Search results for: water resources carrying capacity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15856

Search results for: water resources carrying capacity

15646 Designing a Socio-Technical System for Groundwater Resources Management, Applying Smart Energy and Water Meter

Authors: S. Mahdi Sadatmansouri, Maryam Khalili

Abstract:

World, nowadays, encounters serious water scarcity problem. During the past few years, by advent of Smart Energy and Water Meter (SEWM) and its installation at the electro-pumps of the water wells, one had believed that it could be the golden key to address the groundwater resources over-pumping issue. In fact, implementation of these Smart Meters managed to control the water table drawdown for short; but it was not a sustainable approach. SEWM has been considered as law enforcement facility at first; however, for solving a complex socioeconomic problem like shared groundwater resources management, more than just enforcement is required: participation to conserve common resources. The well owners or farmers, as water consumers, are the main and direct stakeholders of this system and other stakeholders could be government sectors, investors, technology providers, privet sectors or ordinary people. Designing a socio-technical system not only defines the role of each stakeholder but also can lubricate the communication to reach the system goals while benefits of each are considered and provided. Farmers, as the key participators for solving groundwater problem, do not trust governments but they would trust a fair system in which responsibilities, privileges and benefits are clear. Technology could help this system remained impartial and productive. Social aspects provide rules, regulations, social objects and etc. for the system and help it to be more human-centered. As the design methodology, Design Thinking provides probable solutions for the challenging problems and ongoing conflicts; it could enlighten the way in which the final system could be designed. Using Human Centered Design approach of IDEO helps to keep farmers in the center of the solution and provides a vision by which stakeholders’ requirements and needs are addressed effectively. Farmers would be considered to trust the system and participate in their groundwater resources management if they find the rules and tools of the system fair and effective. Besides, implementation of the socio-technical system could change farmers’ behavior in order that they concern more about their valuable shared water resources as well as their farm profit. This socio-technical system contains nine main subsystems: 1) Measurement and Monitoring system, 2) Legislation and Governmental system, 3) Information Sharing system, 4) Knowledge based NGOs, 5) Integrated Farm Management system (using IoT), 6) Water Market and Water Banking system, 7) Gamification, 8) Agribusiness ecosystem, 9) Investment system.

Keywords: human centered design, participatory management, smart energy and water meter (SEWM), social object, socio-technical system, water table drawdown

Procedia PDF Downloads 271
15645 The Optimal Irrigation in the Mitidja Plain

Authors: Gherbi Khadidja

Abstract:

In the Mediterranean region, water resources are limited and very unevenly distributed in space and time. The main objective of this project is the development of a wireless network for the management of water resources in northern Algeria, the Mitidja plain, which helps farmers to irrigate in the most optimized way and solve the problem of water shortage in the region. Therefore, we will develop an aid tool that can modernize and replace some traditional techniques, according to the real needs of the crops and according to the soil conditions as well as the climatic conditions (soil moisture, precipitation, characteristics of the unsaturated zone), These data are collected in real-time by sensors and analyzed by an algorithm and displayed on a mobile application and the website. The results are essential information and alerts with recommendations for action to farmers to ensure the sustainability of the agricultural sector under water shortage conditions. In the first part: We want to set up a wireless sensor network, for precise management of water resources, by presenting another type of equipment that allows us to measure the water content of the soil, such as the Watermark probe connected to the sensor via the acquisition card and an Arduino Uno, which allows collecting the captured data and then program them transmitted via a GSM module that will send these data to a web site and store them in a database for a later study. In a second part: We want to display the results on a website or a mobile application using the database to remotely manage our smart irrigation system, which allows the farmer to use this technology and offers the possibility to the growers to access remotely via wireless communication to see the field conditions and the irrigation operation, at home or at the office. The tool to be developed will be based on satellite imagery as regards land use and soil moisture. These tools will make it possible to follow the evolution of the needs of the cultures in time, but also to time, and also to predict the impact on water resources. According to the references consulted, if such a tool is used, it can reduce irrigation volumes by up to up to 40%, which represents more than 100 million m3 of savings per year for the Mitidja. This volume is equivalent to a medium-size dam.

Keywords: optimal irrigation, soil moisture, smart irrigation, water management

Procedia PDF Downloads 82
15644 Role of Numerical Simulation as a Tool to Enhance Climate Change Adaptation and Resilient Societies: A Case Study from the Philippines

Authors: Pankaj Kumar

Abstract:

Rapid global changes resulted in unfavorable hydrological, ecological, and environmental changes and cumulatively affected natural resources. As a result, the local communities become vulnerable to water stress, poor hygiene, the spread of diseases, food security, etc.. However, the central point for this vulnerability revolves around water resources and the way people interrelate with the hydrological system. Also, most of the efforts to minimize the adverse effect of global changes are centered on the mitigation side. Hence, countries with poor adaptive capacities and poor governance suffer most in case of disasters. However, several transdisciplinary numerical tools are well designed and are capable of answering “what-if questions” through scenario analysis using a system approach. This study has predicted the future water environment in Marikina River in the National Capital Region, Metro Manila of Philippines, using Water Evaluation and Planning (WEAP), an integrated water resource management tool. Obtained results can answer possible adaptation measures along with their associated uncertainties. It also highlighted various challenges for the policy planners to design adaptation countermeasures as well as to track the progress of achieving SDG 6.0.

