Publications | Mechanical and Industrial Engineering
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 142

World Academy of Science, Engineering and Technology

[Mechanical and Industrial Engineering]

Online ISSN : 1307-6892

142 Exploring Unexplored Horizons: Advanced Fluid Mechanics Solutions for Sustainable Energy Technologies

Authors: Elvira S. Castillo, Surupa Shaw

Abstract:

This paper explores advanced applications of fluid mechanics in the context of sustainable energy. By examining the integration of fluid dynamics with renewable energy technologies, the research uncovers previously underutilized strategies for improving efficiency. Through theoretical analyses, the study demonstrates how fluid mechanics can be harnessed to optimize renewable energy systems. The findings contribute to expanding knowledge in sustainable energy by offering practical insights and methodologies for future research and technological advancements to address global energy challenges.

Keywords: Fluid mechanics, sustainable energy, energy efficiency, green energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30
141 Elevating User Experience for Thailand Drivers: Dash-Board Design Analysis in Electric Vehicles

Authors: Poom Thiparpakul, Tanat Jiravansirikul, Pakpoom Thongsari

Abstract:

This study explores the design of electric vehicle (EV) dashboards with a focus on user interaction. Findings from a Thai sample reveal a preference for physical buttons over touch interfaces due to their immediate feedback. Touchscreens lack this assurance, leading to potential uncertainty. Users' smartphone experiences create a learning curve that does not translate well to in-car touch systems. Gender-wise, females exhibit slightly longer decision times. Designing EV dashboards should consider these factors, prioritizing user experience while avoiding overreliance on smartphone principles. A successful example is Subaru XV's design, which calculates screen angles and button positions for targeted users. In summary, EV dashboards should be intuitive, minimize touch dependency, and accommodate user habits. Balancing modernity with functionality can enhance driving experiences while ensuring safety. A user-centered approach, acknowledging gender differences, will yield efficient and safe driving environments.

Keywords: User Experience Design, User Experience, Electric Vehicle, Dashboard Design, Thailand driver.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 70
140 Performance Shortfalls and Corporate Recidivism: A Contingency Approach

Authors: Kepeng Li

Abstract:

This paper examines the phenomenon of recidivism in the Chinese stock market, emphasizing the significance of mitigating repeat offences within the corporate domain. Using a contingency model and data from Chinese publicly listed companies (1999-2018), the study investigates the impact of underperformance, governance factors, and managerial traits on unethical conduct. The research suggests that persistently unmet economic objectives can foster problem-focused exploration, potentially leading to misconduct. Furthermore, the study considers the unique cultural context of China, where “guanxi” and corruption may influence corporate behavior. It concludes that governance mechanisms play a pivotal role in regulating corporate behavior, underscoring the necessity for enhanced oversight and enforcement of corporate governance standards.

Keywords: Recidivism, corporate misbehavior, BTOF, aspiration level, corporate governance, individual characteristics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 98
139 Metrology-Inspired Methods to Assess the Biases of Artificial Intelligence Systems

Authors: Belkacem Laimouche

Abstract:

With the field of Artificial Intelligence (AI) experiencing exponential growth, fueled by technological advancements that pave the way for increasingly innovative and promising applications, there is an escalating need to develop rigorous methods for assessing their performance in pursuit of transparency and equity. This article proposes a metrology-inspired statistical framework for evaluating bias and explainability in AI systems. Drawing from the principles of metrology, we propose a pioneering approach, using a concrete example, to evaluate the accuracy and precision of AI models, as well as to quantify the sources of measurement uncertainty that can lead to bias in their predictions. Furthermore, we explore a statistical approach for evaluating the explainability of AI systems based on their ability to provide interpretable and transparent explanations of their predictions.

Keywords: Artificial intelligence, metrology, measurement uncertainty, prediction error, bias, machine learning algorithms, probabilistic models, inter-laboratory comparison, data analysis, data reliability, bias impact assessment, bias measurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 129
138 Passive and Active Spatial Pendulum Tuned Mass Damper with Two Tuning Frequencies

Authors: W. T. A. Mohammed, M. Eltaeb, R. Kashani

Abstract:

The first bending modes of tall asymmetric structures in the two lateral X and Y-directions have two different natural frequencies. To add tuned damping to these bending modes, one needs to either a) use two pendulum-tuned mass dampers (PTMDs) with one tuning frequency, each PTMD targeting one of the bending modes, or b) use one PTMD with two tuning frequencies (one in each lateral directions). Option (a), being more massive, requiring more space, and being more expensive, is less attractive than option (b). Considering that the tuning frequency of a pendulum depends mainly on the pendulum length, one way of realizing option (b) is by constraining the swinging length of the pendulum in one direction but not in the other; such PTMD is dubbed passive Bi-PTMD. Alternatively, option (b) can be realized by actively setting the tuning frequencies of the PTMD in the two directions. In this work, accurate physical models of passive Bi-PTMD and active PTMD are developed and incorporated into the numerical model of a tall asymmetric structure. The model of PTMDs plus structure is used for a) synthesizing such PTMDs for particular applications and b) evaluating their damping effectiveness in mitigating the dynamic lateral responses of their target asymmetric structures, perturbed by wind load in X and Y-directions. Depending on how elaborate the control scheme is, the active PTMD can either be made to yield the same damping effectiveness as the passive Bi-PTMD of the same size or the passive Bi-TMD twice as massive as the active PTMD.

