Search results for: Image retrieval
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1722

Search results for: Image retrieval

1722 Image Retrieval: Techniques, Challenge, and Trend

Authors: Hui Hui Wang, Dzulkifli Mohamad, N.A Ismail

Abstract:

This paper attempts to discuss the evolution of the retrieval techniques focusing on development, challenges and trends of the image retrieval. It highlights both the already addressed and outstanding issues. The explosive growth of image data leads to the need of research and development of Image Retrieval. However, Image retrieval researches are moving from keyword, to low level features and to semantic features. Drive towards semantic features is due to the problem of the keywords which can be very subjective and time consuming while low level features cannot always describe high level concepts in the users- mind.

Keywords: content based image retrieval, keyword based imageretrieval, semantic gap, semantic image retrieval.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2525
1721 Text Retrieval Relevance Feedback Techniques for Bag of Words Model in CBIR

Authors: Nhu Van NGUYEN, Jean-Marc OGIER, Salvatore TABBONE, Alain BOUCHER

Abstract:

The state-of-the-art Bag of Words model in Content- Based Image Retrieval has been used for years but the relevance feedback strategies for this model are not fully investigated. Inspired from text retrieval, the Bag of Words model has the ability to use the wealth of knowledge and practices available in text retrieval. We study and experiment the relevance feedback model in text retrieval for adapting it to image retrieval. The experiments show that the techniques from text retrieval give good results for image retrieval and that further improvements is possible.

Keywords: Relevance feedback, bag of words model, probabilistic model, vector space model, image retrieval

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2120
1720 Salient Points Reduction for Content-Based Image Retrieval

Authors: Yao-Hong Tsai

Abstract:

Salient points are frequently used to represent local properties of the image in content-based image retrieval. In this paper, we present a reduction algorithm that extracts the local most salient points such that they not only give a satisfying representation of an image, but also make the image retrieval process efficiently. This algorithm recursively reduces the continuous point set by their corresponding saliency values under a top-down approach. The resulting salient points are evaluated with an image retrieval system using Hausdoff distance. In this experiment, it shows that our method is robust and the extracted salient points provide better retrieval performance comparing with other point detectors.

Keywords: Barnard detector, Content-based image retrieval, Points reduction, Salient point.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1469
1719 Performance Evaluation of Content Based Image Retrieval Using Indexed Views

Authors: Tahir Iqbal, Mumtaz Ali, Syed Wajahat Kareem, Muhammad Harris

Abstract:

Digital information is expanding in exponential order in our life. Information that is residing online and offline are stored in huge repositories relating to every aspect of our lives. Getting the required information is a task of retrieval systems. Content based image retrieval (CBIR) is a retrieval system that retrieves the required information from repositories on the basis of the contents of the image. Time is a critical factor in retrieval system and using indexed views with CBIR system improves the time efficiency of retrieved results.

Keywords: Content based image retrieval (CBIR), Indexed view, Color, Image retrieval, Cross correlation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1856
1718 Enhancing capabilities of Texture Extraction for Color Image Retrieval

Authors: Pranam Janney, Sridhar G, Sridhar V.

Abstract:

Content-Based Image Retrieval has been a major area of research in recent years. Efficient image retrieval with high precision would require an approach which combines usage of both the color and texture features of the image. In this paper we propose a method for enhancing the capabilities of texture based feature extraction and further demonstrate the use of these enhanced texture features in Texture-Based Color Image Retrieval.

Keywords: Image retrieval, texture feature extraction, color extraction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1622
1717 Local Image Descriptor using VQ-SIFT for Image Retrieval

Authors: Qiu Chen, Feifei Lee, Koji Kotani, Tadahiro Ohmi

Abstract:

In this paper, we present local image descriptor using VQ-SIFT for more effective and efficient image retrieval. Instead of SIFT's weighted orientation histograms, we apply vector quantization (VQ) histogram as an alternate representation for SIFT features. Experimental results show that SIFT features using VQ-based local descriptors can achieve better image retrieval accuracy than the conventional algorithm while the computational cost is significantly reduced.

Keywords: SIFT feature, Vector quantization histogram, Localdescriptor, Image retrieval.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2403
1716 Composite Relevance Feedback for Image Retrieval

Authors: Pushpa B. Patil, Manesh B. Kokare

Abstract:

This paper presents content-based image retrieval (CBIR) frameworks with relevance feedback (RF) based on combined learning of support vector machines (SVM) and AdaBoosts. The framework incorporates only most relevant images obtained from both the learning algorithm. To speed up the system, it removes irrelevant images from the database, which are returned from SVM learner. It is the key to achieve the effective retrieval performance in terms of time and accuracy. The experimental results show that this framework had significant improvement in retrieval effectiveness, which can finally improve the retrieval performance.