Keywords: water quality, Philippines, climate change adaptation, hydrological simulation, wastewater management, weap

Procedia PDF Downloads 69
15643 The Role of Social Capital in Community-Based Water Resources Management in Kenya's Polycentric Water Resource Governance System

Authors: Brenda Margaret Behan

Abstract:

Kenya is a water-stressed country with highly varied socio-ecological environments in its devolved county system, and is currently implementing a polycentric water governance system; this paper examines the importance of social capital in community-based natural resource management and its role in supporting good water governance systems in the Kenya context. Through a robust literature review of theory and case studies, specific aspects of social capital are examined to determine their importance in the implementation of local community-based water management arrangements which support and complement the more formal institutions outlined in the 2002 and 2016 Water Acts of Kenya. Water is an increasingly important and scarce resource not only for Kenya, but for many communities across the globe, and lessons learned in the Kenya context can be useful for other countries and communities faced with similar challenges. Changing climates, increasing populations, and increased per capita consumption of water is contributing to a situation in which the management of water resources will be vital to community resilience. Community-based natural resource management is widely recognized as a building block and component of wider water resource management systems, and when properly conducted can provide a way to enable sustainable use of resources and empower communities. Greater attention to the social and cultural norms and traditional institutions associated with a community’s social capital can lead to better results for Kenya’s polycentric governance of water. The key findings and recommendations from this research show that in Kenya, traditional institutions need to be understood and integrated into governance systems; social values and cultural norms have a significant impact on the implementation of community-based water management efforts; and social capital is a dynamic concept which influences and is influenced by policies and practices. The community-based water management approach will continue to be a key cornerstone for Kenya’s polycentric water governance structure, especially in the more remote arid and semi-arid lands; thus, the successful integration of social capital aspects into planning and implementation will contribute to a strengthened, sustainable, and more equitable national water governance system. Specific observations and recommendations from this study will help practitioners and policymakers to better craft community-based interventions.

Keywords: community-based natural resource management, social capital, traditional institutions, water governance

Procedia PDF Downloads 140
15642 Effect of Convective Dryness Combined with Osmotic Dehydration, Blanching, Microwave and Ultrasonic Treatment on Bioactive Compounds and Rehydration Capacity of Dried Plums

Authors: Elena Corina Popescu, Magda Gabriela Bratu

Abstract:

Increasing interest in keeping bioactive compounds (anthocyanins, vitamin C) and dried fruit quality has motivated the researchers to investigate new combined drying technologies. The aim of this study was to evaluate the effects of convective dryness combined with osmotic dehydration, blanching, microwave treatment and ultrasonic treatment on the quality of dried plums. Osmotic dehydration was achieved by maintaining plums for 1 h in sucrose solution (300Brix). For microwave treatment, the plums were kept at 400 W for 80 sec. For ultrasonic treatment, plums were immersed in distilled water and sonicated for 30 minutes at 40 kHz and 200 W. The blanching consists of immersing plums in hot water at 90°C for 20 seconds and cooling them rapidly. Conventional drying was carried out at 70°C for 630 minutes. Drying curves, drying rate, anthocyanin and vitamin C stability, acidity variation (expressed as malic acid), reducing sugar content, and rehydration capacity of dried plums were analyzed. Blanching led to the largest amount of evaporated water. Blanched plums have had 13.36% less water than sonicated ones. The lowest anthocyanal loss of 34.5% was obtained in osmotically dehydrated plums, and 2.93% vitamin C is found in the plums sonicated. There were no significant differences in regards acidity and reducing sugar. The plums blanched before drying have had a high capacity of rehydration.

Keywords: anthocyanin, dried plums, pretreatments, vitamin C

Procedia PDF Downloads 205
15641 The Effects of Time and Cyclic Loading to the Axial Capacity for Offshore Pile in Shallow Gas

Authors: Christian H. Girsang, M. Razi B. Mansoor, Noorizal N. Huang

Abstract:

An offshore platform was installed in 1977 at about 260km offshore West Malaysia at the water depth of 73.6m. Twelve (12) piles were installed with four (4) are skirt piles. The piles have 1.219m outside diameter and wall thickness of 31mm and were driven to 109m below seabed. Deterministic analyses of the pile capacity under axial loading were conducted using the current API (American Petroleum Institute) method and the four (4) CPT-based methods: the ICP (Imperial College Pile)-method, the NGI (Norwegian Geotechnical Institute)-Method, the UWA (University of Western Australia)-method and the Fugro-method. A statistical analysis of the model uncertainty associated with each pile capacity method was performed. There were two (2) piles analysed: Pile 1 and piles other than Pile 1, where Pile 1 is the pile that was most affected by shallow gas problems. Using the mean estimate of soil properties, the five (5) methods used for deterministic estimation of axial pile capacity in compression predict an axial capacity from 28 to 42MN for Pile 1 and 32 to 49MN for piles other than Pile 1. These values refer to the static capacity shortly after pile installation. They do not include the effects of cyclic loading during the design storm or time after installation on the axial pile capacity. On average, the axial pile capacity is expected to have increased by about 40% because of ageing since the installation of the platform in 1977. On the other hand, the cyclic loading effects during the design storm may reduce the axial capacity of the piles by around 25%. The study concluded that all piles have sufficient safety factor when the pile aging and cyclic loading effect are considered, as all safety factors are above 2.0 for maximum operating and storm loads.

Keywords: axial capacity, cyclic loading, pile ageing, shallow gas

Procedia PDF Downloads 314
15640 Accomplishing Mathematical Tasks in Bilingual Primary Classrooms

Authors: Gabriela Steffen

Abstract:

Learning in a bilingual classroom not only implies learning in two languages or in an L2, it also means learning content subjects through the means of bilingual or plurilingual resources, which is of a qualitatively different nature than ‘monolingual’ learning. These resources form elements of a didactics of plurilingualism, aiming not only at the development of a plurilingual competence, but also at drawing on plurilingual resources for nonlinguistic subject learning. Applying a didactics of plurilingualism allows for taking account of the specificities of bilingual content subject learning in bilingual education classrooms. Bilingual education is used here as an umbrella term for different programs, such as bilingual education, immersion, CLIL, bilingual modules in which one or several non-linguistic subjects are taught partly or completely in an L2. This paper aims at discussing first results of a study on pupil group work in bilingual classrooms in several Swiss primary schools. For instance, it analyses two bilingual classes in two primary schools in a French-speaking region of Switzerland that follows a part of their school program through German in addition to French, the language of instruction in this region. More precisely, it analyses videotaped classroom interaction and in situ classroom practices of pupil group work in a mathematics lessons. The ethnographic observation of pupils’ group work and the analysis of their interaction (analytical tools of conversational analysis, discourse analysis and plurilingual interaction) enhance the description of whole-class interaction done in the same (and several other) classes. While the latter are teacher-student interactions, the former are student-student interactions giving more space to and insight into pupils’ talk. This study aims at the description of the linguistic and multimodal resources (in German L2 and/or French L1) pupils mobilize while carrying out a mathematical task. The analysis shows that the accomplishment of the mathematical task takes place in a bilingual mode, whether the whole-class interactions are conducted rather in a bilingual (German L2-French L1) or a monolingual mode in L2 (German). The pupils make plenty of use of German L2 in a setting that lends itself to use French L1 (peer groups with French as a dominant language, in absence of the teacher and a task with a mathematical aim). They switch from French to German and back ‘naturally’, which is regular for bilingual speakers. Their linguistic resources in German L2 are not sufficient to allow them to (inter-)act well enough to accomplish the task entirely in German L2, despite their efforts to do so. However, this does not stop them from carrying out the task in mathematics adequately, which is the main objective, by drawing on the bilingual resources at hand.