Keywords: Active tuned mass damper, high-rise building, multi-frequency tuning, vibration control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 127
137 Applications for Additive Manufacturing Technology for Reducing the Weight of Body Parts of Gas Turbine Engines

Authors: Liubov A. Magerramova, Mikhail A. Petrov, Vladimir V. Isakov, Liana A. Shcherbinina, Suren G. Gukasyan, Daniil V. Povalyukhin, Olga G. Klimova-Korsmik, Darya V. Volosevich

Abstract:

Aircraft engines are developing along the path of increasing resource, strength, reliability, and safety. The building of gas turbine engine body parts is a complex design and technological task. Particularly complex in the design and manufacturing are the casings of the input stages of helicopter gearboxes and central drives of aircraft engines. Traditional technologies, such as precision casting or isothermal forging, are characterized by significant limitations in parts production. For parts like housing, additive technologies guarantee spatial freedom and limitless or flexible design. This article presents the results of computational and experimental studies. These investigations justify the applicability of additive technologies (AT) to reduce the weight of aircraft housing gearbox parts by up to 32%. This is possible due to geometrical optimization compared to the classical, less flexible manufacturing methods and as-casted aircraft parts with over-insured values of safety factors. Using an example of the body of the input stage of an aircraft gearbox, visualization of the layer-by-layer manufacturing of a part based on thermal deformation was demonstrated.

Keywords: Additive technologies, gas turbine engines, geometric optimization, weight reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 116
136 Influence of Surface Area on Dissolution of Additively Manufactured Polyvinyl Alcohol Tablets

Authors: Seyedebrahim Afkhami, Meisam Abdi, Reza Baserinia

Abstract:

Additive manufacturing is revolutionizing production in different industries, including pharmaceuticals. This case study explores the influence of surface area on the dissolution of additively manufactured polyvinyl alcohol parts as a polymer candidate. Specimens of different geometries and constant mass were fabricated using a Fused Deposition Modeling (FDM) 3D printer. The dissolution behavior of these samples was compared with respect to their surface area. Improved and accelerated dissolution was observed for samples with a larger surface area. This study highlights the capabilities of additive manufacturing to produce samples of complex geometries that cannot be manufactured otherwise to control the dissolution behavior for pharmaceutical and biopharmaceutical applications.

Keywords: Additive manufacturing, polymer dissolution, fused deposition modelling, geometry optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 182
135 Enhancing Hand Efficiency of Smart Glass Cleaning Robot through Generative Design Module

Authors: Pankaj Gupta, Amit Kumar Srivastava, Nitesh Pandey

Abstract:

This article explores the domain of generative design in order to enhance the development of robot designs for innovative and efficient maintenance approaches for tall buildings. This study aims to optimize the design of robotic hands by focusing on minimizing mass and volume while ensuring they can withstand the specified pressure with equal strength. The research procedure is structured and systematic. The purpose of optimization is to enhance the efficiency of the robot and reduce the manufacturing expenses. The project seeks to investigate the application of generative design in order to optimize products. Autodesk Fusion 360 offers the capability to immediately apply the generative design functionality to the solid model. The effort involved creating a solid model of the Smart Glass Cleaning Robot and optimizing one of its components, the Hand, using generative techniques. The article has thoroughly examined the designs, outcomes, and procedure. These loads serve as a benchmark for creating designs that can endure the necessary level of pressure and preserve their structural integrity. The efficacy of the generative design process is contingent upon the selection of materials, as different materials possess distinct physical attributes. The study utilizes five different materials, namely Steel, Stainless Steel, Titanium, Aluminum, and CFRP (Carbon Fiber Reinforced Polymer), in order to investigate a range of design possibilities.