Keywords: Image retrieval, relevance feedback, wavelet transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1993
1715 Secure Image Retrieval Based On Orthogonal Decomposition under Cloud Environment

Authors: Yanyan Xu, Lizhi Xiong, Zhengquan Xu, Li Jiang

Abstract:

In order to protect data privacy, image with sensitive or private information needs to be encrypted before being outsourced to the cloud. However, this causes difficulties in image retrieval and data management. A secure image retrieval method based on orthogonal decomposition is proposed in the paper. The image is divided into two different components, for which encryption and feature extraction are executed separately. As a result, cloud server can extract features from an encrypted image directly and compare them with the features of the queried images, so that the user can thus obtain the image. Different from other methods, the proposed method has no special requirements to encryption algorithms. Experimental results prove that the proposed method can achieve better security and better retrieval precision.

Keywords: Secure image retrieval, secure search, orthogonal decomposition, secure cloud computing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2116
1714 Effectiveness of Dominant Color Descriptor Technique in Medical Image Retrieval Application

Authors: Mohd Kamir Yusof

Abstract:

This paper presents a dominant color descriptor technique for medical image retrieval. The medical image system will collect and store into medical database. The purpose of dominant color descriptor (DCD) technique is to retrieve medical image and to display similar image using queried image. First, this technique will search and retrieve medical image based on keyword entered by user. After image is found, the system will assign this image as a queried image. DCD technique will calculate the image value of dominant color. Then, system will search and retrieve again medical image based on value of dominant color query image. Finally, the system will display similar images with the queried image to user. Simple application has been developed and tested using dominant color descriptor. Result based on experiment indicates this technique is effective and can be used for medical image retrieval.

Keywords: Medical Image Retrieval, Dominant ColorDescriptor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1742
1713 Evaluating Content Based Image Retrieval Techniques with the One Million Images CLIC Test Bed

Authors: Pierre-Alain Moëllic, Patrick Hède, Gr egory Grefenstette, Christophe Millet

Abstract:

Pattern recognition and image recognition methods are commonly developed and tested using testbeds, which contain known responses to a query set. Until now, testbeds available for image analysis and content-based image retrieval (CBIR) have been scarce and small-scale. Here we present the one million images CEA-List Image Collection (CLIC) testbed that we have produced, and report on our use of this testbed to evaluate image analysis merging techniques. This testbed will soon be made publicly available through the EU MUSCLE Network of Excellence.

Keywords: CBIR, CLIC, evaluation, image indexing and retrieval, testbed.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1391
1712 Research on the Relevance Feedback-based Image Retrieval in Digital Library

Authors: Rongtao Ding, Xinhao Ji, Linting Zhu

Abstract:

In recent years, the relevance feedback technology is regarded in content-based image retrieval. This paper suggests a neural networks feedback algorithm based on the radial basis function, coming to extract the semantic character of image. The results of experiment indicated that the performance of this relevance feedback is better than the feedback algorithm based on Single-RBF.

Keywords: Image retrieval, relevance feedback, radial basis function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1536
1711 Application of l1-Norm Minimization Technique to Image Retrieval

Authors: C. S. Sastry, Saurabh Jain, Ashish Mishra

Abstract:

Image retrieval is a topic where scientific interest is currently high. The important steps associated with image retrieval system are the extraction of discriminative features and a feasible similarity metric for retrieving the database images that are similar in content with the search image. Gabor filtering is a widely adopted technique for feature extraction from the texture images. The recently proposed sparsity promoting l1-norm minimization technique finds the sparsest solution of an under-determined system of linear equations. In the present paper, the l1-norm minimization technique as a similarity metric is used in image retrieval. It is demonstrated through simulation results that the l1-norm minimization technique provides a promising alternative to existing similarity metrics. In particular, the cases where the l1-norm minimization technique works better than the Euclidean distance metric are singled out.

