Kinematic Optimization of Energy Extraction Performances for Flapping Airfoil by Using Radial Basis Function Method and Genetic Algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33150
Kinematic Optimization of Energy Extraction Performances for Flapping Airfoil by Using Radial Basis Function Method and Genetic Algorithm

Authors: M. Maatar, M. Mekadem, M. Medale, B. Hadjed, B. Imine

Abstract:

In this paper, numerical simulations have been carried out to study the performances of a flapping wing used as an energy collector. Metamodeling and genetic algorithms are used to detect the optimal configuration, improving power coefficient and/or efficiency. Radial basis functions and genetic algorithms have been applied to solve this problem. Three optimization factors are controlled, namely dimensionless heave amplitude h0, pitch amplitude θ0, and flapping frequency f. ANSYS FLUENT software has been used to solve the principal equations at a Reynolds number of 1100, while the heave and pitch motion of a NACA0015 airfoil has been realized using a developed function (UDF). The results reveal an average power coefficient and efficiency of 0.78 and 0.338 with an inexpensive low-fidelity model and a total relative error of 4.1% versus the simulation. The performances of the simulated optimum RBF-NSGA-II have been improved by 1.2% compared with the validated model.

Keywords: Numerical simulation, flapping wing, energy extraction, power coefficient, energy extraction efficiency, RBF, NSGA-II.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6

References:


[1] B. Xu, Q. Ma, and D. Huang, “Research on energy harvesting properties of a diffuser-augmented flapping wing,” Renew. Energy, vol. 180, pp. 271–280, Dec. 2021, doi: 10.1016/j.renene.2021.08.053.
[2] P. Ma, Y. Wang, Y. Xie, and J. Zhang, “Analysis of a hydraulic coupling system for dual oscillating foils with a parallel configuration,” Energy, vol. 143, pp. 273–283, Jan. 2018, doi: 10.1016/j.energy.2017.10.141.
[3] B. Zhu, Y. Huang, and Y. Zhang, “Energy harvesting properties of a flapping wing with an adaptive Gurney flap,” Energy, vol. 152, pp. 119–128, Jun. 2018, doi: 10.1016/j.energy.2018.03.142.
[4] W. McKinney and J. DeLaurier, “Wingmill: An Oscillating-Wing Windmill.,” AIAA Pap., vol. 5, no. 2, pp. 80–87, 1980.
[5] M. F. Platzer, M. a Ashraf, J. Young, and S. Lecturer, “Wind and Hydropower Generator,” New Horizons, no. January, pp. 1–13, 2009.
[6] T. Kinsey and G. Dumas, “Parametric study of an oscillating airfoil in a power-extraction regime,” AIAA J., vol. 46, no. 6, pp. 1318–1330, 2008, doi: 10.2514/1.26253.
[7] Q. Xiao, W. Liao, S. Yang, and Y. Peng, “How motion trajectory affects energy extraction performance of a biomimic energy generator with an oscillating foil?,” Renew. Energy, vol. 37, no. 1, pp. 61–75, 2012, doi: 10.1016/j.renene.2011.05.029.
[8] J. Zhu and T. Tian, “The time asymmetric pitching effects on the energy extraction performance of a semi-active flapping wing power generator,” Eur. J. Mech. B/Fluids, vol. 66, pp. 92–101, 2017, doi: 10.1016/j.euromechflu.2017.06.006.
[9] Z. Liu, K. S. Bhattacharjee, F. Tian, J. Young, T. Ray, and J. C. S. Lai, “Kinematic optimization of a flapping foil power generator using a multi-fidelity evolutionary algorithm,” 2018, doi: 10.1016/j.renene.2018.08.015.
[10] B. Zhu, “Energy extraction properties of a flapping wing with an arc-deformable airfoil Energy extraction properties of a flapping wing with an arc-deformable airfoil,” vol. 023302, no. November 2018, 2019, doi: 10.1063/1.5079864.
[11] H. Zheng, F. Xie, T. Ji, Z. Zhu, and Y. Zheng, “Multifidelity kinematic parameter optimization of a flapping airfoil,” Phys. Rev. E, vol. 101, no. 1, Jan. 2020, doi: 10.1103/PhysRevE.101.013107.
[12] Y. Li, T. Liu, Y. Wang, and Y. Xie, “Deep learning based real-time energy extraction system modeling for flapping foil,” Energy, vol. 246, no. 123390, 2022, doi: 10.1016/j.energy.2022.123390.
[13] T. J. and Y. Z. Zheng H., F. Xie, “Kinematic parameter optimization of a flapping ellipsoid wing based on the data-informed self-adaptive quasi-steady model,” Phys. Fluids, vol. 32, no. 4, p. 041904, Apr. 2020, doi: 10.1063/1.5144642.
[14] T. (季廷炜) Ji, F. (金凡) Jin, F. (谢芳芳) Xie, H. (郑鸿宇) Zheng, X. (张鑫帅) Zhang, and Y. (郑耀) Zheng, “Active learning of tandem flapping wings at optimizing propulsion performance,” Phys. Fluids, vol. 34, no. 4, p. 47117, Apr. 2022, doi: 10.1063/5.0084160.
[15] J. M. Anderson, K. Streitlien, D. S. Barrett, and M. S. Triantafyllou, “Oscillating foils of high propulsive efficiency,” J. Fluid Mech., vol. 360, pp. 41–72, 1998, doi: 10.1017/S0022112097008392.
[16] R. T. Haftka, “Response surface approximations for structural optimization W. J. Roux AIAA, NASA, and ISSMO, Symposium on Multidisciplinary Analysis and Optimization, Response Surface Approximations for,” pp. 565–578, 1996.
[17] R. H. Myers, D. C. Montgomery, G. Geoffrey Vining, C. M. Borror, and S. M. Kowalski, “Response Surface Methodology: A Retrospective and Literature Survey,” J. Qual. Technol., vol. 36, no. 1, pp. 53–78, 2004, doi: 10.1080/00224065.2004.11980252.
[18] A. G. Bors, “Introduction of the Radial Basis Function (RBF) Networks,” Online Symp. Electron. Eng., vol. 1, no. 1, pp. 1–7, 2001.
[19] J. H. Holland, “even their creators do not fully understand Genetic Algorithms n,” Sci. Am., vol. 267, no. 1, pp. 66–73, 1992.
[20] Goldberg D. E., “The Design of Innovation. Technol,” Technol. Forecast. Soc. Chang., vol. 64, no. 7, p. 12, 2000.
[21] M. Maatar, M. Mekadem, M. Medale, and B. Imine, “Kinematic Optimization of Energy Extraction Efficiency for Flapping Airfoil by using Response Surface Method and Genetic Algorithm,” J. Appl. Fluid Mech., vol. 16, no. 5, pp. 932–946, 2023, doi: 10.47176/jafm.16.05.1652.
[22] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput., vol. 6, no. 2, pp. 182–197, 2002, doi: 10.1109/4235.996017.
[23] M. Mekadem, T. Chettibi, S. Hanchi, L. Keirsbulck, and L. Labraga, “Kinematic optimization of 2D plunging airfoil motion using the response surface methodology,” J. Zhejiang Univ. Sci. A, vol. 13, no. 2, pp. 105–120, 2012, doi: 10.1631/jzus.A1000502.