Keywords: Generative design, mass and volume optimization, material strength analysis, generative design, smart glass cleaning robot.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 197
134 Influence of Tool Geometry on Surface Roughness and Tool Wear When Turning AISI 304L Using Taguchi Optimisation Methodology

Authors: Salah Gariani, Taher Dao, Ahmed Lajili

Abstract:

This paper presents an experimental optimisation of surface roughness (Ra) and tool wear in the precision turning of AISI 304L alloy using a wiper and conventional cutting tools under wet cutting conditions. The machining trials were conducted based on Taguchi methodology employing an L9 orthogonal array design with four process parameters: feed rate, spindle speed, depth of cut, and cutting tool type. The experimental results were utilised to characterise the main factors affecting Ra and tool wear using the analyses of means (AOM) and variance (ANOVA). The results show that the wiper tools outperformed conventional tools in terms of surface quality and tool wear at optimal cutting conditions. The ANOVA results indicate that the main factors contributing to lower Ra are cutting tool type and feed rate, with percentage contribution ratios (PCRs) of 58.69% and 25.18% respectively. This confirms that tool type is the most significant factor affecting surface quality when turning AISI 304L. Additionally, a substantial reduction in tool wear was observed when a wiper insert was used, whereas noticeable increases in tool wear occurred when higher cutting speeds were employed for both tool types. These trends confirm the ANOVA outcomes that cutting speed has a significant effect on tool wear, with a PCR value of 39.22%, followed by tool type with a PCR of 27.40%. All machining trials generated similar continuous spiral or curl-shaped chips. A noticeable difference was found in the radius of the produced curl-shaped chips at different cutting speeds when turning AISI 304L under wet cutting conditions.

Keywords: AISI 304L alloy, conventional and wiper carbide tools, wet turning, average surface roughness, tool wear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 153
133 Investigation of Gas Tungsten Arc Welding Parameters on Residual Stress of Heat Affected Zone in Inconel X750 Super Alloy Welding Using Finite Element Method

Authors: Kimia Khoshdel Vajari, Saber Saffar

Abstract:

Reducing the residual stresses caused by welding is desirable for the industry. The effect of welding sequence, as well as the effect of yield stress on the number of residual stresses generated in Inconel X750 superalloy sheets and beams, have been investigated. The finite element model used in this research is a three-dimensional thermal and mechanical model, and the type of analysis is indirect coupling. This analysis is done in two stages. First, thermal analysis is performed, and then the thermal changes of the first analysis are used as the applied load in the second analysis. ABAQUS has been used for modeling, and the Dflux subroutine has been used in the Fortran programming environment to move the arc and the molten pool. The results of this study show that the amount of tensile residual stress in symmetric, discontinuous, and symmetric-discontinuous welds is reduced to a maximum of 27%, 54%, and 37% compared to direct welding, respectively. The results also show that the amount of residual stresses created by welding increases linearly with increasing yield stress with a slope of 40%.

Keywords: Residual stress, X750 superalloy, finite element, welding, thermal analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 170
132 Application of Agile Project Methodology in Computational Fluid Dynamics Engineering Project

Authors: Mohammed Bilal, Noor Hyder

Abstract:

Agile methodology is a popular project management methodology and is widely used in many engineering projects. In the recent years agile methodology is successful in countering the inherent problems seen in traditional methodology. The application of the Agile methodology in the computational fluid dynamic project had improved the project delivery performance. Computational Fluid Dynamics (CFD) is the method to solve and analyze the fluid flow problems by the application of the numerical analysis. In this paper, study is conducted using agile methodology and results are compared with waterfall methodology. The result shows that the agile methodology is improves the final delivery of the project.

Keywords: Agile methodology, traditional methodology, engineering management, engineering technology, Computational Fluid Dynamics, project management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 353
131 An Induction Motor Drive System with Intelligent Supervisory Control for Water Networks Including Storage Tank

Authors: O. S. Ebrahim, K. O. Shawky, M. A. Badr, P. K. Jain

Abstract:

This paper describes an efficient; low-cost; high-availability; induction motor (IM) drive system with intelligent supervisory control for water distribution networks including storage tank. To increase the operational efficiency and reduce cost, the IM drive system includes main pumping unit and an auxiliary voltage source inverter (VSI) fed unit. The main unit comprises smart star/delta starter, regenerative fluid clutch, switched VAR compensator, and hysteresis liquid-level controller. Three-state energy saving mode (ESM) is defined at no-load and a logic algorithm is developed for best energetic cost reduction. To reduce voltage sag, the supervisory controller operates the switched VAR compensator upon motor starting. To provide smart star/delta starter at low cost, a method based on current sensing is developed for interlocking, malfunction detection, and life–cycles counting and used to synthesize an improved fuzzy logic (FL) based availability assessment scheme. Furthermore, a recurrent neural network (RNN) full state estimator is proposed to provide sensor fault-tolerant algorithm for the feedback control. The auxiliary unit is working at low flow rates and improves the system efficiency and flexibility for distributed generation during islanding mode. Compared with doubly-fed IM, the proposed one ensures 30% working throughput under main motor/pump fault conditions, higher efficiency, and marginal cost difference. This is critically important in case of water networks. Theoretical analysis, computer simulations, cost study, as well as efficiency evaluation, using timely cascaded energy-conservative systems, are performed on IM experimental setup to demonstrate the validity and effectiveness of the proposed drive and control.