Keywords: bilingual content subject learning, bilingual primary education, bilingual pupil group work, bilingual teaching/learning resources, didactics of plurilingualism

Procedia PDF Downloads 135
15639 Variability of Hydrological Modeling of the Blue Nile

Authors: Abeer Samy, Oliver C. Saavedra Valeriano, Abdelazim Negm

Abstract:

The Blue Nile Basin is the most important tributary of the Nile River. Egypt and Sudan are almost dependent on water originated from the Blue Nile. This multi-dependency creates conflicts among the three countries Egypt, Sudan, and Ethiopia making the management of these conflicts as an international issue. Good assessment of the water resources of the Blue Nile is an important to help in managing such conflicts. Hydrological models are good tool for such assessment. This paper presents a critical review of the nature and variability of the climate and hydrology of the Blue Nile Basin as a first step of using hydrological modeling to assess the water resources of the Blue Nile. Many several attempts are done to develop basin-scale hydrological modeling on the Blue Nile. Lumped and semi distributed models used averages of meteorological inputs and watershed characteristics in hydrological simulation, to analyze runoff for flood control and water resource management. Distributed models include the temporal and spatial variability of catchment conditions and meteorological inputs to allow better representation of the hydrological process. The main challenge of all used models was to assess the water resources of the basin is the shortage of the data needed for models calibration and validation. It is recommended to use distributed model for their higher accuracy to cope with the great variability and complexity of the Blue Nile basin and to collect sufficient data to have more sophisticated and accurate hydrological modeling.

Keywords: Blue Nile Basin, climate change, hydrological modeling, watershed

Procedia PDF Downloads 333
15638 Hydraulic Resources Management under Imperfect Competition with Thermal Plants in the Wholesale Electricity Market

Authors: Abdessalem Abbassi, Ahlem Dakhlaoui, Lota D. Tamini

Abstract:

In this paper, we analyze infinite discrete-time games between hydraulic and thermal power operators in the wholesale electricity market under Cournot competition. We consider a deregulated electrical industry where certain demand is satisfied by hydraulic and thermal technologies. The hydraulic operator decides the production in each season of each period that maximizes the sum of expected profits from power generation with respect to the stochastic dynamic constraint on the water stored in the dam, the environmental constraint and the non-negative output constraint. In contrast, the thermal plant is operated with quadratic cost function, with respect to the capacity production constraint and the non-negativity output constraint. We show that under imperfect competition, the hydraulic operator has a strategic storage of water in the peak season. Then, we quantify the strategic inter-annual and intra-annual water transfer and compare the numerical results. Finally, we show that the thermal operator can restrict the hydraulic output without compensation.

Keywords: asymmetric risk aversion, electricity wholesale market, hydropower dams, imperfect competition

Procedia PDF Downloads 327
15637 Reliability Based Analysis of Multi-Lane Reinforced Concrete Slab Bridges

Authors: Ali Mahmoud, Shadi Najjar, Mounir Mabsout, Kassim Tarhini

Abstract:

Empirical expressions for estimating the wheel load distribution and live-load bending moment are typically specified in highway bridge codes such as the AASHTO procedures. The purpose of this paper is to analyze the reliability levels that are inherent in reinforced concrete slab bridges that are designed based on the simplified empirical live load equations in the AASHTO LRFD procedures. To achieve this objective, bridges with multi-lanes (three and four lanes) and different spans are modeled using finite-element analysis (FEA) subjected to HS20 truck loading, tandem loading, and standard lane loading per AASHTO LRFD procedures. The FEA results are compared with the AASHTO LRFD moments in order to quantify the biases that might result from the simplifying assumptions adopted in AASHTO. A reliability analysis is conducted to quantify the reliability index for bridges designed using AASHTO procedures. To reach a consistent level of safety for three- and four-lane bridges, following a previous study restricted to one- and two-lane bridges, the live load factor in the design equation proposed by AASHTO LRFD will be assessed and revised if needed by alternating the live load factor for these lanes. The results will provide structural engineers with more consistent provisions to design concrete slab bridges or evaluate the load-carrying capacity of existing bridges.

Keywords: reliability analysis of concrete bridges, finite element modeling, reliability analysis, reinforced concrete bridge design, load carrying capacity

Procedia PDF Downloads 310
15636 Improving the Flow Capacity (CV) of the Valves

Authors: Pradeep A. G, Gorantla Giridhar, Vijay Turaga, Vinod Srinivasa

Abstract:

The major problem in the flow control valve is of lower Cv, which will reduce the overall efficiency of the flow circuit. Designers are continuously working to improve the Cv of the valve, but they need to validate the design ideas they have regarding the improvement of Cv. The traditional method of prototyping and testing takes a lot of time. That is where CFD comes into the picture with very quick and accurate validation along with visualization, which is not possible with the traditional testing method. We have developed a method to predict Cv value using CFD analysis by iterating on various Boundary conditions, solver settings and by carrying out grid convergence studies to establish the correlation between the CFD model and Test data. The present study investigates 3 different ideas put forward by the designers for improving the flow capacity of the valves, like reducing the cage thickness, changing the port position, and using the parabolic plug to guide the flow. Using CFD, we analyzed all design changes using the established methodology that we developed. We were able to evaluate the effect of these design changes on the Valve Cv. We optimized the wetted surface of the valve further by suggesting the design modification to the lower part of the valve to make the flow more streamlined. We could find that changing cage thickness and port position has little impact on the valve Cv. The combination of optimized wetted surface and introduction of parabolic plug improved the Flow capacity (Cv) of the valve significantly.

