Search results for: wheatstone bridge load cell
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6752

Search results for: wheatstone bridge load cell

6392 Worst-Case Load Shedding in Electric Power Networks

Authors: Fu Lin

Abstract:

We consider the worst-case load-shedding problem in electric power networks where a number of transmission lines are to be taken out of service. The objective is to identify a prespecified number of line outages that lead to the maximum interruption of power generation and load at the transmission level, subject to the active power-flow model, the load and generation capacity of the buses, and the phase-angle limit across the transmission lines. For this nonlinear model with binary constraints, we show that all decision variables are separable except for the nonlinear power-flow equations. We develop an iterative decomposition algorithm, which converts the worst-case load shedding problem into a sequence of small subproblems. We show that the subproblems are either convex problems that can be solved efficiently or nonconvex problems that have closed-form solutions. Consequently, our approach is scalable for large networks. Furthermore, we prove the convergence of our algorithm to a critical point, and the objective value is guaranteed to decrease throughout the iterations. Numerical experiments with IEEE test cases demonstrate the effectiveness of the developed approach.

Keywords: load shedding, power system, proximal alternating linearization method, vulnerability analysis

Procedia PDF Downloads 110
6391 Facile Synthesis of Novel Substituted Aryl-Thiazole (SAT) Analogs via One-Pot Multicomponent Reaction as Potent Cytotoxic Agents against Cancer Cell Lines

Authors: Salma Mirza, Syeda Asma Naqvi, Khalid Mohammed Khan, M. Iqbal Choudhary

Abstract:

In this study twenty-five (25) newly synthesized compounds substituted aryl thiazoles (SAT) 1-25 were synthesized, and in vitro cytotoxicity of these compounds was evaluated against four cancer cell lines namely, MCF-7 (ER+ve breast), MDA-MB-231 (ER-ve breast), HCT116 (colorectal), and, HeLa (cervical) and compared with the standard anticancer drug doxorubicin with IC50 value of 1.56 ± 0.05 μM. Among them, compounds 1, 4-8 and 19 were found to be active against all four cell lines. Compound 20 was found to be selectively active against MCF7 cells with IC50 value of 40.21 ± 4.15 µM, whereas compound 19 was active against only MCF7 and HeLa cells with IC50 values of 46.72 ± 1.8 and 19.86 ± 0.11 μM, respectively. These results suggest that aryl thiazoles 1 and 4 deserve to be investigated further in vivo as anti-cancer agents.

Keywords: anticancer agents, breast cancer cell lines (MCF7, MDA-MB-231), colorectal cancer cell line (HCT-116), cervical cancer cell line (HeLa), Thiazole derivatives

Procedia PDF Downloads 278
6390 Load Forecasting in Short-Term Including Meteorological Variables for Balearic Islands Paper

Authors: Carolina Senabre, Sergio Valero, Miguel Lopez, Antonio Gabaldon

Abstract:

This paper presents a comprehensive survey of the short-term load forecasting (STLF). Since the behavior of consumers and producers continue changing as new technologies, it is an ongoing process, and moreover, new policies become available. The results of a research study for the Spanish Transport System Operator (REE) is presented in this paper. It is presented the improvement of the forecasting accuracy in the Balearic Islands considering the introduction of meteorological variables, such as temperature to reduce forecasting error. Variables analyzed for the forecasting in terms of overall accuracy are cloudiness, solar radiation, and wind velocity. It has also been analyzed the type of days to be considered in the research.

Keywords: short-term load forecasting, power demand, neural networks, load forecasting

Procedia PDF Downloads 157
6389 In silico Repopulation Model of Various Tumour Cells during Treatment Breaks in Head and Neck Cancer Radiotherapy

Authors: Loredana G. Marcu, David Marcu, Sanda M. Filip

Abstract:

Advanced head and neck cancers are aggressive tumours, which require aggressive treatment. Treatment efficiency is often hindered by cancer cell repopulation during radiotherapy, which is due to various mechanisms triggered by the loss of tumour cells and involves both stem and differentiated cells. The aim of the current paper is to present in silico simulations of radiotherapy schedules on a virtual head and neck tumour grown with biologically realistic kinetic parameters. Using the linear quadratic formalism of cell survival after radiotherapy, altered fractionation schedules employing various treatment breaks for normal tissue recovery are simulated and repopulation mechanism implemented in order to evaluate the impact of various cancer cell contribution on tumour behaviour during irradiation. The model has shown that the timing of treatment breaks is an important factor influencing tumour control in rapidly proliferating tissues such as squamous cell carcinomas of the head and neck. Furthermore, not only stem cells but also differentiated cells, via the mechanism of abortive division, can contribute to malignant cell repopulation during treatment.