Keywords: Artificial Neural Network, ANN, Availability Assessment, Cloud Computing, Energy Saving, Induction Machine, IM, Supervisory Control, Fuzzy Logic, FL, Pumped Storage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 622
130 Causes of Delays in Construction Projects: A Case Study for Petrochemical Industry of Iran

Authors: S. Bagher Daryaii

Abstract:

Delays in construction projects are one of the most common risky problems and regardless of the causes, the delays can occur in all projects and all industries. The impact of delays has a wide range from neglectable ones to losing the project's importance or its economic justification. In this paper, by doing research and interview with managers, executors, consultants and supervisors of construction projects in the petrochemical industry, their opinions about reasons of delays in projects have been gathered.

Keywords: Analysis of delays, causes of delays, delays in petrochemical projects, project delays.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 444
129 The AI Application and Talent Demand of Taiwan High-Tech Manufacturing Industry

Authors: Shi-Yu Lu, Chung-Han Yeh, Li-Ping Chen, Yu-Cheng Chang

Abstract:

This paper uses both quantitative and qualitative approaches to survey the current status of AI-related applications and the structure of key AI jobs in Taiwan's high-tech manufacturing industry, as well as the demand for professional AI talents, skills, and training. The result shows that AI applications and talent demand vary from different industries in many aspects, including technologies used, talent structure, and training methods. This paper serves as a reference for the government to establish appropriate talent training programs, and to reduce the demand gap for professional AI talents in Taiwan manufacturers.

Keywords: Artificial intelligence, manufacturing, talent, training.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 384
128 Aircraft Selection Problem Using Decision Uncertainty Distance in Fuzzy Multiple Criteria Decision Making Analysis

Authors: C. Ardil

Abstract:

Aircraft have different capabilities and specifications according to the required strategic goals and objectives in operations. With various types on the market with different aircraft characteristics, it becomes difficult to select a suitable aircraft for certain operations and requirements. The entropy weighting method (EWM) is a useful, highly consistent, and reliable method for obtaining the weights of the criteria and is worth integrating with the decision uncertainty distance (DUD) method, which is more applicable and requires less computation than other methods. An illustrative example is presented to demonstrate the validity and usability of the proposed methodology. Comparing the ranking results matches the distance-based approach, which is the technique for order preference by similarity to ideal solution (TOPSIS) method, which shows the robustness of the entropy DUD hybrid method. Validity analysis shows that the proposed hybrid multiple criteria decision-making analysis (MCDMA) methodology is quantitatively stable and reliable.

Keywords: aircraft selection, decision uncertainty distance (DUD), multiple criteria decision making analysis, MCDMA, TOPSIS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 536
127 Evaluation of Internal Ballistics of Multi-Perforated Grain in a Closed Vessel

Authors: B. A. Parate, C. P. Shetty

Abstract:

This research article describes the evaluation methodology of an internal ballistics of multi-perforated grain in a closed vessel (CV). The propellant testing in a CV is conducted to characterize the propellants and to ascertain the various internal ballistic parameters. The assessment of an internal ballistics plays a very crucial role for suitability of its use in the selection for a given particular application. The propellant used in defense sectors has to satisfy the user requirements as per laid down specifications. The outputs from CV evaluation of multi-propellant grain are maximum pressure of 226.75 MPa, differentiation of pressure with respect to time of 36.99 MPa/ms, average vivacity of 9.990×10-4/MPa ms, force constant of 933.9 J/g, rise time of 9.85 ms, pressure index of 0.878 including burning coefficient of 0.2919. This paper addresses an internal ballistic of multi-perforated grain, propellant selection, its calculation, and evaluation of various parameters in a CV testing. For the current analysis, the propellant is evaluated in 100 cc CV with propellant mass 20 g. The loading density of propellant is 0.2 g/cc. The method for determination of internal ballistic properties consists of burning of propellant mass under constant volume.

Keywords: Burning rate, closed vessel, force constant, internal ballistic, loading density, maximum pressure, multi-propellant grain, propellant, rise time, vivacity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 367
126 Online Structural Health Monitoring of Ball Bearings

Authors: Matta S. N. S. Kiran, Manikantadhar Maheswaram, Akshat Upadhyay, Rohit Mishra, Bhagat Singh

Abstract:

A bearing is a very common and useful component of mechanical systems in order to transfer power from one end to another. Therefore, to ensure the accountability and robustness of the rotating mechanical systems, the bearing part's health condition must be checked at regular intervals, also known as preventive maintenance. This condition may lead to unnecessary higher maintenance costs and later result in higher production costs. These costs can be minimized by diagnosing the faulty bearing in its incipient stage. This paper describes an approach to detect rolling bearing defects based on Empirical Mode Decomposition. The novelty of the proposed methodology is validated experimentally using Case Western Reserve University bearing's data sets. The selected data sets comprise the two vibration signals, i.e., inner race and outer, for healthy and faulty conditions.