Keywords: flow control valves, flow capacity (Cv), CFD simulations, design validation

Procedia PDF Downloads 126
15635 Improvement of Water Distillation Plant by Using Statistical Process Control System

Authors: Qasim Kriri, Harsh B. Desai

Abstract:

Water supply and sanitation in Saudi Arabia is portrayed by difficulties and accomplishments. One of the fundamental difficulties is water shortage. With a specific end goal to beat water shortage, significant ventures have been attempted in sea water desalination, water circulation, sewerage, and wastewater treatment. The motivation behind Statistical Process Control (SPC) is to decide whether the execution of a procedure is keeping up an acceptable quality level [AQL]. SPC is an analytical decision-making method. A fundamental apparatus in the SPC is the Control Charts, which follow the inconstancy in the estimations of the item quality attributes. By utilizing the suitable outline, administration can decide whether changes should be made with a specific end goal to keep the procedure in charge. The two most important quality factors in the distilled water which were taken into consideration were pH (Potential of Hydrogen) and TDS (Total Dissolved Solids). There were three stages at which the quality checks were done. The stages were as follows: (1) Water at the source, (2) water after chemical treatment & (3) water which is sent for packing. The upper specification limit, central limit and lower specification limit are taken as per Saudi water standards. The procedure capacity to accomplish the particulars set for the quality attributes of Berain water Factory chose to be focused by the proposed SPC system.

Keywords: acceptable quality level, statistical quality control, control charts, process charts

Procedia PDF Downloads 160
15634 Parametric Estimation of U-Turn Vehicles

Authors: Yonas Masresha Aymeku

Abstract:

The purpose of capacity modelling at U-turns is to develop a relationship between capacity and its geometric characteristics. In fact, the few models available for the estimation of capacity at different transportation facilities do not provide specific guidelines for median openings. For this reason, an effort is made to estimate the capacity by collecting the data sets from median openings at different lane roads in Hyderabad City, India. Wide difference (43% -59%) among the capacity values estimated by the existing models shows the limitation to consider for mixed traffic situations. Thus, a distinct model is proposed for the estimation of the capacity of U-turn vehicles at median openings considering mixed traffic conditions, which would further prompt to investigate the effect of different factors that might affect the capacity.

Keywords: geometric, guiddelines, median, vehicles

Procedia PDF Downloads 25
15633 An Artificial Intelligence Supported QUAL2K Model for the Simulation of Various Physiochemical Parameters of Water

Authors: Mehvish Bilal, Navneet Singh, Jasir Mushtaq

Abstract:

Water pollution puts people's health at risk, and it can also impact the ecology. For practitioners of integrated water resources management (IWRM), water quality modelling may be useful for informing decisions about pollution control (such as discharge permitting) or demand management (such as abstraction permitting). To comprehend the current pollutant load, movement of effective load movement of contaminants generates effective relation between pollutants, mathematical simulation, source, and water quality is regarded as one of the best estimating tools. The current study involves the Qual2k model, which includes manual simulation of the various physiochemical characteristics of water. To this end, various sensors could be installed for the automatic simulation of various physiochemical characteristics of water. An artificial intelligence model has been proposed for the automatic simulation of water quality parameters. Models of water quality have become an effective tool for identifying worldwide water contamination, as well as the ultimate fate and behavior of contaminants in the water environment. Water quality model research is primarily conducted in Europe and other industrialized countries in the first world, where theoretical underpinnings and practical research are prioritized.

Keywords: artificial intelligence, QUAL2K, simulation, physiochemical parameters

Procedia PDF Downloads 65
15632 Technology Adoption Models: A Study on Brick Kiln Firms in Punjab

Authors: Ajay Kumar, Shamily Jaggi

Abstract:

In developing countries like India development of modern technologies has been a key determinant in accelerating industrialization and urbanization. But in the pursuit of rapid economic growth, development is considered a top priority, while environmental protection is not given the same importance. Thus, a number of industries sited haphazardly have been established, leading to a deterioration of natural resources like water, soil and air. As a result, environmental pollution is tremendously increasing due to industrialization and mechanization that are serving to fulfill the demands of the population. With the increasing population, demand for bricks for construction work is also increasing, establishing the brick industry as a growing industry. Brick production requires two main resources; water as a source of life, and soil, as a living environment. Water and soil conservation is a critical issue in areas facing scarcity of water and soil resources. The purpose of this review paper is to provide a brief overview of the theoretical frameworks used in the analysis of the adoption and/or acceptance of soil and water conservation practices in the brick industry. Different frameworks and models have been used in the analysis of the adoption and/or acceptance of new technologies and practices; these include the technology acceptance model, motivational model, theory of reasoned action, innovation diffusion theory, theory of planned behavior, and the unified theory of acceptance and use of technology. However, every model has some limitations, such as not considering environmental/contextual and economic factors that may affect the individual’s intention to perform a behavior. The paper concludes that in comparing other models, the UTAUT seems a better model for understanding the dynamics of acceptance and adoption of water and soil conservation practices.

Keywords: brick kiln, water conservation, soil conservation, unified theory of acceptance and use of technology, technology adoption

Procedia PDF Downloads 71
15631 The Sustainable Governance of Aquifer Injection Using Treated Coal Seam Gas Water in Queensland, Australia: Lessons for Integrated Water Resource Management

Authors: Jacqui Robertson

Abstract:

The sustainable governance of groundwater is of the utmost importance in an arid country like Australia. Groundwater has been relied on by our agricultural and pastoral communities since the State was settled by European colonialists. Nevertheless, the rapid establishment of a coal seam gas (CSG) industry in Queensland, Australia, has had extensive impacts on the pre-existing groundwater users. Managed aquifer recharge of important aquifers in Queensland, Australia, using treated coal seam gas produced water has been used to reduce the impacts of CSG development in Queensland Australia. However, the process has not been widely adopted. Negative environmental outcomes are now acknowledged as not only engineering, scientific or technical problems to be solved but also the result of governance failures. An analysis of the regulatory context for aquifer injection using treated CSG water in Queensland, Australia, using Ostrom’s Common Pool Resource (CPR) theory and a ‘heat map’ designed by the author, highlights the importance of governance arrangements. The analysis reveals the costs and benefits for relevant stakeholders of artificial recharge of groundwater resources in this context. The research also reveals missed opportunities to further active management of the aquifer and resolve existing conflicts between users. The research illustrates the importance of strategically and holistically evaluating innovations in technology that impact water resources to reveal incentives that impact resource user behaviors. The paper presents a proactive step that can be adapted to support integrated water resource management and sustainable groundwater development.