Keywords: radiation, tumour repopulation, squamous cell carcinoma, stem cell

Procedia PDF Downloads 249
6388 Comparison between the Efficiency of Heterojunction Thin Film InGaP\GaAs\Ge and InGaP\GaAs Solar Cell

Authors: F. Djaafar, B. Hadri, G. Bachir

Abstract:

This paper presents the design parameters for a thin film 3J InGaP/GaAs/Ge solar cell with a simulated maximum efficiency of 32.11% using Tcad Silvaco. Design parameters include the doping concentration, molar fraction, layers’ thickness and tunnel junction characteristics. An initial dual junction InGaP/GaAs model of a previous published heterojunction cell was simulated in Tcad Silvaco to accurately predict solar cell performance. To improve the solar cell’s performance, we have fixed meshing, material properties, models and numerical methods. However, thickness and layer doping concentration were taken as variables. We, first simulate the InGaP\GaAs dual junction cell by changing the doping concentrations and thicknesses which showed an increase in efficiency. Next, a triple junction InGaP/GaAs/Ge cell was modeled by adding a Ge layer to the previous dual junction InGaP/GaAs model with an InGaP /GaAs tunnel junction.

Keywords: heterojunction, modeling, simulation, thin film, Tcad Silvaco

Procedia PDF Downloads 337
6387 Reliability Estimation of Bridge Structures with Updated Finite Element Models

Authors: Ekin Ozer

Abstract:

Assessment of structural reliability is essential for efficient use of civil infrastructure which is subjected hazardous events. Dynamic analysis of finite element models is a commonly used tool to simulate structural behavior and estimate its performance accordingly. However, theoretical models purely based on preliminary assumptions and design drawings may deviate from the actual behavior of the structure. This study proposes up-to-date reliability estimation procedures which engages actual bridge vibration data modifying finite element models for finite element model updating and performing reliability estimation, accordingly. The proposed method utilizes vibration response measurements of bridge structures to identify modal parameters, then uses these parameters to calibrate finite element models which are originally based on design drawings. The proposed method does not only show that reliability estimation based on updated models differs from the original models, but also infer that non-updated models may overestimate the structural capacity.

Keywords: earthquake engineering, engineering vibrations, reliability estimation, structural health monitoring

Procedia PDF Downloads 180
6386 Optimal Placement and Sizing of Distributed Generation in Microgrid for Power Loss Reduction and Voltage Profile Improvement

Authors: Ferinar Moaidi, Mahdi Moaidi

Abstract:

Environmental issues and the ever-increasing in demand of electrical energy make it necessary to have distributed generation (DG) resources in the power system. In this research, in order to realize the goals of reducing losses and improving the voltage profile in a microgrid, the allocation and sizing of DGs have been used. The proposed Genetic Algorithm (GA) is described from the array of artificial intelligence methods for solving the problem. The algorithm is implemented on the IEEE 33 buses network. This study is presented in two scenarios, primarily to illustrate the effect of location and determination of DGs has been done to reduce losses and improve the voltage profile. On the other hand, decisions made with the one-level assumptions of load are not universally accepted for all levels of load. Therefore, in this study, load modelling is performed and the results are presented for multi-levels load state.

Keywords: distributed generation, genetic algorithm, microgrid, load modelling, loss reduction, voltage improvement

Procedia PDF Downloads 121
6385 Numerical Simulation of Multijunction GaAs/CIGS Solar Cell by AMPS-1D

Authors: Hassane Ben Slimane, Benmoussa Dennai, Abderrahman Hemmani, Abderrachid Helmaoui

Abstract:

During the past few years a great variety of multi-junction solar cells has been developed with the aim of a further increase in efficiency beyond the limits of single junction devices. This paper analyzes the GaAs/CIGS based tandem solar cell performance by AMPS-1D numerical modeling. Various factors which affect the solar cell’s performance are investigated, carefully referring to practical cells, to obtain the optimum parameters for the GaAs and CIGS top and bottom solar cells. Among the factors studied are thickness and band gap energy of dual junction cells.

Keywords: multijunction solar cell, GaAs, CIGS, AMPS-1D

Procedia PDF Downloads 478
6384 Single Phase PV Inverter Applying a Dual Boost Technology

Authors: Sudha Bhutada, S. R. Nigam

Abstract:

In this paper, a single-phase PV inverter applying a dual boost converter circuit inverter is proposed for photovoltaic (PV) generation system and PV grid connected system. This system is designed to improve integration of a Single phase inverter with Photovoltaic panel. The DC 24V is converted into to 86V DC and then 86V DC to 312V DC. The 312 V DC is then successfully inverted to AC 220V. Hence, solar energy is powerfully converted into electrical energy for fulfilling the necessities of the home load, or to link with the grid. Matlab Simulation software was used for simulation of the circuit and outcome are presented in this paper.

Keywords: H bridge inverter, dual boost converter, PWM, SPWM

Procedia PDF Downloads 612
6383 Examination of Corrosion Durability Related to Installed Environments of Steel Bridges

Authors: Jin-Hee Ahn, Seok-Hyeon Jeon, Young-Bin Lee, Min-Gyun Ha, Yu-Chan Hong

Abstract:

Corrosion durability of steel bridges can be generally affected by atmospheric environments of bridge installation, since corrosion problem is related to environmental factors such as humidity, temperature, airborne salt, chemical components as SO₂, chlorides, etc. Thus, atmospheric environment condition should be measured to estimate corrosion condition of steel bridges as well as measurement of actual corrosion damage of structural members of steel bridge. Even in the same atmospheric environment, the corrosion environment may be different depending on the installation direction of structural members. In this study, therefore, atmospheric corrosion monitoring was conducted using atmospheric corrosion monitoring sensor, hygrometer, thermometer and airborne salt collection device to examine the corrosion durability of steel bridges. As a target steel bridge for corrosion durability monitoring, a cable-stayed bridge with truss steel members was selected. This cable-stayed bridge was located on the coast to connect the islands with the islands. Especially, atmospheric corrosion monitoring was carried out depending on structural direction of a cable-stayed bridge with truss type girders since it consists of structural members with various directions. For atmospheric corrosion monitoring, daily average electricity (corrosion current) was measured at each monitoring members to evaluate corrosion environments and corrosion level depending on structural members with various direction which have different corrosion environment in the same installed area. To compare corrosion durability connected with monitoring data depending on corrosion monitoring members, monitoring steel plate was additionally installed in same monitoring members. Monitoring steel plates of carbon steel was fabricated with dimension of 60mm width and 3mm thickness. And its surface was cleaned for removing rust on the surface by blasting, and its weight was measured before its installation on each structural members. After a 3 month exposure period on real atmospheric corrosion environment at bridge, surface condition of atmospheric corrosion monitoring sensors and monitoring steel plates were observed for corrosion damage. When severe deterioration of atmospheric corrosion monitoring sensors or corrosion damage of monitoring steel plates were found, they were replaced or collected. From 3month exposure tests in the actual steel bridge with various structural member with various direction, the rust on the surface of monitoring steel plate was found, and the difference in the corrosion rate was found depending on the direction of structural member from their visual inspection. And daily average electricity (corrosion current) was changed depending on the direction of structural member. However, it is difficult to identify the relative differences in corrosion durability of steel structural members using short-term monitoring results. After long exposure tests in this corrosion environments, it can be clearly evaluated the difference in corrosion durability depending on installed conditions of steel bridges. Acknowledgements: This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1B03028755).

Keywords: corrosion, atmospheric environments, steel bridge, monitoring

Procedia PDF Downloads 327
6382 Numerical Study on the Ultimate Load of Offshore Two-Planar Tubular KK-Joints at Fire-Induced Elevated Temperatures

Authors: Hamid Ahmadi, Neda Azari-Dodaran

Abstract:

A total of 270 nonlinear steady-state finite element (FE) analyses were performed on 54 FE models of two-planar circular hollow section (CHS) KK-joints subjected to axial loading at five different temperatures (20 ºC, 200 ºC, 400 ºC, 550 ºC, and 700 ºC). The primary goal was to investigate the effects of temperature and geometrical characteristics on the ultimate strength, modes of failure, and initial stiffness of the KK-joints. Results indicated that on an average basis, the ultimate load of a two-planar tubular KK-joint at 200 ºC, 400 ºC, 550 ºC, and 700 ºC is 90%, 75%, 45%, and 16% of the joint’s ultimate load at ambient temperature, respectively. Outcomes of the parametric study showed that replacing the yield stress at ambient temperature with the corresponding value at elevated temperature to apply the EN 1993-1-8 equations for the calculation of the joint’s ultimate load at elevated temperatures may lead to highly unconservative results that might endanger the safety of the structure. Results of the parametric study were then used to develop a set of design formulas, through nonlinear regression analyses, to calculate the ultimate load of two-planar tubular KK-joints subjected to axial loading at elevated temperatures.

Keywords: ultimate load, two-planar tubular KK-joint, axial loading, elevated temperature, parametric equation

Procedia PDF Downloads 126
6381 Culture and Commodification: A Study of William Gibson's the Bridge Trilogy

Authors: Aruna Bhat

Abstract:

Culture can be placed within the social structure that embodies both the creation of social groups, and the manner in which they interact with each other. As many critics have pointed out, culture in the Postmodern context has often been considered a commodity, and indeed it shares many attributes with commercial products. Popular culture follows many patterns of behavior derived from Economics, from the simple principle of supply and demand, to the creation of marketable demographics which fit certain criterion. This trend is exemplary visible in contemporary fiction, especially in contemporary science fiction; Cyberpunk fiction in particular which is an off shoot of pure science fiction. William Gibson is one such author who in his works portrays such a scenario, and in his The Bridge Trilogy he adds another level of interpretation to this state of affairs, by describing a world that is centered on industrialization of a new kind – that focuses around data in the cyberspace. In this new world, data has become the most important commodity, and man has become nothing but a nodal point in a vast ocean of raw data resulting into commodification of each thing including Culture. This paper will attempt to study the presence of above mentioned elements in William Gibson’s The Bridge Trilogy. The theories applied will be Postmodernism and Cultural studies.

Keywords: culture, commodity, cyberpunk, data, postmodern

Procedia PDF Downloads 471
6380 Settlement Analysis of Axially Loaded Bored Piles: A Case History

Authors: M. Mert, M. T. Ozkan

Abstract:

Pile load tests should be applied to check the bearing capacity calculations and to determine the settlement of the pile corresponding to test load. Strain gauges can be installed into pile in order to determine the shaft resistance of the piles for every soil layer respectively. Detailed results can be obtained by means of strain gauges placed at certain levels into test piles. In the scope of this study, pile load test data obtained from two different projects are examined.  Instrumented static pile load tests were applied on totally 7 test bored piles of different diameters (80 cm, 150 cm, and 200 cm) and different lengths (between 30-76 m) in two different project site. Settlement analysis of test piles is done by using some of load transfer methods and finite element method. Plaxis 3D which is a three-dimensional finite element program is also used for settlement analysis of the test piles. In this study, firstly bearing capacity of test piles are determined and compared with strain gauge data which is required for settlement analysis. Then, settlement values of the test piles are estimated by using load transfer methods developed in recent years and finite element method. The aim of this study is to show similarities and differences between the results obtained from settlement analysis methods and instrumented pile load tests.