Keywords: Ball bearing, denoising, signal processing, statistical indicators.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 486
125 A Neural Network Approach for an Automatic Detection and Localization of an Open Phase Circuit of a Five-Phase Induction Machine Used in a Drivetrain of an Electric Vehicle

Authors: S. Chahba, R. Sehab, A. Akrad, C. Morel

Abstract:

Nowadays, the electric machines used in urban electric vehicles are, in most cases, three-phase electric machines with or without a magnet in the rotor. Permanent Magnet Synchronous Machine (PMSM) and Induction Machine (IM) are the main components of drive trains of electric and hybrid vehicles. These machines have very good performance in healthy operation mode, but they are not redundant to ensure safety in faulty operation mode. Faced with the continued growth in the demand for electric vehicles in the automotive market, improving the reliability of electric vehicles is necessary over the lifecycle of the electric vehicle. Multiphase electric machines respond well to this constraint because, on the one hand, they have better robustness in the event of a breakdown (opening of a phase, opening of an arm of the power stage, intern-turn short circuit) and, on the other hand, better power density. In this work, a diagnosis approach using a neural network for an open circuit fault or more of a five-phase induction machine is developed. Validation on the simulator of the vehicle drivetrain, at reduced power, is carried out, creating one and more open circuit stator phases showing the efficiency and the reliability of the new approach to detect and to locate on-line one or more open phases of a five-induction machine.

Keywords: Electric vehicle drivetrain, multiphase drives, induction machine, control, open circuit fault diagnosis, artificial neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 445
124 Anomaly Detection in a Data Center with a Reconstruction Method Using a Multi-Autoencoders Model

Authors: Victor Breux, Jérôme Boutet, Alain Goret, Viviane Cattin

Abstract:

Early detection of anomalies in data centers is important to reduce downtimes and the costs of periodic maintenance. However, there is little research on this topic and even fewer on the fusion of sensor data for the detection of abnormal events. The goal of this paper is to propose a method for anomaly detection in data centers by combining sensor data (temperature, humidity, power) and deep learning models. The model described in the paper uses one autoencoder per sensor to reconstruct the inputs. The auto-encoders contain Long-Short Term Memory (LSTM) layers and are trained using the normal samples of the relevant sensors selected by correlation analysis. The difference signal between the input and its reconstruction is then used to classify the samples using feature extraction and a random forest classifier. The data measured by the sensors of a data center between January 2019 and May 2020 are used to train the model, while the data between June 2020 and May 2021 are used to assess it. Performances of the model are assessed a posteriori through F1-score by comparing detected anomalies with the data center’s history. The proposed model outperforms the state-of-the-art reconstruction method, which uses only one autoencoder taking multivariate sequences and detects an anomaly with a threshold on the reconstruction error, with an F1-score of 83.60% compared to 24.16%.

Keywords: Anomaly detection, autoencoder, data centers, deep learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 736
123 Predictive Maintenance of Industrial Shredders: Efficient Operation through Real-Time Monitoring Using Statistical Machine Learning

Authors: Federico Pittino, Dominik Holzmann, Krithika Sayar-Chand, Stefan Moser, Sebastian Pliessnig, Thomas Arnold

Abstract:

The shredding of waste materials is a key step in the recycling process towards circular economy. Industrial shredders for waste processing operate in very harsh operating conditions, leading to the need of frequent maintenance of critical components. The maintenance optimization is particularly important also to increase the machine’s efficiency, thereby reducing the operational costs. In this work, a monitoring system has been developed and deployed on an industrial shredder located at a waste recycling plant in Austria. The machine has been monitored for several months and methods for predictive maintenance have been developed for two key components: the cutting knives and the drive belt. The large amount of collected data is leveraged by statistical machine learning techniques, thereby not requiring a very detailed knowledge of the machine or its live operating conditions. The results show that, despite the wide range of operating conditions, a reliable estimate of the optimal time for maintenance can be derived. Moreover, the trade-off between the cost of maintenance and the increase in power consumption due to the wear state of the monitored components of the machine is investigated. This work proves the benefits of real-time monitoring system for efficient operation of industrial shredders.

Keywords: predictive maintenance, circular economy, industrial shredder, cost optimization, statistical machine learning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 633
122 An E-Maintenance IoT Sensor Node Designed for Fleets of Diverse Heavy-Duty Vehicles

Authors: George Charkoftakis, Panagiotis Liosatos, Nicolas-Alexander Tatlas, Dimitrios Goustouridis, Stelios M. Potirakis

Abstract:

E-maintenance is a relatively recent concept, generally referring to maintenance management by monitoring assets over the Internet. One of the key links in the chain of an e-maintenance system is data acquisition and transmission. Specifically for the case of a fleet of heavy-duty vehicles, where the main challenge is the diversity of the vehicles and vehicle-embedded self-diagnostic/reporting technologies, the design of the data acquisition and transmission unit is a demanding task. This is clear if one takes into account that a heavy-vehicles fleet assortment may range from vehicles with only a limited number of analog sensors monitored by dashboard light indicators and gauges to vehicles with plethora of sensors monitored by a vehicle computer producing digital reporting. The present work proposes an adaptable internet of things (IoT) sensor node that is capable of addressing this challenge. The proposed sensor node architecture is based on the increasingly popular single-board computer – expansion boards approach. In the proposed solution, the expansion boards undertake the tasks of position identification, cellular connectivity, connectivity to the vehicle computer, and connectivity to analog and digital sensors by means of a specially targeted design of expansion board. Specifically, the latter offers a number of adaptability features to cope with the diverse sensor types employed in different vehicles. In standard mode, the IoT sensor node communicates to the data center through cellular network, transmitting all digital/digitized sensor data, IoT device identity and position. Moreover, the proposed IoT sensor node offers connectivity, through WiFi and an appropriate application, to smart phones or tablets allowing the registration of additional vehicle- and driver-specific information and these data are also forwarded to the data center. All control and communication tasks of the IoT sensor node are performed by dedicated firmware.

Keywords: IoT sensor nodes, e-maintenance, single-board computers, sensor expansion boards, on-board diagnostics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 587
121 Sonic Therapeutic Intervention for Preventing Financial Fraud: A Phenomenological Study

Authors: Vasudev Das

Abstract:

The specific problem is that private and public organizational leaders often do not understand the importance of sonic therapeutic intervention in preventing financial fraud. The study aimed to explore sonic therapeutic intervention practitioners' lived experiences regarding the value of sonic therapeutic intervention in preventing financial fraud. The data collection methods were semi-structured interviews of purposeful samples and documentary reviews, which were analyzed thematically. Four themes emerged from the analysis of interview transcription data: Sonic therapeutic intervention enabled self-control, pro-spiritual values, consequentiality mindset, and post-conventional consciousness. The itemized four themes helped non-engagement in financial fraud. Implications for positive social change include enhanced financial fraud management, more significant financial leadership, and result-oriented decision-taking in the financial market. Also, the study results can improve the increased de-escalation of anxiety/stress associated with defrauding.

Keywords: consciousness, consequentiality, rehabilitation, reintegration

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 796
120 Review of Innovation Management Frameworks and Assessment Tools

Authors: Qiang Fu, Md. Abu Saleh

Abstract:

Research studies are highly fragmented when an Innovation Management Framework is being discussed. With the aim to identify an Innovation Management Framework/Assessment Tool suitable for Small & Medium Enterprises (SMEs) in the service industry, this researcher critically reviewed existing innovation management frameworks and assessment models/tools and discovered a number of literature gaps. It is established that the existing literature lacks generally agreed innovation management dimensions, commonly accepted knowledge creation through empirical studies on innovation management in SMEs, effective innovation management performance measurements, suitable innovation management framework in SMEs, and studies on innovation management in the service industry, in particular in retail SMEs. As such, there is a dire need to develop an appropriate firm-level innovation management framework suitable for SMEs in the service industry for future research projects and further studies. In addition, this researcher also discussed the significance of establishing such an innovation management framework.

Keywords: innovation management, innovation management framework, innovation management assessment tools, SMEs, service industry

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 734
119 IntelligentLogger: A Heavy-Duty Vehicles Fleet Management System Based on IoT and Smart Prediction Techniques

Authors: D. Goustouridis, A. Sideris, I. Sdrolias, G. Loizos, N.-Alexander Tatlas, S. M. Potirakis

Abstract:

Both daily and long-term management of a heavy-duty vehicles and construction machinery fleet is an extremely complicated and hard to solve issue. This is mainly due to the diversity of the fleet vehicles – machinery, which concerns not only the vehicle types, but also their age/efficiency, as well as the fleet volume, which is often of the order of hundreds or even thousands of vehicles/machineries. In the present paper we present “InteligentLogger”, a holistic heavy-duty fleet management system covering a wide range of diverse fleet vehicles. This is based on specifically designed hardware and software for the automated vehicle health status and operational cost monitoring, for smart maintenance. InteligentLogger is characterized by high adaptability that permits to be tailored to practically any heavy-duty vehicle/machinery (of different technologies -modern or legacy- and of dissimilar uses). Contrary to conventional logistic systems, which are characterized by raised operational costs and often errors, InteligentLogger provides a cost-effective and reliable integrated solution for the e-management and e-maintenance of the fleet members. The InteligentLogger system offers the following unique features that guarantee successful heavy-duty vehicles/machineries fleet management: (a) Recording and storage of operating data of motorized construction machinery, in a reliable way and in real time, using specifically designed Internet of Things (IoT) sensor nodes that communicate through the available network infrastructures, e.g., 3G/LTE; (b) Use on any machine, regardless of its age, in a universal way; (c) Flexibility and complete customization both in terms of data collection, integration with 3rd party systems, as well as in terms of processing and drawing conclusions; (d) Validation, error reporting & correction, as well as update of the system’s database; (e) Artificial intelligence (AI) software, for processing information in real time, identifying out-of-normal behavior and generating alerts; (f) A MicroStrategy based enterprise BI, for modeling information and producing reports, dashboards, and alerts focusing on vehicles– machinery optimal usage, as well as maintenance and scraping policies; (g) Modular structure that allows low implementation costs in the basic fully functional version, but offers scalability without requiring a complete system upgrade.