Keywords: managed aquifer recharge, groundwater regulation, common-pool resources, integrated water resource management, Australia

Procedia PDF Downloads 195
15630 Assessment of Drainage Water Quality in South Africa: Case Study of Vaal-Harts Irrigation Scheme

Authors: Josiah A. Adeyemo, Fred A. O. Otieno, Olumuyiwa I. Ojo

Abstract:

South Africa is water-stressed being a semi-arid country with limited annual rainfall supply and a lack of perennial streams. The future implications of population growth combined with the uncertainty of climate change are likely to have significant financial, human and ecological impacts on already scarce water resources. The waste water from the drainage canals of the Vaal-Harts irrigation scheme (VHS) located in Jan Kempdorp, a farming community in South Africa, were investigated for possible irrigation re-use and their effects on the immediate environment. Three major drains within the scheme were identified and sampled. Drainage water samples were analysed to determine its characteristics. The water samples analyzed had pH values in the range of 5.5 and 6.4 which is below the normal range for irrigation water and very low to moderate salinity (electrical conductivity 0.09-0.82 dS/m). The adjusted sodium adsorption ratio values in all the samples were also very low (<0.2), indicating very low sodicity hazards. The nitrate concentration in most of the samples was high, ranging from 4.8 to 53 mg/l. The reuse of the drainage water for irrigation is possible, but with further treatment. Some suggestions were offered in the safe management of drainage water in VHS.

Keywords: drainage canal, water quality, irrigation, pollutants, environment

Procedia PDF Downloads 305
15629 Efficient Sources and Methods of Extracting Water for Irrigation

Authors: Anthony Iyenjamu, Josiah Adeyemo

Abstract:

Due to the increasing water scarcity in South Africa, the prime focus of irrigation in South Africa shifts to creating feasible water sources and the efficient use of these sources. These irrigation systems in South Africa are implemented because of low and erratic rainfall and high evaporative demand. Irrigation contributes significantly to crop production in South Africa, as the mean annual precipitation for the country is usually less than 500mm. This is considered to be the minimum required for rain fed cropping. Even though the rainfall is low, a lot of the water in various areas in South Africa is lost due to runoff into storm water systems that run to the rivers and eventually into the sea. This study reviews the irrigation systems in South Africa which can be vastly improved by creating irrigation dams. A method of which may seem costly at first but rewarding with time. The study investigates the process of creating dam capacity capable of sustaining a suitable area size of land to be irrigated and thus diverting all runoff into these dams. This type of infrastructure method vastly improves various sectors in our irrigation systems. Extensive research is carried out in the surrounding area in which the dam should be constructed. Rainfall patterns and rainfall data is used for calculations of which period the dam will be at its optimum using rainfall. The size of the area irrigated was used to calculate the size of the irrigation dam to be constructed. The location of the dam must be situated as close to the river as possible to minimize the excessive use of pipelines to the dam. This study also investigated all existing resources to alleviate the cost. It was found that irrigation dams could solve the erratic distribution of rainfall in South Africa for irrigation purposes.

Keywords: irrigation, rainfed, rain harvesting, reservoir

Procedia PDF Downloads 254
15628 A Novel Approach for the Analysis of Ground Water Quality by Using Classification Rules and Water Quality Index

Authors: Kamakshaiah Kolli, R. Seshadri

Abstract:

Water is a key resource in all economic activities ranging from agriculture to industry. Only a tiny fraction of the planet's abundant water is available to us as fresh water. Assessment of water quality has always been paramount in the field of environmental quality management. It is the foundation for health, hygiene, progress and prosperity. With ever increasing pressure of human population, there is severe stress on water resources. Therefore efficient water management is essential to civil society for betterment of quality of life. The present study emphasizes on the groundwater quality, sources of ground water contamination, variation of groundwater quality and its spatial distribution. The bases for groundwater quality assessment are groundwater bodies and representative monitoring network enabling determination of chemical status of groundwater body. For this study, water samples were collected from various areas of the entire corporation area of Guntur. Water is required for all living organisms of which 1.7% is available as ground water. Water has no calories or any nutrients, but essential for various metabolic activities in our body. Chemical and physical parameters can be tested for identifying the portability of ground water. Electrical conductivity, pH, alkalinity, Total Alkalinity, TDS, Calcium, Magnesium, Sodium, Potassium, Chloride, and Sulphate of the ground water from Guntur district: Different areas of the District were analyzed. Our aim is to check, if the ground water from the above areas are potable or not. As multivariate are present, Data mining technique using JRIP rules was employed for classifying the ground water.