Keywords: l1-norm minimization, content based retrieval, modified Gabor function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3434
1710 Developing the Color Temperature Histogram Method for Improving the Content-Based Image Retrieval

Authors: P. Phokharatkul, S. Chaisriya, S. Somkuarnpanit, S. Phaiboon, C. Kimpan

Abstract:

This paper proposes a new method for image searches and image indexing in databases with a color temperature histogram. The color temperature histogram can be used for performance improvement of content–based image retrieval by using a combination of color temperature and histogram. The color temperature histogram can be represented by a range of 46 colors. That is more than the color histogram and the dominant color temperature. Moreover, with our method the colors that have the same color temperature can be separated while the dominant color temperature can not. The results showed that the color temperature histogram retrieved an accurate image more often than the dominant color temperature method or color histogram method. This also took less time so the color temperature can be used for indexing and searching for images.

Keywords: Color temperature histogram, color temperature, animage retrieval and content-based image retrieval.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2453
1709 Gaussian Density and HOG with Content Based Image Retrieval System – A New Approach

Authors: N. Shanmugapriya, R. Nallusamy

Abstract:

Content-based image retrieval (CBIR) uses the contents of images to characterize and contact the images. This paper focus on retrieving the image by separating images into its three color mechanism R, G and B and for that Discrete Wavelet Transformation is applied. Then Wavelet based Generalized Gaussian Density (GGD) is practical which is used for modeling the coefficients from the wavelet transforms. After that it is agreed to Histogram of Oriented Gradient (HOG) for extracting its characteristic vectors with Relevant Feedback technique is used. The performance of this approach is calculated by exactness and it confirms that this method is wellorganized for image retrieval.

Keywords: Content-Based Image Retrieval (CBIR), Relevant Feedback, Histogram of Oriented Gradient (HOG), Generalized Gaussian Density (GGD).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2040
1708 A Universal Model for Content-Based Image Retrieval

Authors: S. Nandagopalan, Dr. B. S. Adiga, N. Deepak

Abstract:

In this paper a novel approach for generalized image retrieval based on semantic contents is presented. A combination of three feature extraction methods namely color, texture, and edge histogram descriptor. There is a provision to add new features in future for better retrieval efficiency. Any combination of these methods, which is more appropriate for the application, can be used for retrieval. This is provided through User Interface (UI) in the form of relevance feedback. The image properties analyzed in this work are by using computer vision and image processing algorithms. For color the histogram of images are computed, for texture cooccurrence matrix based entropy, energy, etc, are calculated and for edge density it is Edge Histogram Descriptor (EHD) that is found. For retrieval of images, a novel idea is developed based on greedy strategy to reduce the computational complexity. The entire system was developed using AForge.Imaging (an open source product), MATLAB .NET Builder, C#, and Oracle 10g. The system was tested with Coral Image database containing 1000 natural images and achieved better results.

Keywords: Content Based Image Retrieval (CBIR), Cooccurrencematrix, Feature vector, Edge Histogram Descriptor(EHD), Greedy strategy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2934
1707 Retrieval of User Specific Images Using Semantic Signatures

Authors: K. Venkateswari, U. K. Balaji Saravanan, K. Thangaraj, K. V. Deepana

Abstract:

Image search engines rely on the surrounding textual keywords for the retrieval of images. It is a tedious work for the search engines like Google and Bing to interpret the user’s search intention and to provide the desired results. The recent researches also state that the Google image search engines do not work well on all the images. Consequently, this leads to the emergence of efficient image retrieval technique, which interprets the user’s search intention and shows the desired results. In order to accomplish this task, an efficient image re-ranking framework is required. Sequentially, to provide best image retrieval, the new image re-ranking framework is experimented in this paper. The implemented new image re-ranking framework provides best image retrieval from the image dataset by making use of re-ranking of retrieved images that is based on the user’s desired images. This is experimented in two sections. One is offline section and other is online section. In offline section, the reranking framework studies differently (reference classes or Semantic Spaces) for diverse user query keywords. The semantic signatures get generated by combining the textual and visual features of the images. In the online section, images are re-ranked by comparing the semantic signatures that are obtained from the reference classes with the user specified image query keywords. This re-ranking methodology will increases the retrieval image efficiency and the result will be effective to the user.

