Search results for: waste composition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4976

Search results for: waste composition

116 Achieving Sustainable Agriculture with Treated Municipal Wastewater

Authors: Reshu Yadav, Himanshu Joshi, S. K. Tripathi

Abstract:

Fresh water is a scarce resource which is essential for humans and ecosystems, but its distribution is uneven. Agricultural production accounts for 70% of all surface water supplies. It is projected that against the expansion in the area equipped for irrigation by 0.6% per year, the global potential irrigation water demand would rise by 9.5% during 2021-25. This would, on one hand, have to compete against the sharply rising urban water demand. On the other, it would also have to face the fear of climate change, as temperatures rise and crop yields could drop from 10-30% in many large areas. The huge demand for irrigation combined with fresh water scarcity encourages to explore the reuse of wastewater as a resource. However, the use of such wastewater is often linked to the safety issues when used non judiciously or with poor safeguards while irrigating food crops. Paddy is one of the major crops globally and amongst the most important in South Asia and Africa. In many parts of the world, use of municipal wastewater has been promoted as a viable option in this regard. In developing and fast growing countries like India, regularly increasing wastewater generation rates may allow this option to be considered quite seriously. In view of this, a pilot field study was conducted at the Jagjeetpur Municipal Sewage treatment plant situated in the Haridwar town of Uttarakhand state, India. The objectives of the present study were to study the effect of treated wastewater on the production of various paddy varieties (Sharbati, PR-114, PB-1, Menaka, PB1121 and PB 1509) and emission of GHG gases (CO2, CH4 and N2O) as compared to the same varieties grown in the control plots irrigated with fresh water. Of late, the concept of water footprint assessment has emerged, which explains enumeration of various types of water footprints of an agricultural entity from its production to processing stages. Paddy, the most water demanding staple crop of Uttarakhand state, displayed a high green water footprint value of 2966.538 m3/ton. Most of the wastewater irrigated varieties displayed upto 6% increase in production, except Menaka and PB-1121, which showed a reduction in production (6% and 3% respectively), due to pest and insect infestation. The treated wastewater was observed to be rich in Nitrogen (55.94 mg/ml Nitrate), Phosphorus (54.24 mg/ml) and Potassium (9.78 mg/ml), thus rejuvenating the soil quality and not requiring any external nutritional supplements. Percentage increase of GHG gases on irrigation with treated municipal waste water as compared to control plots was observed as 0.4% - 8.6% (CH4), 1.1% - 9.2% (CO2), and 0.07% - 5.8% (N2O). The variety, Sharbati, displayed maximum production (5.5 ton/ha) and emerged as the most resistant variety against pests and insects. The emission values of CH4 ,CO2 and N2O were 729.31 mg/m2/d, 322.10 mg/m2/d and 400.21 mg/m2/d in water stagnant condition. This study highlighted a successful possibility of reuse of wastewater for non-potable purposes offering the potential for exploiting this resource that can replace or reduce existing use of fresh water sources in agricultural sector.

Keywords: greenhouse gases, nutrients, water footprint, wastewater irrigation

Procedia PDF Downloads 295
115 Investigating Links in Achievement and Deprivation (ILiAD): A Case Study Approach to Community Differences

Authors: Ruth Leitch, Joanne Hughes

Abstract:

This paper presents the findings of a three-year government-funded study (ILiAD) that aimed to understand the reasons for differential educational achievement within and between socially and economically deprived areas in Northern Ireland. Previous international studies have concluded that there is a positive correlation between deprivation and underachievement. Our preliminary secondary data analysis suggested that the factors involved in educational achievement within multiple deprived areas may be more complex than this, with some areas of high multiple deprivation having high levels of student attainment, whereas other less deprived areas demonstrated much lower levels of student attainment, as measured by outcomes on high stakes national tests. The study proposed that no single explanation or disparate set of explanations could easily account for the linkage between levels of deprivation and patterns of educational achievement. Using a social capital perspective that centralizes the connections within and between individuals and social networks in a community as a valuable resource for educational achievement, the ILiAD study involved a multi-level case study analysis of seven community sites in Northern Ireland, selected on the basis of religious composition (housing areas are largely segregated by religious affiliation), measures of multiple deprivation and differentials in educational achievement. The case study approach involved three (interconnecting) levels of qualitative data collection and analysis - what we have termed Micro (or community/grassroots level) understandings, Meso (or school level) explanations and Macro (or policy/structural) factors. The analysis combines a statistical mapping of factors with qualitative, in-depth data interpretation which, together, allow for deeper understandings of the dynamics and contributory factors within and between the case study sites. Thematic analysis of the qualitative data reveals both cross-cutting factors (e.g. demographic shifts and loss of community, place of the school in the community, parental capacity) and analytic case studies of explanatory factors associated with each of the community sites also permit a comparative element. Issues arising from the qualitative analysis are classified either as drivers or inhibitors of educational achievement within and between communities. Key issues that are emerging as inhibitors/drivers to attainment include: the legacy of the community conflict in Northern Ireland, not least in terms of inter-generational stress, related with substance abuse and mental health issues; differing discourses on notions of ‘community’ and ‘achievement’ within/between community sites; inter-agency and intra-agency levels of collaboration and joined-up working; relationship between the home/school/community triad and; school leadership and school ethos. At this stage, the balance of these factors can be conceptualized in terms of bonding social capital (or lack of it) within families, within schools, within each community, within agencies and also bridging social capital between the home/school/community, between different communities and between key statutory and voluntary organisations. The presentation will outline the study rationale, its methodology, present some cross-cutting findings and use an illustrative case study of the findings from a community site to underscore the importance of attending to community differences when trying to engage in research to understand and improve educational attainment for all.

Keywords: educational achievement, multiple deprivation, community case studies, social capital

Procedia PDF Downloads 350
114 Origin of the Eocene Volcanic Rocks in Muradlu Village, Azerbaijan Province, Northwest of Iran

Authors: A. Shahriari, M. Khalatbari Jafari, M. Faridi

Abstract:

Abstract The Muradlu volcanic area is located in Azerbaijan province, NW Iran. The studied area exposed in a vast region includes lesser Caucasus, Southeastern Turkey, and northwestern Iran, comprising Cenozoic volcanic and plutonic massifs. The geology of this extended region was under the influence of the Alpine-Himalayan orogeny. Cenozoic magmatic activities in this vast region evolved through the northward subduction of the Neotethyan subducted slab and subsequence collision of the Arabian and Eurasian plates. Based on stratigraphy and paleontology data, most of the volcanic activities in the Muradlu area occurred in the Eocene period. The Studied volcanic rocks overly late Cretaceous limestone with disconformity. The volcanic sequence includes thick epiclastic and hyaloclastite breccia at the base, laterally changed to pillow lava and continued by hyaloclastite and lave flows at the top of the series. The lava flows display different textures from megaporphyric-phyric to fluidal and microlithic textures. The studied samples comprise picrobasalt basalt, tephrite basanite, trachybasalt, basaltic trachyandesite, phonotephrite, tephrophonolite, trachyandesite, and trachyte in compositions. Some xenoliths with lherzolitic composition are found in picrobasalt. These xenoliths are made of olivine, cpx (diopside), and opx (enstatite), probably the remain of mantle origin. Some feldspathoid minerals such as sodalite presence in the phonotephrite confirm an alkaline trend. Two types of augite phenocrysts are found in picrobasalt, basalt and trachybasalt. The first types are shapeless, with disharmony zoning and sponge texture with reaction edges probably resulted from sodic magma, which is affected by a potassic magma. The second shows a glomerocryst shape. In discriminative diagrams, the volcanic rocks show alkaline-shoshonitic trends. They contain (0.5-7.7) k2O values and plot in the shoshonitic field. Most of the samples display transitional to potassic alkaline trends, and some samples reveal sodic alkaline trends. The transitional trend probably results from the mixing of the sodic alkaline and potassic magmas. The Rare Earth Elements (REE) patterns and spider diagrams indicate enrichment of Large-Ione Lithophile Element (LILE) and depletion of High Field Strength Elements (HFSE) relative to Heavy Rare Earth Elements (HREE). Enrichment of K, Rb, Sr, Ba, Zr, Th, and U and the enrichment of Light Rare Earth Elements (LREE) relative to Heavy Rare Earth Elements (HREE) indicate the effect of subduction-related fluids over the mantle source, which has been reported in the arc and continental collision zones. The studied samples show low Nb/La ratios. Our studied samples plot in the lithosphere and lithosphere-asthenosphere fields in the Nb/La versus La/Yb ratios diagram. These geochemical characters allow us to conclude that a lithospheric mantle source previously metasomatized by subduction components was the origin of the Muradlu volcanic rocks.