Keywords: groundwater, water quality standards, potability, data mining, JRIP, PCA, classification

Procedia PDF Downloads 399
15627 Water Reclamation and Reuse in Asia’s Largest Sewage Treatment Plant

Authors: Naveen Porika, Snigdho Majumdar, Niraj Sethi

Abstract:

Water, food and energy securities are emerging as increasingly important and vital issues for India and the world. Hyderabad urban agglomeration (HUA), the capital city of Andhra Pradesh State in India, is the sixth largest city has a population of about 8.2 million. The Musi River, which is a tributary of Krishna river flows from west to east right through the heart of Hyderabad, about 80% of the water used by people is released back as sewage, which flows back into Musi every day with detrimental effects on the environment and people downstream of the city. The average daily sewage generated in Hyderabad city is 950 MLD, however, treatment capacity exists only for 541 Million Liters per Day (MLD) but only 407 MLD of sewage is treated. As a result, 543 MLD of sewage daily flows into Musi river. Hyderabad’s current estimated water demand stands at 320 Million Gallons per Day (MGD). However, its installed capacity is merely 270 MGD; by 2020 estimated demand will grow to 400 MGD. There is huge gap between current supply and demand, and this is likely to widen by 2021. Developing new fresh water sources is a challenge for Hyderabad, as the fresh water sources are few and far from the City (about 150-200 km) and requires excessive pumping. The constraints presented above make the conventional alternatives for supply augmentation unsustainable and unattractive .One such dependable and captive source of easily available water is the treated sewage. With proper treatment, water of desired quality can be recovered from the waste water (sewage) for recycle and reuse. Hyderabad Amberpet sewage treatment of capacity 339 MLD is Asia’s largest sewage treatment plant. Tertiary sewage treatment Standard basic engineering modules of 30 MLD,60 MLD, 120MLD & 180 MLD for sewage treatment plants has been developed which are utilized for developing Sewage Reclamation & Reuse model in Asia’s largest sewage treatment plant. This paper will focus on Hyderabad Water Supply & Demand, Sewage Generation & Treatment, Technical aspects of Tertiary Sewage Treatment and Utilization of developed standard modules for reclamation & reuse of treated sewage to overcome the deficit of 130 MGD as projected by 2021.

Keywords: water reclamation, reuse, Andhra Pradesh, hyderabad, musi river, sewage, demand and supply, recycle, Amberpet, 339 MLD, engineering modules, tertiary treatment

Procedia PDF Downloads 590
15626 Low Students' Access to University Education in Nigeria: Causes and Remedy

Authors: Robert Ogbanje Okwori

Abstract:

The paper explained the causes low students’ access to university education in Nigeria and how it can be remedied. It is discovered that low students’ access to university education in Nigeria is evident despite these number of universities in the country. In 2006/2007 academic session, 806,089 sat for Joint Unified Matriculation Board Examination (JAMB) into Nigerian universities and only 123,626 (15.3%) were admitted while 2011/2012 academic session, a total of 1,493,604 candidates sat for Joint Unified Matriculation Board Examination (JAMB) into Nigerian universities and only 65,073 (43.57%) were admitted. This necessitates for the research. Therefore, the study posed the following research questions. What are causes of low students’ access to university education in Nigeria? What are the challenges of students’ access to university education in Nigeria? How can students’ access to university education in Nigeria be improved? Sample survey research design was adopted for the study. A structured questionnaire was used to gather data for the study. Six hundred and eighty (680) respondents which comprised of 100 level university students; JAMB Officers and University administrators (Vice Chancellors, Registrars and Admission Officers) were used for the study. Stratified random sampling was applied for adequate representation of respondents from universities in the six geopolitical zones of Nigeria. Mean was used to answer research questions while Kuder-Richardson formula 20 was used to check the internal consistency of the instrument. The correlation coefficient of the instrument was 0.87. The major findings include the carrying capacity of each university contributes to low students’ access to university education and academic staff were inadequate. From the analysis of the study, it is concluded that the rate of access to university education is low, therefore, every university should establish distance learning programme to reduce university admission crisis. The training infrastructure in the universities should be improved upon by the owners to increase the carrying capacity of each university.

Keywords: access, causes, low, university

Procedia PDF Downloads 436
15625 Decision Support Tool for Water Re-used Systems

Authors: Katarzyna Pawęska, Aleksandra Bawiec, Ewa Burszta-Adamiak, Wiesław Fiałkiewicz

Abstract:

The water shortage becomes a serious problem not only in African and Middle Eastern countries, but also recently in the European Union. Scarcity of water means that not all agricultural, industrial and municipal needs will be met. When the annual availability of renewable freshwater per capita is less than 1,700 cubic meters, countries begin to experience periodic or regular water shortages. The phenomenon of water stress is the result of an imbalance between the constantly growing demand for water and its availability. The constant development of industry, population growth, and climate changes make the situation even worse. The search for alternative water sources and independent supplies is becoming a priority for many countries. Data enabling the assessment of country’s condition regarding water resources, water consumption, water price, wastewater volume, forecasted climate changes e.g. temperature, precipitation, are scattered and their interpretation by common entrepreneurs may be difficult. For this purpose, a digital tool has been developed to support decisions related to the implementation of water and wastewater re-use systems, as a result of an international research project “Framework for organizational decision-making process in water reuse for smart cities” (SMART-WaterDomain) funded under the EIG-CONCERT Japan call on Smart Water Management for Sustainable Society. The developed geo-visualization tool graphically presents, among others, data about the capacity of wastewater treatment plants and the volume of water demand in the private and public sectors for Poland, Germany, and the Czech Republic. It is expected that such a platform, extended with economical water management data and climate forecasts (temperature, precipitation), will allow in the future independent investigation and assessment of water use rate and wastewater production on the local and regional scale. The tool is a great opportunity for small business owners, entrepreneurs, farmers, local authorities, and common users to analyze the impact of climate change on the availability of water in the regions of their business activities. Acknowledgments: The authors acknowledge the support of the Project Organisational Decision Making in Water Reuse for Smart Cities (SMART- WaterDomain), funded by The National Centre for Research and Development and supported by the EIG-Concert Japan.

Keywords: circular economy, digital tool, geo-visualization, wastewater re-use

Procedia PDF Downloads 26
15624 Biochar as a Strong Adsorbent for Multiple-Metal Removal from Contaminated Water

Authors: Eman H. El-Gamal, Mai E. Khedr, Randa Ghonim, Mohamed Rashad

Abstract:

In the past few years, biochar - a highly carbon-rich material produced from agro-wastes by pyrolysis process - was used as an effective adsorbent for heavy metals removal from polluted water. In this study, different types of biochar (rice straw 'RSB', corn cob 'CCB', and Jatropha shell 'JSB' were used to evaluate the adsorption capacity of heavy metals removal from multiple-metal solutions (Cu, Mn, Zn, and Cd). Kinetics modeling has been examined to illustrate potential adsorption mechanisms. The results showed that the potential removal of metal is dependent on the metal and biochar types. The adsorption capacity of the biochars followed the order: RSB > JSB > CCB. In general, RSB and JSB biochars presented high potential removal of heavy metals from polluted water, which was higher than 90 and 80% after 2 hrs of contact time for all metals, respectively. According to the kinetics data, the pseudo-second-order model was agreed strongly with Cu, Mn, Zn, and Cd adsorption onto the biochars (R2 ≥ 0.97), indicating the dominance of specific adsorption process, i.e., chemisorption. In conclusion, this study revealed that RSB and JSB biochar have the potential to be a strong adsorbent for multiple-metal removal from wastewater.