Keywords: CBIR, Image Re-ranking, Image Retrieval, Semantic Signature, Semantic Space.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1938
1706 A Study of Gaps in CBMIR Using Different Methods and Prospective

Authors: Pradeep Singh, Sukhwinder Singh, Gurjinder Kaur

Abstract:

In recent years, rapid advances in software and hardware in the field of information technology along with a digital imaging revolution in the medical domain facilitate the generation and storage of large collections of images by hospitals and clinics. To search these large image collections effectively and efficiently poses significant technical challenges, and it raises the necessity of constructing intelligent retrieval systems. Content-based Image Retrieval (CBIR) consists of retrieving the most visually similar images to a given query image from a database of images[5]. Medical CBIR (content-based image retrieval) applications pose unique challenges but at the same time offer many new opportunities. On one hand, while one can easily understand news or sports videos, a medical image is often completely incomprehensible to untrained eyes.

Keywords: Classification, clustering, content-based image retrieval (CBIR), relevance feedback (RF), statistical similarity matching, support vector machine (SVM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1789
1705 Content-Based Image Retrieval Using HSV Color Space Features

Authors: Hamed Qazanfari, Hamid Hassanpour, Kazem Qazanfari

Abstract:

In this paper, a method is provided for content-based image retrieval. Content-based image retrieval system searches query an image based on its visual content in an image database to retrieve similar images. In this paper, with the aim of simulating the human visual system sensitivity to image's edges and color features, the concept of color difference histogram (CDH) is used. CDH includes the perceptually color difference between two neighboring pixels with regard to colors and edge orientations. Since the HSV color space is close to the human visual system, the CDH is calculated in this color space. In addition, to improve the color features, the color histogram in HSV color space is also used as a feature. Among the extracted features, efficient features are selected using entropy and correlation criteria. The final features extract the content of images most efficiently. The proposed method has been evaluated on three standard databases Corel 5k, Corel 10k and UKBench. Experimental results show that the accuracy of the proposed image retrieval method is significantly improved compared to the recently developed methods.

Keywords: Content-based image retrieval, color difference histogram, efficient features selection, entropy, correlation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 661
1704 Content-based Retrieval of Medical Images

Authors: Lilac A. E. Al-Safadi

Abstract:

With the advance of multimedia and diagnostic images technologies, the number of radiographic images is increasing constantly. The medical field demands sophisticated systems for search and retrieval of the produced multimedia document. This paper presents an ongoing research that focuses on the semantic content of radiographic image documents to facilitate semantic-based radiographic image indexing and a retrieval system. The proposed model would divide a radiographic image document, based on its semantic content, and would be converted into a logical structure or a semantic structure. The logical structure represents the overall organization of information. The semantic structure, which is bound to logical structure, is composed of semantic objects with interrelationships in the various spaces in the radiographic image.

Keywords: Semantic Indexing, Content-Based Retrieval, Radiographic Images, Data Model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1493
1703 Object-Based Image Indexing and Retrieval in DCT Domain using Clustering Techniques

Authors: Hossein Nezamabadi-pour, Saeid Saryazdi

Abstract:

In this paper, we present a new and effective image indexing technique that extracts features directly from DCT domain. Our proposed approach is an object-based image indexing. For each block of size 8*8 in DCT domain a feature vector is extracted. Then, feature vectors of all blocks of image using a k-means algorithm is clustered into groups. Each cluster represents a special object of the image. Then we select some clusters that have largest members after clustering. The centroids of the selected clusters are taken as image feature vectors and indexed into the database. Also, we propose an approach for using of proposed image indexing method in automatic image classification. Experimental results on a database of 800 images from 8 semantic groups in automatic image classification are reported.

Keywords: Object-based image retrieval, DCT domain, Image indexing, Image classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2025
1702 Image Retrieval Based on Multi-Feature Fusion for Heterogeneous Image Databases

Authors: N. W. U. D. Chathurani, Shlomo Geva, Vinod Chandran, Proboda Rajapaksha

Abstract:

Selecting an appropriate image representation is the most important factor in implementing an effective Content-Based Image Retrieval (CBIR) system. This paper presents a multi-feature fusion approach for efficient CBIR, based on the distance distribution of features and relative feature weights at the time of query processing. It is a simple yet effective approach, which is free from the effect of features' dimensions, ranges, internal feature normalization and the distance measure. This approach can easily be adopted in any feature combination to improve retrieval quality. The proposed approach is empirically evaluated using two benchmark datasets for image classification (a subset of the Corel dataset and Oliva and Torralba) and compared with existing approaches. The performance of the proposed approach is confirmed with the significantly improved performance in comparison with the independently evaluated baseline of the previously proposed feature fusion approaches.