Keywords: alkaline, asthenosphere, lherzolite, lithosphere, Muradlu, potassic, shoshonitic, sodic, volcanism

Procedia PDF Downloads 143
113 A Study of the Carbon Footprint from a Liquid Silicone Rubber Compounding Facility in Malaysia

Authors: Q. R. Cheah, Y. F. Tan

Abstract:

In modern times, the push for a low carbon footprint entails achieving carbon neutrality as a goal for future generations. One possible step towards carbon footprint reduction is the use of more durable materials with longer lifespans, for example, silicone data cableswhich show at least double the lifespan of similar plastic products. By having greater durability and longer lifespans, silicone data cables can reduce the amount of trash produced as compared to plastics. Furthermore, silicone products don’t produce micro contamination harmful to the ocean. Every year the electronics industry produces an estimated 5 billion data cables for USB type C and lightning data cables for tablets and mobile phone devices. Material usage for outer jacketing is 6 to 12 grams per meter. Tests show that the product lifespan of a silicone data cable over plastic can be doubled due to greater durability. This can save at least 40,000 tonnes of material a year just on the outer jacketing of the data cable. The facility in this study specialises in compounding of liquid silicone rubber (LSR) material for the extrusion process in jacketing for the silicone data cable. This study analyses the carbon emissions from the facility, which is presently capable of producing more than 1,000 tonnes of LSR annually. This study uses guidelines from the World Business Council for Sustainable Development (WBCSD) and World Resources Institute (WRI) to define the boundaries of the scope. The scope of emissions is defined as 1. Emissions from operations owned or controlled by the reporting company, 2. Emissions from the generation of purchased or acquired energy such as electricity, steam, heating, or cooling consumed by the reporting company, and 3. All other indirect emissions occurring in the value chain of the reporting company, including both upstream and downstream emissions. As the study is limited to the compounding facility, the system boundaries definition according to GHG protocol is cradle-to-gate instead of cradle-to-grave exercises. Malaysia’s present electricity generation scenario was also used, where natural gas and coal constitute the bulk of emissions. Calculations show the LSR produced for the silicone data cable with high fire retardant capability has scope 1 emissions of 0.82kg CO2/kg, scope 2 emissions of 0.87kg CO2/kg, and scope 3 emissions of 2.76kg CO2/kg, with a total product carbon footprint of 4.45kg CO2/kg. This total product carbon footprint (Cradle-to-gate) is comparable to the industry and to plastic materials per tonne of material. Although per tonne emission is comparable to plastic material, due to greater durability and longer lifespan, there can be significantly reduced use of LSR material. Suggestions to reduce the calculated product carbon footprint in the scope of emissions involve 1. Incorporating the recycling of factory silicone waste into operations, 2. Using green renewable energy for external electricity sources and 3. Sourcing eco-friendly raw materials with low GHG emissions.

Keywords: carbon footprint, liquid silicone rubber, silicone data cable, Malaysia facility

Procedia PDF Downloads 72
112 Techno-Economic Assessments of Promising Chemicals from a Sugar Mill Based Biorefinery

Authors: Kathleen Frances Haigh, Mieke Nieder-Heitmann, Somayeh Farzad, Mohsen Ali Mandegari, Johann Ferdinand Gorgens

Abstract:

Lignocellulose can be converted to a range of biochemicals and biofuels. Where this is derived from agricultural waste, issues of competition with food are virtually eliminated. One such source of lignocellulose is the South African sugar industry. Lignocellulose could be accessed by changes to the current farming practices and investments in more efficient boilers. The South African sugar industry is struggling due to falling sugar prices and increasing costs and it is proposed that annexing a biorefinery to a sugar mill will broaden the product range and improve viability. Process simulations of the selected chemicals were generated using Aspen Plus®. It was envisaged that a biorefinery would be annexed to a typical South African sugar mill. Bagasse would be diverted from the existing boilers to the biorefinery and mixed with harvest residues. This biomass would provide the feedstock for the biorefinery and the process energy for the biorefinery and sugar mill. Thus, in all scenarios a portion of the biomass was diverted to a new efficient combined heat and power plant (CHP). The Aspen Plus® simulations provided the mass and energy balance data to carry out an economic assessment of each scenarios. The net present value (NPV), internal rate of return (IRR) and minimum selling price (MSP) was calculated for each scenario. As a starting point scenarios were generated to investigate the production of ethanol, ethanol and lactic acid, ethanol and furfural, butanol, methanol, and Fischer-Tropsch syncrude. The bypass to the CHP plant is a useful indicator of the energy demands of the chemical processes. An iterative approach was used to identify a suitable bypass because increasing this value had the combined effect of increasing the amount of energy available and reducing the capacity of the chemical plant. Bypass values ranged from 30% for syncrude production to 50% for combined ethanol and furfural production. A hurdle rate of 15.7% was selected for the IRR. The butanol, combined ethanol and furfural, or the Fischer-Tropsch syncrude scenarios are unsuitable for investment with IRRs of 4.8%, 7.5% and 11.5% respectively. This provides valuable insights into research opportunities. For example furfural from sugarcane bagasse is an established process although the integration of furfural production with ethanol is less well understood. The IRR for the ethanol scenario was 14.7%, which is below the investment criteria, but given the technological maturity it may still be considered for investment. The scenarios which met the investment criteria were the combined ethanol and lactic acid, and the methanol scenarios with IRRs of 20.5% and 16.7%, respectively. These assessments show that the production of biochemicals from lignocellulose can be commercially viable. In addition, this assessment have provided valuable insights for research to improve the commercial viability of additional chemicals and scenarios. This has led to further assessments of the production of itaconic acid, succinic acid, citric acid, xylitol, polyhydroxybutyrate, polyethylene, glucaric acid and glutamic acid.

Keywords: biorefineries, sugar mill, methanol, ethanol

Procedia PDF Downloads 167
111 High Pressure Thermophysical Properties of Complex Mixtures Relevant to Liquefied Natural Gas (LNG) Processing

Authors: Saif Al Ghafri, Thomas Hughes, Armand Karimi, Kumarini Seneviratne, Jordan Oakley, Michael Johns, Eric F. May

Abstract:

Knowledge of the thermophysical properties of complex mixtures at extreme conditions of pressure and temperature have always been essential to the Liquefied Natural Gas (LNG) industry’s evolution because of the tremendous technical challenges present at all stages in the supply chain from production to liquefaction to transport. Each stage is designed using predictions of the mixture’s properties, such as density, viscosity, surface tension, heat capacity and phase behaviour as a function of temperature, pressure, and composition. Unfortunately, currently available models lead to equipment over-designs of 15% or more. To achieve better designs that work more effectively and/or over a wider range of conditions, new fundamental property data are essential, both to resolve discrepancies in our current predictive capabilities and to extend them to the higher-pressure conditions characteristic of many new gas fields. Furthermore, innovative experimental techniques are required to measure different thermophysical properties at high pressures and over a wide range of temperatures, including near the mixture’s critical points where gas and liquid become indistinguishable and most existing predictive fluid property models used breakdown. In this work, we present a wide range of experimental measurements made for different binary and ternary mixtures relevant to LNG processing, with a particular focus on viscosity, surface tension, heat capacity, bubble-points and density. For this purpose, customized and specialized apparatus were designed and validated over the temperature range (200 to 423) K at pressures to 35 MPa. The mixtures studied were (CH4 + C3H8), (CH4 + C3H8 + CO2) and (CH4 + C3H8 + C7H16); in the last of these the heptane contents was up to 10 mol %. Viscosity was measured using a vibrating wire apparatus, while mixture densities were obtained by means of a high-pressure magnetic-suspension densimeter and an isochoric cell apparatus; the latter was also used to determine bubble-points. Surface tensions were measured using the capillary rise method in a visual cell, which also enabled the location of the mixture critical point to be determined from observations of critical opalescence. Mixture heat capacities were measured using a customised high-pressure differential scanning calorimeter (DSC). The combined standard relative uncertainties were less than 0.3% for density, 2% for viscosity, 3% for heat capacity and 3 % for surface tension. The extensive experimental data gathered in this work were compared with a variety of different advanced engineering models frequently used for predicting thermophysical properties of mixtures relevant to LNG processing. In many cases the discrepancies between the predictions of different engineering models for these mixtures was large, and the high quality data allowed erroneous but often widely-used models to be identified. The data enable the development of new or improved models, to be implemented in process simulation software, so that the fluid properties needed for equipment and process design can be predicted reliably. This in turn will enable reduced capital and operational expenditure by the LNG industry. The current work also aided the community of scientists working to advance theoretical descriptions of fluid properties by allowing to identify deficiencies in theoretical descriptions and calculations.