Keywords: adsorption, biochar, chemisorption, polluted water

Procedia PDF Downloads 117
15623 Data Analysis Tool for Predicting Water Scarcity in Industry

Authors: Tassadit Issaadi Hamitouche, Nicolas Gillard, Jean Petit, Valerie Lavaste, Celine Mayousse

Abstract:

Water is a fundamental resource for the industry. It is taken from the environment either from municipal distribution networks or from various natural water sources such as the sea, ocean, rivers, aquifers, etc. Once used, water is discharged into the environment, reprocessed at the plant or treatment plants. These withdrawals and discharges have a direct impact on natural water resources. These impacts can apply to the quantity of water available, the quality of the water used, or to impacts that are more complex to measure and less direct, such as the health of the population downstream from the watercourse, for example. Based on the analysis of data (meteorological, river characteristics, physicochemical substances), we wish to predict water stress episodes and anticipate prefectoral decrees, which can impact the performance of plants and propose improvement solutions, help industrialists in their choice of location for a new plant, visualize possible interactions between companies to optimize exchanges and encourage the pooling of water treatment solutions, and set up circular economies around the issue of water. The development of a system for the collection, processing, and use of data related to water resources requires the functional constraints specific to the latter to be made explicit. Thus the system will have to be able to store a large amount of data from sensors (which is the main type of data in plants and their environment). In addition, manufacturers need to have 'near-real-time' processing of information in order to be able to make the best decisions (to be rapidly notified of an event that would have a significant impact on water resources). Finally, the visualization of data must be adapted to its temporal and geographical dimensions. In this study, we set up an infrastructure centered on the TICK application stack (for Telegraf, InfluxDB, Chronograf, and Kapacitor), which is a set of loosely coupled but tightly integrated open source projects designed to manage huge amounts of time-stamped information. The software architecture is coupled with the cross-industry standard process for data mining (CRISP-DM) data mining methodology. The robust architecture and the methodology used have demonstrated their effectiveness on the study case of learning the level of a river with a 7-day horizon. The management of water and the activities within the plants -which depend on this resource- should be considerably improved thanks, on the one hand, to the learning that allows the anticipation of periods of water stress, and on the other hand, to the information system that is able to warn decision-makers with alerts created from the formalization of prefectoral decrees.

Keywords: data mining, industry, machine Learning, shortage, water resources

Procedia PDF Downloads 93
15622 Lateral Torsional Buckling Investigation on Welded Q460GJ Structural Steel Unrestrained Beams under a Point Load

Authors: Yue Zhang, Bo Yang, Gang Xiong, Mohamed Elchalakanic, Shidong Nie

Abstract:

This study aims to investigate the lateral torsional buckling of I-shaped cross-section beams fabricated from Q460GJ structural steel plates. Both experimental and numerical simulation results are presented in this paper. A total of eight specimens were tested under a three-point bending, and the corresponding numerical models were established to conduct parametric studies. The effects of some key parameters such as the non-dimensional member slenderness and the height-to-width ratio, were investigated based on the verified numerical models. Also, the results obtained from the parametric studies were compared with the predictions calculated by different design codes including the Chinese design code (GB50017-2003, 2003), the new draft version of Chinese design code (GB50017-201X, 2012), Eurocode 3 (EC3, 2005) and the North America design code (ANSI/AISC360-10, 2010). These comparisons indicated that the sectional height-to-width ratio does not play an important role to influence the overall stability load-carrying capacity of Q460GJ structural steel beams with welded I-shaped cross-sections. It was also found that the design methods in GB50017-2003 and ANSI/AISC360-10 overestimate the overall stability and load-carrying capacity of Q460GJ welded I-shaped cross-section beams.

Keywords: experimental study, finite element analysis, global stability, lateral torsional buckling, Q460GJ structural steel

Procedia PDF Downloads 305
15621 Open educational Resources' Metadata: Towards the First Star to Quality of Open Educational Resources

Authors: Audrey Romero-Pelaez, Juan Carlos Morocho-Yunga

Abstract:

The increasing amount of open educational resources (OER) published on the web for consumption in teaching and learning environments also generates a growing need to ensure the quality of these resources. The low level of OER discovery is one of the most significant drawbacks when faced with its reuse, and as a consequence, high-quality educational resources can go unnoticed. Metadata enables the discovery of resources on the web. The purpose of this study is to lay the foundations for open educational resources to achieve their first quality star within the Quality4OER Framework. In this study, we evaluate the quality of OER metadata and establish the main guidelines on metadata quality in this context.

Keywords: open educational resources, OER quality, quality metadata

Procedia PDF Downloads 207
15620 Capacity Loss of Urban Arterial Roads under the Influence of Bus Stop

Authors: Sai Chand, Ashish Dhamaniya, Satish Chandra

Abstract:

Curbside bus stops are provided on urban roads when sufficient land is not available to construct bus bays. The present study demonstrates the effect of curbside bus stops on midblock capacity of an urban arterial road. Data were collected on seven sections of 6-lane urban arterial roads in New Delhi. Three sections were selected without any side friction to estimate the base value of capacity. Remaining four sections were with curbside bus stop. Speed and volume data were collected in field and these data were used to estimate the capacity of a section. The average base midblock capacity of a 6–lane divided urban road was found to be 6314 PCU/hr which was further referred as base capacity. Effect of curbside bus stop on midblock capacity of urban road was evaluated by comparing the capacity of a section with curbside bus stop with that of the base capacity. Finally, a mathematical relation has been developed between bus frequency and capacity loss. Also a relation has been suggested between dwell time and capacity loss. The developed relations would be very useful for practising engineers to estimate capacity loss due to bus stop.