Keywords: E-maintenance, predictive maintenance, IoT sensor nodes, cost optimization, artificial intelligence, heavy-duty vehicles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 761
118 Ballistics of Main Seat Ejection Cartridges for Aircraft Application

Authors: B. A. Parate, K. D. Deodhar, V. K. Dixit, V. Venkateswara Rao

Abstract:

This article outlines the ballistics of main seat ejection cartridges for aircraft application. The ballistics of main seat ejection cartridges plays a vital role during the ejection of the pilot in an emergency. The ballistic parameters such as maximum pressure, time to reach the maximum pressure, and time required to reach half the maximum pressure that responsible to the spinal injury of the pilot are assessed. Therefore, the evaluations of these parameters are very critical during various stages of development. Elaborate testing is carried out for main seat ejection cartridges on seat ejection tower (SET) at different operating temperatures considering physiological limits. As these trials are cumbersome in nature, a vented vessel (VV) testing facility is devised to lay down the performance parameters at hot and cold temperature conditions. Single base (SB) propellant having hepta-tubular configuration is selected as the main filling. Gun powder plays the role of a booster based on ballistic requirements. The evaluation methodology of various performance parameters of main seat ejection cartridges is explained in this paper. Physiological parameters such as maximum seat ejection velocity, acceleration, and rate of rising of acceleration are also experimentally determined on SET. All the parameters are observed well within physiological limits. This paper addresses the internal ballistic of main seat ejection cartridges, propellant selection, its calculation, and evaluation of various performance parameters for aircraft application.

Keywords: Ballistics of seat ejection, ejection seat, gas generator, gun propulsion, main seat ejection cartridges, maximum pressure, performance parameters, propellant, progressive burning and vented vessel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 761
117 The Ballistics Case Study of the Enrica Lexie Incident

Authors: Diego Abbo

Abstract:

On February 15, 2012 off the Indian coast of Kerala, in position 091702N-0760180E by the oil tanker Enrica Lexie, flying the Italian flag, bursts of 5.56 x45 caliber shots were fired from assault rifles AR/70 Italian-made Beretta towards the Indian fisher boat St. Anthony. The shots that hit the St. Anthony fishing boat were six, of which two killed the Indian fishermen Ajesh Pink and Valentine Jelestine. From the analysis concerning the kinematic engagement of the two ships and from the autopsy and ballistic results of the Indian judicial authorities it is possible to reconstruct the trajectories of the six aforementioned shots. This essay reconstructs the trajectories of the six shots that cannot be of direct shooting but have undergone a rebound on the water. The investigation carried out scientifically demonstrates the rebound of the blows on the water, the gyrostatic deviation due to the rebound and the tumbling effect always due to the rebound as regards intermediate ballistics. In consideration of the four shots that directly impacted the fishing vessel, the current examination proves, with scientific value, that the trajectories could not be downwards but upwards. Also, the trajectory of two shots that hit to death the two fishermen could not be downwards but only upwards. In fact, this paper demonstrates, with scientific value: The loss of speed of the projectiles due to the rebound on the water; The tumbling effect in the ballistic medium within the two victims; The permanent cavities subject to the injury ballistics and the related ballistic trauma that prevented homeostasis causing bleeding in one case; The thermo-hardening deformation of the bullet found in Valentine Jelestine's skull; The upward and non-downward trajectories. The paper constitutes a tool in forensic ballistics in that it manages to reconstruct, from the final spot of the projectiles fired, all phases of ballistics like the internal one of the weapons that fired, the intermediate one, the terminal one and the penetrative structural one. In general terms the ballistics reconstruction is based on measurable parameters whose entity is contained with certainty within a lower and upper limit. Therefore, quantities that refer to angles, speed, impact energy and firing position of the shooter can be identified within the aforementioned limits. Finally, the investigation into the internal bullet track, obtained from any autopsy examination, offers a significant “lesson learned” but overall a starting point to contain or mitigate bleeding as a rescue from future gunshot wounds.