Keywords: Feature fusion, image retrieval, membership function, normalization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1345
1701 Segmentation of Images through Clustering to Extract Color Features: An Application forImage Retrieval

Authors: M. V. Sudhamani, C. R. Venugopal

Abstract:

This paper deals with the application for contentbased image retrieval to extract color feature from natural images stored in the image database by segmenting the image through clustering. We employ a class of nonparametric techniques in which the data points are regarded as samples from an unknown probability density. Explicit computation of the density is avoided by using the mean shift procedure, a robust clustering technique, which does not require prior knowledge of the number of clusters, and does not constrain the shape of the clusters. A non-parametric technique for the recovery of significant image features is presented and segmentation module is developed using the mean shift algorithm to segment each image. In these algorithms, the only user set parameter is the resolution of the analysis and either gray level or color images are accepted as inputs. Extensive experimental results illustrate excellent performance.

Keywords: Segmentation, Clustering, Image Retrieval, Features.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1460
1700 Image Retrieval Using Fused Features

Authors: K. Sakthivel, R. Nallusamy, C. Kavitha

Abstract:

The system is designed to show images which are related to the query image. Extracting color, texture, and shape features from an image plays a vital role in content-based image retrieval (CBIR). Initially RGB image is converted into HSV color space due to its perceptual uniformity. From the HSV image, Color features are extracted using block color histogram, texture features using Haar transform and shape feature using Fuzzy C-means Algorithm. Then, the characteristics of the global and local color histogram, texture features through co-occurrence matrix and Haar wavelet transform and shape are compared and analyzed for CBIR. Finally, the best method of each feature is fused during similarity measure to improve image retrieval effectiveness and accuracy.

Keywords: Color Histogram, Haar Wavelet Transform, Fuzzy C-means, Co-occurrence matrix; Similarity measure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2128
1699 A Fast Adaptive Content-based Retrieval System of Satellite Images Database using Relevance Feedback

Authors: Hanan Mahmoud Ezzat Mahmoud, Alaa Abd El Fatah Hefnawy

Abstract:

In this paper, we present a system for content-based retrieval of large database of classified satellite images, based on user's relevance feedback (RF).Through our proposed system, we divide each satellite image scene into small subimages, which stored in the database. The modified radial basis functions neural network has important role in clustering the subimages of database according to the Euclidean distance between the query feature vector and the other subimages feature vectors. The advantage of using RF technique in such queries is demonstrated by analyzing the database retrieval results.

Keywords: content-based image retrieval, large database of image, RBF neural net, relevance feedback

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1471
1698 Grouping and Indexing Color Features for Efficient Image Retrieval

Authors: M. V. Sudhamani, C. R. Venugopal

Abstract:

Content-based Image Retrieval (CBIR) aims at searching image databases for specific images that are similar to a given query image based on matching of features derived from the image content. This paper focuses on a low-dimensional color based indexing technique for achieving efficient and effective retrieval performance. In our approach, the color features are extracted using the mean shift algorithm, a robust clustering technique. Then the cluster (region) mode is used as representative of the image in 3-D color space. The feature descriptor consists of the representative color of a region and is indexed using a spatial indexing method that uses *R -tree thus avoiding the high-dimensional indexing problems associated with the traditional color histogram. Alternatively, the images in the database are clustered based on region feature similarity using Euclidian distance. Only representative (centroids) features of these clusters are indexed using *R -tree thus improving the efficiency. For similarity retrieval, each representative color in the query image or region is used independently to find regions containing that color. The results of these methods are compared. A JAVA based query engine supporting query-by- example is built to retrieve images by color.

Keywords: Content-based, indexing, cluster, region.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1812
1697 Context-Aware Querying in Multimedia Databases – A Futuristic Approach

Authors: Nadeem Iftikhar, Zouhaib Zafar, Shaukat Ali

Abstract:

Efficient retrieval of multimedia objects has gained enormous focus in recent years. A number of techniques have been suggested for retrieval of textual information; however, relatively little has been suggested for efficient retrieval of multimedia objects. In this paper we have proposed a generic architecture for contextaware retrieval of multimedia objects. The proposed framework combines the well-known approaches of text-based retrieval and context-aware retrieval to formulate architecture for accurate retrieval of multimedia data.