Keywords: bus frequency, bus stops, capacity loss, urban arterial

Procedia PDF Downloads 324
15619 Water Resources Green Efficiency in China: Evaluation, Spatial Association Network Structure Analysis, and Influencing Factors

Authors: Tingyu Zhang

Abstract:

This paper utilizes the Super-SBM model to assess water resources green efficiency (WRGE) among provinces in China and investigate its spatial and temporal features, based on the characteristic framework of “economy-environment-society.” The social network analysis is employed to examine the network pattern and spatial interaction of WRGE. Further, the quadratic assignment procedure method is utilized for examining the influencing factors of the spatial association of WRGE regarding “relationship.” The study reveals that: (1) the spatial distribution of WRGE demonstrates a distribution pattern of Eastern>Western>Central; (2) a remarkable spatial association exists among provinces; however, no strict hierarchical structure is observed. The internal structure of the WRGE network is characterized by the feature of "Eastern strong and Western weak". The block model analysis discovers that the members of the “net spillover” and “two-way spillover” blocks are mostly in the eastern and central provinces; “broker” block, which plays an intermediary role, is mostly in the central provinces; and members of the “net beneficiary” block are mostly in the western region. (3) Differences in economic development, degree of urbanization, water use environment, and water management have significant impacts on the spatial connection of WRGE. This study is dedicated to the realization of regional linkages and synergistic enhancement of WRGE, which provides a meaningful basis for building a harmonious society of human and water coexistence.

Keywords: water resources green efficiency, super-SBM model, social network analysis, quadratic assignment procedure

Procedia PDF Downloads 18
15618 Integrated Approach Towards Safe Wastewater Reuse in Moroccan Agriculture

Authors: Zakia Hbellaq

Abstract:

The Mediterranean region is considered a hotbed for climate change. Morocco is a semi-arid Mediterranean country facing water shortages and poor water quality. Its limited water resources limit the activities of various economic sectors. Most of Morocco's territory is in arid and desert areas. The potential water resources are estimated at 22 billion m3, which is equivalent to about 700 m3/inhabitant/year, and Morocco is in a state of structural water stress. Strictly speaking, the Kingdom of Morocco is one of the “very riskiest” countries, according to the World Resources Institute (WRI), which oversees the calculation of water stress risk in 167 countries. The surprising results of the Institute (WRI) rank Morocco as one of the riskiest countries in terms of water scarcity, ranking 3.89 out of 5, thus occupying the 23rd place out of a total of 167 countries, which indicates that the demand for water exceeds the available resources. Agriculture with a score of 3.89 is most affected by water stress from irrigation and places a heavy burden on the water table. Irrigation is an unavoidable technical need and has undeniable economic and social benefits given the available resources and climatic conditions. Irrigation, and therefore the agricultural sector, currently uses 86% of its water resources, while industry uses 5.5%. Although its development has undeniable economic and social benefits, it also contributes to the overfishing of most groundwater resources and the surprising decline in levels and deterioration of water quality in some aquifers. In this context, REUSE is one of the proposed solutions to reduce the water footprint of the agricultural sector and alleviate the shortage of water resources. Indeed, wastewater reuse, also known as REUSE (reuse of treated wastewater), is a step forward not only for the circular economy but also for the future, especially in the context of climate change. In particular, water reuse provides an alternative to existing water supplies and can be used to improve water security, sustainability, and resilience. However, given the introduction of organic trace pollutants or, organic micro-pollutants, the absorption of emerging contaminants, and decreasing salinity, it is possible to tackle innovative capabilities to overcome these problems and ensure food and health safety. To this end, attention will be paid to the adoption of an integrated and attractive approach, based on the reinforcement and optimization of the treatments proposed for the elimination of the organic load with particular attention to the elimination of emerging pollutants, to achieve this goal. , membrane bioreactors (MBR) as stand-alone technologies are not able to meet the requirements of WHO guidelines. They will be combined with heterogeneous Fenton processes using persulfate or hydrogen peroxide oxidants. Similarly, adsorption and filtration are applied as tertiary treatment In addition, the evaluation of crop performance in terms of yield, productivity, quality, and safety, through the optimization of Trichoderma sp strains that will be used to increase crop resistance to abiotic stresses, as well as the use of modern omics tools such as transcriptomic analysis using RNA sequencing and methylation to identify adaptive traits and associated genetic diversity that is tolerant/resistant/resilient to biotic and abiotic stresses. Hence, ensuring this approach will undoubtedly alleviate water scarcity and, likewise, increase the negative and harmful impact of wastewater irrigation on the condition of crops and the health of their consumers.

Keywords: water scarcity, food security, irrigation, agricultural water footprint, reuse, emerging contaminants

Procedia PDF Downloads 115
15617 Study Technical Possibilities of Agricultural Reuse of by-Products from Treatment Plant of Boumerdes, Algeria

Authors: Kadir Mokrane, Souag Doudja

Abstract:

In Algeria, one of the Mediterranean countries, water resources are limited and unevenly distributed in space and in time. Boumerdes, coastal town of Algeria, known for its farming and fishing activities. The region is also known for its semi-arid climate and a large water deficit. In order to preserve the quality of water bodies and to reduce withdrawals in the natural environment, it is necessary to seek alternative supplies. The reuse of treated wastewater seems to be a good alternative, especially for irrigation. In the framework of sustainable development, it is imperative to rationalize the use of water resources conventional and unconventional. That is why the re-use agricultural of by-products of the treatment is an alternative expected to preserve the environment and promotion of the agricultural sector. The present work aims, to search for the possibility of reuse of treated wastewater, and sludge resulting from treatment plant of the city of Boumerdes in agriculture, through the analysis of physical, chemical and bacteriological on the samples, and the continuous monitoring of the evolution of several elements during the period of study extended over 12 months, and then, the comparison of these test results to standards and guidelines established in the framework of irrigation and land application.

Keywords: treated water, sewage sludge, recycling, agriculture

Procedia PDF Downloads 222