Keywords: failure, finite element method, monitoring and instrumentation, pile, settlement

Procedia PDF Downloads 139
6379 A Study of the Alumina Distribution in the Lab-Scale Cell during Aluminum Electrolysis

Authors: Olga Tkacheva, Pavel Arkhipov, Alexey Rudenko, Yurii Zaikov

Abstract:

The aluminum electrolysis process in the conventional cryolite-alumina electrolyte with cryolite ratio of 2.7 was carried out at an initial temperature of 970 °C and the anode current density of 0.5 A/cm2 in a 15A lab-scale cell in order to study the formation of the side ledge during electrolysis and the alumina distribution between electrolyte and side ledge. The alumina contained 35.97% α-phase and 64.03% γ-phase with the particles size in the range of 10-120 μm. The cryolite ratio and the alumina concentration were determined in molten electrolyte during electrolysis and in frozen bath after electrolysis. The side ledge in the electrolysis cell was formed only by the 13th hour of electrolysis. With a slight temperature decrease a significant increase in the side ledge thickness was observed. The basic components of the side ledge obtained by the XRD phase analysis were Na3AlF6, Na5Al3F14, Al2O3, and NaF.5CaF2.AlF3. As in the industrial cell, the increased alumina concentration in the side ledge formed on the cell walls and at the ledge-electrolyte-aluminum three-phase boundary during aluminum electrolysis in the lab cell was found (FTP No 05.604.21.0239, IN RFMEFI60419X0239).

Keywords: alumina distribution, aluminum electrolyzer, cryolie-alumina electrolyte, side ledge

Procedia PDF Downloads 246
6378 Nine-Level Shunt Active Power Filter Associated with a Photovoltaic Array Coupled to the Electrical Distribution Network

Authors: Zahzouh Zoubir, Bouzaouit Azzeddine, Gahgah Mounir

Abstract:

The use of more and more electronic power switches with a nonlinear behavior generates non-sinusoidal currents in distribution networks, which causes damage to domestic and industrial equipment. The multi-level shunt power active filter is subsequently shown to be an adequate solution to the problem raised. Nevertheless, the difficulty of adjusting the active filter DC supply voltage requires another technology to ensure it. In this article, a photovoltaic generator is associated with the DC bus power terminals of the active filter. The proposed system consists of a field of solar panels, three multi-level voltage inverters connected to the power grid and a non-linear load consisting of a six-diode rectifier bridge supplying a resistive-inductive load. Current control techniques of active and reactive power are used to compensate for both harmonic currents and reactive power as well as to inject active solar power into the distribution network. An algorithm of the search method of the maximum power point of type Perturb and observe is applied. Simulation results of the system proposed under the MATLAB/Simulink environment shows that the performance of control commands that reassure the solar power injection in the network, harmonic current compensation and power factor correction.

Keywords: Actif power filter, MPPT, pertub&observe algorithm, PV array, PWM-control

Procedia PDF Downloads 309
6377 Research on Load Balancing Technology for Web Service Mobile Host

Authors: Yao Lu, Xiuguo Zhang, Zhiying Cao

Abstract:

In this paper, Load Balancing idea is used in the Web service mobile host. The main idea of Load Balancing is to establish a one-to-many mapping mechanism: An entrance-mapping request to plurality of processing node in order to realize the dividing and assignment processing. Because the mobile host is a resource constrained environment, there are some Web services which cannot be completed on the mobile host. When the mobile host resource is not enough to complete the request, Load Balancing scheduler will divide the request into a plurality of sub-requests and transfer them to different auxiliary mobile hosts. Auxiliary mobile host executes sub-requests, and then, the results will be returned to the mobile host. Service request integrator receives results of sub-requests from the auxiliary mobile host, and integrates the sub-requests. In the end, the complete request is returned to the client. Experimental results show that this technology adopted in this paper can complete requests and have a higher efficiency.

Keywords: Dinic, load balancing, mobile host, web service

Procedia PDF Downloads 302
6376 Approach for the Mathematical Calculation of the Damping Factor of Railway Bridges with Ballasted Track

Authors: Andreas Stollwitzer, Lara Bettinelli, Josef Fink

Abstract:

The expansion of the high-speed rail network over the past decades has resulted in new challenges for engineers, including traffic-induced resonance vibrations of railway bridges. Excessive resonance-induced speed-dependent accelerations of railway bridges during high-speed traffic can lead to negative consequences such as fatigue symptoms, distortion of the track, destabilisation of the ballast bed, and potentially even derailment. A realistic prognosis of bridge vibrations during high-speed traffic must not only rely on the right choice of an adequate calculation model for both bridge and train but first and foremost on the use of dynamic model parameters which reflect reality appropriately. However, comparisons between measured and calculated bridge vibrations are often characterised by considerable discrepancies, whereas dynamic calculations overestimate the actual responses and therefore lead to uneconomical results. This gap between measurement and calculation constitutes a complex research issue and can be traced to several causes. One major cause is found in the dynamic properties of the ballasted track, more specifically in the persisting, substantial uncertainties regarding the consideration of the ballasted track (mechanical model and input parameters) in dynamic calculations. Furthermore, the discrepancy is particularly pronounced concerning the damping values of the bridge, as conservative values have to be used in the calculations due to normative specifications and lack of knowledge. By using a large-scale test facility, the analysis of the dynamic behaviour of ballasted track has been a major research topic at the Institute of Structural Engineering/Steel Construction at TU Wien in recent years. This highly specialised test facility is designed for isolated research of the ballasted track's dynamic stiffness and damping properties – independent of the bearing structure. Several mechanical models for the ballasted track consisting of one or more continuous spring-damper elements were developed based on the knowledge gained. These mechanical models can subsequently be integrated into bridge models for dynamic calculations. Furthermore, based on measurements at the test facility, model-dependent stiffness and damping parameters were determined for these mechanical models. As a result, realistic mechanical models of the railway bridge with different levels of detail and sufficiently precise characteristic values are available for bridge engineers. Besides that, this contribution also presents another practical application of such a bridge model: Based on the bridge model, determination equations for the damping factor (as Lehr's damping factor) can be derived. This approach constitutes a first-time method that makes the damping factor of a railway bridge calculable. A comparison of this mathematical approach with measured dynamic parameters of existing railway bridges illustrates, on the one hand, the apparent deviation between normatively prescribed and in-situ measured damping factors. On the other hand, it is also shown that a new approach, which makes it possible to calculate the damping factor, provides results that are close to reality and thus raises potentials for minimising the discrepancy between measurement and calculation.

Keywords: ballasted track, bridge dynamics, damping, model design, railway bridges

Procedia PDF Downloads 142
6375 Independent Control over Surface Charge and Wettability Using Polyelectrolyte Architecture

Authors: Shanshan Guo, Xiaoying Zhu, Dominik Jańczewski, Koon Gee Neoh

Abstract:

Surface charge and wettability are two prominent physical factors governing cell adhesion and have been extensively studied in the literature. However, a comparison between the two driving forces in terms of their independent and cooperative effects in affecting cell adhesion is rarely explored on a systematic and quantitative level. Herein, we formulate a protocol which allows two-dimensional and independent control over both surface charge and wettability. This protocol enables the unambiguous comparison of the effects of these two properties on cell adhesion. This strategy is implemented by controlling both the relative thickness of polyion layers in the layer-by-layer assembly and the polyion side chain chemical structures. The 2D property matrix spans surface isoelectric point ranging from 5 to 9 and water contact angle from 35º to 70º, with other interferential factors (e.g. roughness) eliminated. The interplay between these two surface variables influences 3T3 fibroblast cell adhesion. The results show that both surface charge and wettability have an effect on its adhesion. The combined effects of positive charge and hydrophilicity led to the highest cell adhesion whereas negative charge and hydrophobicity led to the lowest cell adhesion. Our design strategy can potentially form the basis for studying the distinct behaviors of electrostatic force or wettability driven interfacial phenomena and serving as a reference in future studies assessing cell adhesion to surfaces with known charge and wettability within the property range studied here.

Keywords: cell adhesion, layer-by-layer, surface charge, surface wettability

Procedia PDF Downloads 239
6374 Comparison of Fuel Cell Installation Methods at Large Commercial and Industrial Sites

Authors: Masood Sattari

Abstract:

Using fuel cell technology to generate electricity for large commercial and industrial sites is a growing segment in the fuel cell industry. The installation of these systems involves design, permitting, procurement of long-lead electrical equipment, and construction involving multiple utilities. The installation of each fuel cell system requires the same amount of coordination as the construction of a new structure requiring a foundation, gas, water, and electricity. Each of these components provide variables that can delay and possibly eliminate a new project. As the manufacturing process and efficiency of fuel cell systems improves, so must the installation methods to prevent a ‘bottle-neck’ in the installation phase of the deployment. Installation methodologies to install the systems vary among companies and this paper will examine the methodologies, describe the benefits and drawbacks for each, and provide guideline for the industry to improve overall installation efficiency.

Keywords: construction, installation, methodology, procurement

Procedia PDF Downloads 166
6373 Evaluation of Batch Splitting in the Context of Load Scattering

Authors: S. Wesebaum, S. Willeke

Abstract:

Production companies are faced with an increasingly turbulent business environment, which demands very high production volumes- and delivery date flexibility. If a decoupling by storage stages is not possible (e.g. at a contract manufacturing company) or undesirable from a logistical point of view, load scattering effects the production processes. ‘Load’ characterizes timing and quantity incidence of production orders (e.g. in work content hours) to workstations in the production, which results in specific capacity requirements. Insufficient coordination between load (demand capacity) and capacity supply results in heavy load scattering, which can be described by deviations and uncertainties in the input behavior of a capacity unit. In order to respond to fluctuating loads, companies try to implement consistent and realizable input behavior using the capacity supply available. For example, a uniform and high level of equipment capacity utilization keeps production costs down. In contrast, strong load scattering at workstations leads to performance loss or disproportionately fluctuating WIP, whereby the logistics objectives are affected negatively. Options for reducing load scattering are e.g. shifting the start and end dates of orders, batch splitting and outsourcing of operations or shifting to other workstations. This leads to an adjustment of load to capacity supply, and thus to a reduction of load scattering. If the adaptation of load to capacity cannot be satisfied completely, possibly flexible capacity must be used to ensure that the performance of a workstation does not decrease for a given load. Where the use of flexible capacities normally raises costs, an adjustment of load to capacity supply reduces load scattering and, in consequence, costs. In the literature you mostly find qualitative statements for describing load scattering. Quantitative evaluation methods that describe load mathematically are rare. In this article the authors discuss existing approaches for calculating load scattering and their various disadvantages such as lack of opportunity for normalization. These approaches are the basis for the development of our mathematical quantification approach for describing load scattering that compensates the disadvantages of the current quantification approaches. After presenting our mathematical quantification approach, the method of batch splitting will be described. Batch splitting allows the adaptation of load to capacity to reduce load scattering. After describing the method, it will be explicitly analyzed in the context of the logistic curve theory by Nyhuis using the stretch factor α1 in order to evaluate the impact of the method of batch splitting on load scattering and on logistic curves. The conclusion of this article will be to show how the methods and approaches presented can help companies in a turbulent environment to quantify the occurring work load scattering accurately and apply an efficient method for adjusting work load to capacity supply. In this way, the achievements of the logistical objectives are increased without causing additional costs.

Keywords: batch splitting, production logistics, production planning and control, quantification, load scattering

Procedia PDF Downloads 375
6372 Short-Term Load Forecasting Based on Variational Mode Decomposition and Least Square Support Vector Machine

Authors: Jiangyong Liu, Xiangxiang Xu, Bote Luo, Xiaoxue Luo, Jiang Zhu, Lingzhi Yi

Abstract:

To address the problems of non-linearity and high randomness of the original power load sequence causing the degradation of power load forecasting accuracy, a short-term load forecasting method is proposed. The method is based on the Least Square Support Vector Machine optimized by an Improved Sparrow Search Algorithm combined with the Variational Mode Decomposition proposed in this paper. The application of the variational mode decomposition technique decomposes the raw power load data into a series of Intrinsic Mode Functions components, which can reduce the complexity and instability of the raw data while overcoming modal confounding; the proposed improved sparrow search algorithm can solve the problem of difficult selection of learning parameters in the least Square Support Vector Machine. Finally, through comparison experiments, the results show that the method can effectively improve prediction accuracy.

Keywords: load forecasting, variational mode decomposition, improved sparrow search algorithm, least square support vector machine

Procedia PDF Downloads 69
6371 Anti-Phosphorylcholine T Cell Dependent Antibody

Authors: M. M. Rahman, A. Liu, A. Frostegard, J. Frostegard

Abstract:

The human immune system plays an essential role in cardiovascular disease (CVD) and atherosclerosis. Our earlier studies showed that major immunocompetent cells including T cells are activated by phosphorylcholine epitope. Further, we have determined for the first time in a clinical cohort that antibodies against phosphorylcholine (anti-PC) are negatively and independently associated with the development of atherosclerosis and thus a low risk of cardiovascular diseases. It is still unknown whether activated T cells play a role in anti-PC production. Here we aim to clarify the role of T cells in anti-PC production. B cell alone, or with CD3 T, CD4 T or with CD8 T cells were cultured in polystyrene plates to examine anti-PC IgM production. In addition to mixed B cell with CD3 T cell culture, B cells with CD3 T cells were also cultured in transwell co-culture plates. Further, B cells alone and mixed B cell with CD3 T cell cultures with or without anti-HLA 2 antibody were cultured for 6 days. Anti-PC IgM was detected by ELISA in independent experiments. More than 8 fold higher levels of anti-PC IgM were detected by ELISA in mixed B cell with CD3 T cell cultures in comparison to B cells alone. After the co-culture of B and CD3 T cells in transwell plates, there were no increased antibody levels indicating that B and T cells need to interact to augment anti-PC IgM production. Furthermore, anti-PC IgM was abolished by anti-HLA 2 blocking antibody in mixed B and CD3 T cells culture. In addition, the lack of increased anti-PC IgM in mixed B with CD8 T cells culture and the increased levels of anti-PC in mixed B with CD4 T cells culture support the role of helper T cell for the anti-PC IgM production. Atherosclerosis is a major cause of cardiovascular diseases, but anti-PC IgM is a protection marker for atherosclerosis development. Understanding the mechanism involved in the anti-PC IgM regulation could play an important role in strategies to raise anti-PC IgM. Studies suggest that anti-PC is T-cell independent antibody, but our study shows the major role of T cell in anti-PC IgM production. Activation of helper T cells by immunization could be a possible mechanism for raising anti-PC levels.