Keywords: LNG, thermophysical, viscosity, density, surface tension, heat capacity, bubble points, models

Procedia PDF Downloads 248
110 Influence of Bacterial Biofilm on the Corrosive Processes in Electronic Equipment

Authors: Iryna P. Dzieciuch, Michael D. Putman

Abstract:

Humidity is known to degrade Navy ship electronic equipment, especially in hot moist environments. If left untreated, it can cause significant and permanent damage. Even rigorous inspection and frequent clean-up would not prevent further equipment contamination and degradation because of the constant presence of favorable growth conditions for many microorganisms. Generally, relative humidity levels of less than 60% will inhibit corrosion in electronic equipment, but because NAVY electronics often operate in hot and humid environments, prevention via dehumidification is not always possible. Currently, there is no defined research that fully describes key mechanisms which cause electronics and its coating degradation. The corrosive action of most bacteria is mainly developed through (i) mycelium adherence to the metal plates, (ii) facilitation the formation of pitting areas, (iii) production of organic acids such as citric, iso-citric, cis-aconitic, alpha-ketoglutaric, which are corrosive to electronic equipment and its components. Our approach studies corrosive action in electronic equipment: circuit-board, wires and connections that are exposed in the humid environment that gets worse during condensation. In our new approach the technical task is built on work with the bacterial communities in public areas, bacterial genetics, bioinformatics, biostatistics and Scanning Electron Microscopy (SEM) of corroded circuit boards. Based on these methods, we collect and examine environmental samples from biofilms of the corroded and non-corroded sites, where bacterial contamination of electronic equipment, such as machine racks and shore boats, is an ongoing concern. Sample collection and sample analysis is focused on addressing the key questions identified above through the following tasks: laboratory sample processing and evaluation under scanning electron microscopy, initial sequencing and data evaluation; bioinformatics and data analysis. Preliminary results from scanning electron microscopy (SEM) have revealed that metal particulates and alloys in corroded samples consists mostly of Tin ( < 40%), Silicon ( < 4%), Sulfur ( < 1%), Aluminum ( < 2%), Magnesium ( < 2%), Copper ( < 1%), Bromine ( < 2%), Barium ( <1%) and Iron ( < 2%) elements. We have also performed X 12000 magnification of the same sites and that proved existence of undisrupted biofilm organelles and crystal structures. Non-corrosion sites have revealed high presence of copper ( < 47%); other metals remain at the comparable level as on the samples with corrosion. We have performed X 1000 magnification on the non-corroded at the sites and have documented formation of copper crystals. The next step of this study, is to perform metagenomics sequencing at all sites and to compare bacterial composition present in the environment. While copper is nontoxic to the living organisms, the process of bacterial adhesion creates acidic environment by releasing citric, iso-citric, cis-aconitic, alpha-ketoglutaric acidics, which in turn release copper ions Cu++, which that are highly toxic to the bacteria and higher order living organisms. This phenomenon, might explain natural “antibiotic” properties that are lacking in elements such as tin. To prove or deny this hypothesis we will use next - generation sequencing (NGS) methods to investigate types and growth cycles of bacteria that from bacterial biofilm the on corrosive and non-corrosive samples.

