Simulated Annealing
Authors: Divyesh Patel, Tanuja Srivastava
Abstract:
This paper considers the NP-hard problem of reconstructing binary matrices satisfying exactly-1-4-adjacency constraint from its row and column projections. This problem is formulated into a maximization problem. The objective function gives a measure of adjacency constraint for the binary matrices. The maximization problem is solved by the simulated annealing algorithm and experimental results are presented.
Keywords: Discrete Tomography, exactly-1-4-adjacency, simulated annealing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24712412 A Study on using N-Pattern Chains of Design Patterns based on Software Quality Metrics
Authors: Niloofar Khedri, Masoud Rahgozar, MahmoudReza Hashemi
Abstract:
Design patterns describe good solutions to common and reoccurring problems in program design. Applying design patterns in software design and implementation have significant effects on software quality metrics such as flexibility, usability, reusability, scalability and robustness. There is no standard rule for using design patterns. There are some situations that a pattern is applied for a specific problem and this pattern uses another pattern. In this paper, we study the effect of using chain of patterns on software quality metrics.Keywords: Design Patterns, Design patterns' Relationship, Software quality Metrics, Software Engineering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1590