Keywords: Impact physics, intermediate ballistics, terminal ballistics, tumbling effect.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 830
116 Simulation Model for Optimizing Energy in Supply Chain Management

Authors: Nazli Akhlaghinia, Ali Rajabzadeh Ghatari

Abstract:

In today's world, with increasing environmental awareness, firms are facing severe pressure from various stakeholders, including the government and customers, to reduce their harmful effects on the environment. Over the past few decades, the increasing effects of global warming, climate change, waste, and air pollution have increased the global attention of experts to the issue of the green supply chain and led them to the optimal solution for greenery. Green supply chain management (GSCM) plays an important role in motivating the sustainability of the organization. With increasing environmental concerns, the main objective of the research is to use system thinking methodology and Vensim software for designing a dynamic system model for green supply chain and observing behaviors. Using this methodology, we look for the effects of a green supply chain structure on the behavioral dynamics of output variables. We try to simulate the complexity of GSCM in a period of 30 months and observe the complexity of behaviors of variables including sustainability, providing green products, and reducing energy consumption, and consequently reducing sample pollution.

Keywords: Supply chain management, green supply chain management, system dynamics, energy consumption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 904
115 Multilayer Thermal Screens for Greenhouse Insulation

Authors: Clara Shenderey, Helena Vitoshkin, Mordechai Barak, Avraham Arbel

Abstract:

Greenhouse cultivation is an energy-intensive process due to the high demands on cooling or heating according to external climatic conditions, which could be extreme in the summer or winter seasons. The thermal radiation rate inside a greenhouse depends mainly on the type of covering material and greenhouse construction. Using additional thermal screens under a greenhouse covering combined with a dehumidification system improves the insulation and could be cost-effective. Greenhouse covering material usually contains protective ultraviolet (UV) radiation additives to prevent the film wear, insect harm, and crop diseases. This paper investigates the overall heat transfer coefficient, or U-value, for greenhouse polyethylene covering contains UV-additives and glass covering with or without a thermal screen supplement. The hot-box method was employed to evaluate overall heat transfer coefficients experimentally as a function of the type and number of the thermal screens. The results show that the overall heat transfer coefficient decreases with increasing the number of thermal screens as a hyperbolic function. The overall heat transfer coefficient highly depends on the ability of the material to reflect thermal radiation. Using a greenhouse covering, i.e., polyethylene films or glass, in combination with high reflective thermal screens, i.e., containing about 98% of aluminum stripes or aluminum foil, the U-value reduces by 61%-89% in the first case, whereas by 70%-92% in the second case, depending on the number of the thermal screen. Using thermal screens made from low reflective materials may reduce the U-value by 30%-57%. The heat transfer coefficient is an indicator of the thermal insulation properties of the materials, which allows farmers to make decisions on the use of appropriate thermal screens depending on the external and internal climate conditions in a greenhouse.

Keywords: Energy-saving thermal screen, greenhouse covering material, heat transfer coefficient, hot box.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 617
114 Digital Transformation of Payment Systems Using Field Service Management

Authors: Hamze Torabian, Mohammad Mehrabioun Mohammadi

Abstract:

Like many other industries, the payment industry has been affected by digital transformation. The importance of digital transformation in the payment industry is very crucial. Because the payment industry is considered a leading industry in digital and emerging technologies, and the digitalization of other industries such as retail, health, and telecommunication, it also depends on the growth rate of digitalized payment systems. One of the technological innovations in service management is Field Service Management (FSM). Despite the widespread use of FSM in various industries such as petrochemical, health, maintenance, etc., this technology can also be recruited in the payment industry, transforming the payment industry into a more agile and efficient one. Accordingly, the present study pays close attention to the application of FSM in the payment industry. Given the importance of merchants' bargaining power in the payment industry, this study aims to use FSM in the digital transformation initiative with a targeted focus on providing real-time services to merchants. The research method consists of three parts. Firstly, conducting the review of past research, applications of FSM in the payment industry are considered. In the next step, merchants' benefits such as emotional, functional, economic, and social benefits in using FSM are identified using in-depth interviews and content analysis methods. The related business model in helping the payment industry transforming into a more agile and efficient industry is considered in the following step. The results revealed the 10 main pillars required to realize the digital transformation of payment systems using FSM.

Keywords: Digital transformation, field service management, merchant support systems, payment industry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 612
113 Object-Centric Process Mining Using Process Cubes

Authors: Anahita Farhang Ghahfarokhi, Alessandro Berti, Wil M.P. van der Aalst

Abstract:

Process mining provides ways to analyze business processes. Common process mining techniques consider the process as a whole. However, in real-life business processes, different behaviors exist that make the overall process too complex to interpret. Process comparison is a branch of process mining that isolates different behaviors of the process from each other by using process cubes. Process cubes organize event data using different dimensions. Each cell contains a set of events that can be used as an input to apply process mining techniques. Existing work on process cubes assume single case notions. However, in real processes, several case notions (e.g., order, item, package, etc.) are intertwined. Object-centric process mining is a new branch of process mining addressing multiple case notions in a process. To make a bridge between object-centric process mining and process comparison, we propose a process cube framework, which supports process cube operations such as slice and dice on object-centric event logs. To facilitate the comparison, the framework is integrated with several object-centric process discovery approaches.

Keywords: Process mining, multidimensional process mining, multi-perspective business processes, OLAP, process cubes, process discovery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1113