Keywords: anti-PC, atherosclerosis, aardiovascular diseases, phosphorylcholine

Procedia PDF Downloads 317
6370 Nafion Nanofiber Mat in a Single Fuel Cell Test

Authors: Chijioke Okafor, Malik Maaza, Touhami Mokrani

Abstract:

Proton exchange membrane, PEM was developed and tested for potential application in fuel cell. Nafion was electrospun to nanofiber network with the aid of poly(ethylene oxide), PEO, as a carrier polymer. The matrix polymer was crosslinked with Norland Optical Adhesive 63 under UV after compacting and annealing. The welded nanofiber mat was characterized for morphology, proton conductivity, and methanol permeability, then tested in a single cell test station. The results of the fabricated nanofiber membrane showed a proton conductivity of 0.1 S/cm at 25 oC and higher fiber volume fraction; methanol permeability of 3.6x10^-6 cm2/s and power density of 96.1 and 81.2 mW/cm2 for 5M and 1M methanol concentration respectively.

Keywords: fuel cell, nafion, nanofiber, permeability

Procedia PDF Downloads 454
6369 Analyzing Bridge Response to Wind Loads and Optimizing Design for Wind Resistance and Stability

Authors: Abdul Haq

Abstract:

The goal of this research is to better understand how wind loads affect bridges and develop strategies for designing bridges that are more stable and resistant to wind. The effect of wind on bridges is essential to their safety and functionality, especially in areas that are prone to high wind speeds or violent wind conditions. The study looks at the aerodynamic forces and vibrations caused by wind and how they affect bridge construction. Part of the research method involves first understanding the underlying ideas influencing wind flow near bridges. Computational fluid dynamics (CFD) simulations are used to model and forecast the aerodynamic behaviour of bridges under different wind conditions. These models incorporate several factors, such as wind directionality, wind speed, turbulence intensity, and the influence of nearby structures or topography. The results provide significant new insights into the loads and pressures that wind places on different bridge elements, such as decks, pylons, and connections. Following the determination of the wind loads, the structural response of bridges is assessed. By simulating their dynamic behavior under wind-induced forces, Finite Element Analysis (FEA) is used to model the bridge's component parts. This work contributes to the understanding of which areas are at risk of experiencing excessive stresses, vibrations, or oscillations due to wind excitations. Because the bridge has inherent modes and frequencies, the study considers both static and dynamic responses. Various strategies are examined to maximize the design of bridges to withstand wind. It is possible to alter the bridge's geometry, add aerodynamic components, add dampers or tuned mass dampers to lessen vibrations, and boost structural rigidity. Through an analysis of several design modifications and their effectiveness, the study aims to offer guidelines and recommendations for wind-resistant bridge design. In addition to the numerical simulations and analyses, there are experimental studies. In order to assess the computational models and validate the practicality of proposed design strategies, scaled bridge models are tested in a wind tunnel. These investigations help to improve numerical models and prediction precision by providing valuable information on wind-induced forces, pressures, and flow patterns. Using a combination of numerical models, actual testing, and long-term performance evaluation, the project aims to offer practical insights and recommendations for building wind-resistant bridges that are secure, long-lasting, and comfortable for users.

Keywords: wind effects, aerodynamic forces, computational fluid dynamics, finite element analysis

Procedia PDF Downloads 38
6368 Optimal Design of InGaP/GaAs Heterojonction Solar Cell

Authors: Djaafar F., Hadri B., Bachir G.

Abstract:

We studied mainly the influence of temperature, thickness, molar fraction and the doping of the various layers (emitter, base, BSF and window) on the performances of a photovoltaic solar cell. In a first stage, we optimized the performances of the InGaP/GaAs dual-junction solar cell while varying its operation temperature from 275°K to 375 °K with an increment of 25°C using a virtual wafer fabrication TCAD Silvaco. The optimization at 300°K led to the following result Icc =14.22 mA/cm2, Voc =2.42V, FF =91.32 %, η = 22.76 % which is close with those found in the literature. In a second stage ,we have varied the molar fraction of different layers as well their thickness and the doping of both emitters and bases and we have registered the result of each variation until obtaining an optimal efficiency of the proposed solar cell at 300°K which was of Icc=14.35mA/cm2,Voc=2.47V,FF=91.34,and η =23.33% for In(1-x)Ga(x)P molar fraction( x=0.5).The elimination of a layer BSF on the back face of our cell, enabled us to make a remarkable improvement of the short-circuit current (Icc=14.70 mA/cm2) and a decrease in open circuit voltage Voc and output η which reached 1.46V and 11.97% respectively. Therefore, we could determine the critical parameters of the cell and optimize its various technological parameters to obtain the best performance for a dual junction solar cell. This work opens the way with new prospects in the field of the photovoltaic one. Such structures will thus simplify the manufacturing processes of the cells; will thus reduce the costs while producing high outputs of photovoltaic conversion.

Keywords: modeling, simulation, multijunction, optimization, silvaco ATLAS

Procedia PDF Downloads 601
6367 Association of Major Histocompatibility Complex with Cell Mediated Immunity

Authors: Atefeh Esmailnejad, Gholamreza Nikbakht Brujeni

Abstract:

Major histocompatibility complex (MHC) is one of the best characterized genetic regions associated with immune responses and controlling disease resistance in chicken. Association of the MHC with a wide range of immune responses makes it a valuable predictive factor for the disease pathogenesis and outcome. In this study, the association of MHC with cell-mediated immune responses was analyzed in commercial broiler chicken. The tandem repeat LEI0258 was applied to investigate the MHC polymorphism. Cell-mediated immune response was evaluated by peripheral blood lymphocyte proliferation assay using MTT method. Association study revealed a significant influence of MHC alleles on cellular immune responses in this population. Alleles 385 and 448 bp were associated with elevated cell-mediated immunity. Haplotypes associated with improved immune responses could be considered as candidate markers for disease resistance and applied to breeding strategies.