Keywords: Context-aware retrieval, information retrieval, multimedia databases, multimedia data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1537
1696 Opponent Color and Curvelet Transform Based Image Retrieval System Using Genetic Algorithm

Authors: Yesubai Rubavathi Charles, Ravi Ramraj

Abstract:

In order to retrieve images efficiently from a large database, a unique method integrating color and texture features using genetic programming has been proposed. Opponent color histogram which gives shadow, shade, and light intensity invariant property is employed in the proposed framework for extracting color features. For texture feature extraction, fast discrete curvelet transform which captures more orientation information at different scales is incorporated to represent curved like edges. The recent scenario in the issues of image retrieval is to reduce the semantic gap between user’s preference and low level features. To address this concern, genetic algorithm combined with relevance feedback is embedded to reduce semantic gap and retrieve user’s preference images. Extensive and comparative experiments have been conducted to evaluate proposed framework for content based image retrieval on two databases, i.e., COIL-100 and Corel-1000. Experimental results clearly show that the proposed system surpassed other existing systems in terms of precision and recall. The proposed work achieves highest performance with average precision of 88.2% on COIL-100 and 76.3% on Corel, the average recall of 69.9% on COIL and 76.3% on Corel. Thus, the experimental results confirm that the proposed content based image retrieval system architecture attains better solution for image retrieval.

Keywords: Content based image retrieval, Curvelet transform, Genetic algorithm, Opponent color histogram, Relevance feedback.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1822
1695 Similarity Based Retrieval in Case Based Reasoning for Analysis of Medical Images

Authors: M. Das Gupta, S. Banerjee

Abstract:

Content Based Image Retrieval (CBIR) coupled with Case Based Reasoning (CBR) is a paradigm that is becoming increasingly popular in the diagnosis and therapy planning of medical ailments utilizing the digital content of medical images. This paper presents a survey of some of the promising approaches used in the detection of abnormalities in retina images as well in mammographic screening and detection of regions of interest in MRI scans of the brain. We also describe our proposed algorithm to detect hard exudates in fundus images of the retina of Diabetic Retinopathy patients.

Keywords: Case based reasoning, Exudates, Retina image, Similarity based retrieval.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2124
1694 Local Mesh Co-Occurrence Pattern for Content Based Image Retrieval

Authors: C. Yesubai Rubavathi, R. Ravi

Abstract:

This paper presents the local mesh co-occurrence patterns (LMCoP) using HSV color space for image retrieval system. HSV color space is used in this method to utilize color, intensity and brightness of images. Local mesh patterns are applied to define the local information of image and gray level co-occurrence is used to obtain the co-occurrence of LMeP pixels. Local mesh co-occurrence pattern extracts the local directional information from local mesh pattern and converts it into a well-mannered feature vector using gray level co-occurrence matrix. The proposed method is tested on three different databases called MIT VisTex, Corel, and STex. Also, this algorithm is compared with existing methods, and results in terms of precision and recall are shown in this paper.

Keywords: Content-based image retrieval system, HSV color space, gray level co-occurrence matrix, local mesh pattern.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2223
1693 CBIR Using Multi-Resolution Transform for Brain Tumour Detection and Stages Identification

Authors: H. Benjamin Fredrick David, R. Balasubramanian, A. Anbarasa Pandian

Abstract:

Image retrieval is the most interesting technique which is being used today in our digital world. CBIR, commonly expanded as Content Based Image Retrieval is an image processing technique which identifies the relevant images and retrieves them based on the patterns that are extracted from the digital images. In this paper, two research works have been presented using CBIR. The first work provides an automated and interactive approach to the analysis of CBIR techniques. CBIR works on the principle of supervised machine learning which involves feature selection followed by training and testing phase applied on a classifier in order to perform prediction. By using feature extraction, the image transforms such as Contourlet, Ridgelet and Shearlet could be utilized to retrieve the texture features from the images. The features extracted are used to train and build a classifier using the classification algorithms such as Naïve Bayes, K-Nearest Neighbour and Multi-class Support Vector Machine. Further the testing phase involves prediction which predicts the new input image using the trained classifier and label them from one of the four classes namely 1- Normal brain, 2- Benign tumour, 3- Malignant tumour and 4- Severe tumour. The second research work includes developing a tool which is used for tumour stage identification using the best feature extraction and classifier identified from the first work. Finally, the tool will be used to predict tumour stage and provide suggestions based on the stage of tumour identified by the system. This paper presents these two approaches which is a contribution to the medical field for giving better retrieval performance and for tumour stages identification.

Keywords: Brain tumour detection, content based image retrieval, classification of tumours, image retrieval.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 775