Keywords: MHC, cell-mediated immunity, broiler, chicken

Procedia PDF Downloads 121
6366 Understanding Nanocarrier Efficacy in Drug Delivery Systems Using Molecular Dynamics

Authors: Maedeh Rahimnejad, Bahman Vahidi, Bahman Ebrahimi Hoseinzadeh, Fatemeh Yazdian, Puria Motamed Fath, Roghieh Jamjah

Abstract:

Introduction: The intensive labor and high cost of developing new vehicles for controlled drug delivery highlights the need for a change in their discovery process. Computational models can be used to accelerate experimental steps and control the high cost of experiments. Methods: In this work, to better understand the interaction of anti-cancer drug and the nanocarrier with the cell membrane, we have done molecular dynamics simulation using NAMD. We have chosen paclitaxel for the drug molecule and dipalmitoylphosphatidylcholine (DPPC) as a natural phospholipid nanocarrier. Results: Next, center of mass (COM) between molecules and the van der Waals interaction energy close to the cell membrane has been analyzed. Furthermore, the simulation results of the paclitaxel interaction with the cell membrane and the interaction of DPPC as a nanocarrier loaded by the drug with the cell membrane have been compared. Discussion: Analysis by molecular dynamics (MD) showed that not only the energy between the nanocarrier and the cell membrane is low, but also the center of mass amount decreases in the nanocarrier and the cell membrane system during the interaction; therefore they show significantly better interaction in comparison to the individual drug with the cell membrane.

Keywords: anti-cancer drug, center of mass, interaction energy, molecular dynamics simulation, nanocarrier

Procedia PDF Downloads 265
6365 Analog Voltage Inverter Drive for Capacitive Load with Adaptive Gain Control

Authors: Sun-Ki Hong, Yong-Ho Cho, Ki-Seok Kim, Tae-Sam Kang

Abstract:

Piezoelectric actuator is treated as RC load when it is modeled electrically. For some piezoelectric actuator applications, arbitrary voltage is required to actuate. Especially for unidirectional arbitrary voltage driving like as sine wave, some special inverter with circuit that can charge and discharge the capacitive energy can be used. In this case, the difference between power supply level and the object voltage level for RC load is varied. Because the control gain is constant, the controlled output is not uniform according to the voltage difference. In this paper, for charge and discharge circuit for unidirectional arbitrary voltage driving for piezoelectric actuator, the controller gain is controlled according to the voltage difference. With the proposed simple idea, the load voltage can have controlled smoothly although the voltage difference is varied. The appropriateness is proved from the simulation of the proposed circuit.

Keywords: analog voltage inverter, capacitive load, gain control, dc-dc converter, piezoelectric, voltage waveform

Procedia PDF Downloads 623
6364 Intelligent CRISPR Design for Bone Regeneration

Authors: Yu-Chen Hu

Abstract:

Gene editing by CRISPR and gene regulation by microRNA or CRISPR activation have dramatically changed the way to manipulate cellular gene expression and cell fate. In recent years, various gene editing and gene manipulation technologies have been applied to control stem cell differentiation to enhance tissue regeneration. This research will focus on how to develop CRISPR, CRISPR activation (CRISPRa), CRISPR inhibition (CRISPRi), as well as bi-directional CRISPR-AI gene regulation technologies to control cell differentiation and bone regeneration. Moreover, in this study, CRISPR/Cas13d-mediated RNA editng for miRNA editing and bone regeneration will be discussed.

Keywords: gene therapy, bone regeneration, stem cell, CRISPR, gene regulation

Procedia PDF Downloads 57
6363 Impact of Butt Joints on Flexural Properties of Nail Laminated Timber

Authors: Mohammad Mehdi Bagheri, Tianying Ma, Meng Gong

Abstract:

Nail laminated timber (NLT) is widely used for constructing timber bridge decks in North America. Butt joints usually exist due to the length limits of lumber, leading to concerns about the decrease of structural performance of NLT. This study aimed at investigating the provisions incorporated in Canadian highway bridge design code on the use of but joints in wooden bridge decks. Three and five layers NLT specimens with various configurations were tested under 3-point bending test. It was found that the standard equation is capable of predicting the bending stiffness reduction due to butt joints and 1-m band limit in which, one but joint in every three adjacent lamination is allowed, sounds reasonable. The strength reduction also followed a pattern similar to stiffness reduction. Also reinforcement of the butt joint through nails and steel side plates was attempted. It was found that nail reinforcement recovers the stiffness slightly. In contrast, reinforcing the butt joint through steel side plate improved the flexural performance significantly when compared to the nail reinforcement.

Keywords: nail laminated timber, butt joint, bending stiffness, reinforcement

Procedia PDF Downloads 148