Keywords: bacteria, biofilm, circuit board, copper, corrosion, electronic equipment, organic acids, tin

Procedia PDF Downloads 129
109 Chemopreventive Properties of Cannabis sativa L. var. USO31 in Relation to Its Phenolic and Terpenoid Content

Authors: Antonella Di Sotto, Cinzia Ingallina, Caterina Fraschetti, Simone Circi, Marcello Locatelli, Simone Carradori, Gabriela Mazzanti, Luisa Mannina, Silvia Di Giacomo

Abstract:

Cannabis sativa L. is one of the oldest cultivated plant species known not only for its voluptuous use but also for the wide application in food, textile, and therapeutic industries. Recently, the progress of biotechnologies applied to medicinal plants has allowed to produce different hemp varieties with low content of psychotropic phytoconstituents (tetrahydrocannabinol < 0.2% w/v), thus leading to a renewed industrial and therapeutic interest for this plant. In this context, in order to discover new potential remedies of pharmaceutical and/or nutraceutical interest, the chemopreventive properties of different organic and hydroalcoholic extracts, obtained from the inflorescences of C. sativa L. var. USO31, collected in June and September harvesting, were assessed. Particularly, the antimutagenic activity towards the oxidative DNA-damage induced by tert-butyl hydroperoxide (t-BOOH) was evaluated, and the DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid) radical scavenging power of the samples were assessed as possible mechanisms of antimutagenicity. Furthermore, the ability of the extracts to inhibit the glucose-6-phosphate dehydrogenase (G6PD), whose overexpression has been found to play a critical role in neoplastic transformation and tumor progression, has been studied as a possible chemopreventive strategy. A careful phytochemical characterization of the extracts for phenolic and terpenoid composition has been obtained by high performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS) methods. Under our experimental condition, all the extracts were found able to interfere with the tBOOH-induced mutagenicity in WP2uvrAR strain, although with different potency and effectiveness. The organic extracts from both the harvesting periods were found to be the main effective antimutagenic samples, reaching about a 55% inhibition of the tBOOH-mutagenicity at the highest concentration tested (250 μg/ml). All the extracts exhibited radical scavenger activity against DPPH and ABTS radicals, with a higher potency of the hydroalcoholic samples. The organic extracts were also able to inhibit the G6PD enzyme, being the samples from September harvesting the highly potent (about 50% inhibition respect to the vehicle). At the phytochemical analysis, all the extracts resulted to contain both polar and apolar phenolic compounds. The HPLC analysis revealed the presence of catechin and rutin as the major constituents of the hydroalcoholic extracts, with lower levels of quercetin and ferulic acid. The monoterpene carvacrol was found to be an ubiquitarian constituent. At GC-MS analysis, different terpenoids, among which caryophyllene sesquiterpenes, were identified. This evidence suggests a possible role of both polyphenols and terpenoids in the chemopreventive properties of the extracts from the inflorescences of C. sativa var. USO31. According to the literature, carvacrol and caryophyllene sesquiterpenes can contribute to the strong antimutagenicity although the role of all the hemp phytocomplex cannot be excluded. In conclusion, present results highlight a possible interest for the inflorescences of C. sativa var. USO31 as source of bioactive molecules and stimulate further studies in order to characterize its possible application for nutraceutical and pharmaceutical purposes.

Keywords: antimutagenicity, glucose-6-phosphate dehydrogenase, hemp inflorescences, nutraceuticals, sesquiterpenes

Procedia PDF Downloads 124
108 Study of the Biological Activity of a Ganglioside-Containing Drug (Cronassil) in an Experimental Model of Multiple Sclerosis

Authors: Hasmik V. Zanginyan, Gayane S. Ghazaryan, Laura M. Hovsepyan

Abstract:

Experimental autoimmune encephalomyelitis (EAE) is an inflammatory demyelinating disease of the central nervous system that is induced in laboratory animals by developing an immune response against myelin epitopes. The typical clinical course is ascending palsy, which correlates with inflammation and tissue damage in the thoracolumbar spinal cord, although the optic nerves and brain (especially the subpial white matter and brainstem) are also often affected. With multiple sclerosis, there is a violation of lipid metabolism in myelin. When membrane lipids (glycosphingolipids, phospholipids) are disturbed, metabolites not only play a structural role in membranes but are also sources of secondary mediators that transmit multiple cellular signals. The purpose of this study was to investigate the effect of ganglioside as a therapeutic agent in experimental multiple sclerosis. The biological activity of a ganglioside-containing medicinal preparation (Cronassial) was evaluated in an experimental model of multiple sclerosis in laboratory animals. An experimental model of multiple sclerosis in rats was obtained by immunization with myelin basic protein (MBP), as well as homogenization of the spinal cord or brain. EAE was induced by administering a mixture of an encephalitogenic mixture (EGM) with Complete Freund’s Adjuvant. Mitochondrial fraction was isolated in a medium containing 0,25 M saccharose and 0, 01 M tris buffer, pH - 7,4, by a method of differential centrifugation on a K-24 centrifuge. Glutathione peroxidase activity was assessed by reduction reactions of hydrogen peroxide (H₂O₂) and lipid hydroperoxides (ROOH) in the presence of GSH. LPO activity was assessed by the amount of malondialdehyde (MDA) in the total homogenate and mitochondrial fraction of the spinal cord and brain of control and experimental autoimmune encephalomyelitis rats. MDA was assessed by a reaction with Thiobarbituric acid. For statistical data analysis on PNP, SPSS (Statistical Package for Social Science) package was used. The nature of the distribution of the obtained data was determined by the Kolmogorov-Smirnov criterion. The comparative analysis was performed using a nonparametric Mann-Whitney test. The differences were statistically significant when р ≤ 0,05 or р ≤ 0,01. Correlational analysis was conducted using a nonparametric Spearman test. In the work, refrigeratory centrifuge, spectrophotometer LKB Biochrom ULTROSPECII (Sweden), pH-meter PL-600 mrc (Israel), guanosine, and ATP (Sigma). The study of the process of lipid peroxidation in the total homogenate of the brain and spinal cord in experimental animals revealed an increase in the content of malonic dialdehyde. When applied, Cronassial observed normalization of lipid peroxidation processes. Reactive oxygen species, causing lipid peroxidation processes, can be toxic both for neurons and for oligodendrocytes that form myelin, causing a violation of their lipid composition. The high content of lipids in the brain and the uniqueness of their structure determines the nature of the development of LPO processes. The lipid layer of cellular and intracellular membranes performs two main functions -barrier and matrix (structural). Damage to the barrier leads to dysregulation of intracellular processes and severe disorders of cellular functions.

Keywords: experimental autoimmune encephalomyelitis, multiple sclerosis, neuroinflammation, therapy

Procedia PDF Downloads 66
107 Enhancing Photocatalytic Activity of Oxygen Vacancies-Rich Tungsten Trioxide (WO₃) for Sustainable Energy Conversion and Water Purification

Authors: Satam Alotibi, Osama A. Hussein, Aziz H. Al-Shaibani, Nawaf A. Al-Aqeel, Abdellah Kaiba, Fatehia S. Alhakami, Mohammed Alyami, Talal F. Qahtan

Abstract:

The demand for sustainable and efficient energy conversion using solar energy has grown rapidly in recent years. In this pursuit, solar-to-chemical conversion has emerged as a promising approach, with oxygen vacancies-rich tungsten trioxide (WO₃) playing a crucial role. This study presents a method for synthesizing oxygen vacancies-rich WO3, resulting in a significant enhancement of its photocatalytic activity, representing a significant step towards sustainable energy solutions. Experimental results underscore the importance of oxygen vacancies in modifying the properties of WO₃. These vacancies introduce additional energy states within the material, leading to a reduction in the bandgap, increased light absorption, and acting as electron traps, thereby reducing emissions. Our focus lies in developing oxygen vacancies-rich WO₃, which demonstrates unparalleled potential for improved photocatalytic applications. The effectiveness of oxygen vacancies-rich WO₃ in solar-to-chemical conversion was showcased through rigorous assessments of its photocatalytic degradation performance. Sunlight irradiation was employed to evaluate the material's effectiveness in degrading organic pollutants in wastewater. The results unequivocally demonstrate the superior photocatalytic performance of oxygen vacancies-rich WO₃ compared to conventional WO₃ nanomaterials, establishing its efficacy in sustainable and efficient energy conversion. Furthermore, the synthesized material is utilized to fabricate films, which are subsequently employed in immobilized WO₃ and oxygen vacancies-rich WO₃ reactors for water purification under natural sunlight irradiation. This application offers a sustainable and efficient solution for water treatment, harnessing solar energy for effective decontamination. In addition to investigating the photocatalytic capabilities, we extensively analyze the structural and chemical properties of the synthesized material. The synthesis process involves in situ thermal reduction of WO₃ nano-powder in a nitrogen environment, meticulously monitored using thermogravimetric analysis (TGA) to ensure precise control over the synthesis of oxygen vacancies-rich WO₃. Comprehensive characterization techniques such as UV-Vis spectroscopy, X-ray photoelectron spectroscopy (XPS), FTIR, Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED) provide deep insights into the material's optical properties, chemical composition, elemental states, structure, surface properties, and crystalline structure. This study represents a significant advancement in sustainable energy conversion through solar-to-chemical processes and water purification. By harnessing the unique properties of oxygen vacancies-rich WO₃, we not only enhance our understanding of energy conversion mechanisms but also pave the way for the development of highly efficient and environmentally friendly photocatalytic materials. The application of this material in water purification demonstrates its versatility and potential to address critical environmental challenges. These findings bring us closer to a sustainable energy future and cleaner water resources, laying a solid foundation for a more sustainable planet.

Keywords: sustainable energy conversion, solar-to-chemical conversion, oxygen vacancies-rich tungsten trioxide (WO₃), photocatalytic activity enhancement, water purification

Procedia PDF Downloads 41
106 i2kit: A Tool for Immutable Infrastructure Deployments

Authors: Pablo Chico De Guzman, Cesar Sanchez

Abstract:

Microservice architectures are increasingly in distributed cloud applications due to the advantages on the software composition, development speed, release cycle frequency and the business logic time to market. On the other hand, these architectures also introduce some challenges on the testing and release phases of applications. Container technology solves some of these issues by providing reproducible environments, easy of software distribution and isolation of processes. However, there are other issues that remain unsolved in current container technology when dealing with multiple machines, such as networking for multi-host communication, service discovery, load balancing or data persistency (even though some of these challenges are already solved by traditional cloud vendors in a very mature and widespread manner). Container cluster management tools, such as Kubernetes, Mesos or Docker Swarm, attempt to solve these problems by introducing a new control layer where the unit of deployment is the container (or the pod — a set of strongly related containers that must be deployed on the same machine). These tools are complex to configure and manage and they do not follow a pure immutable infrastructure approach since servers are reused between deployments. Indeed, these tools introduce dependencies at execution time for solving networking or service discovery problems. If an error on the control layer occurs, which would affect running applications, specific expertise is required to perform ad-hoc troubleshooting. As a consequence, it is not surprising that container cluster support is becoming a source of revenue for consulting services. This paper presents i2kit, a deployment tool based on the immutable infrastructure pattern, where the virtual machine is the unit of deployment. The input for i2kit is a declarative definition of a set of microservices, where each microservice is defined as a pod of containers. Microservices are built into machine images using linuxkit —- a tool for creating minimal linux distributions specialized in running containers. These machine images are then deployed to one or more virtual machines, which are exposed through a cloud vendor load balancer. Finally, the load balancer endpoint is set into other microservices using an environment variable, providing service discovery. The toolkit i2kit reuses the best ideas from container technology to solve problems like reproducible environments, process isolation, and software distribution, and at the same time relies on mature, proven cloud vendor technology for networking, load balancing and persistency. The result is a more robust system with no learning curve for troubleshooting running applications. We have implemented an open source prototype that transforms i2kit definitions into AWS cloud formation templates, where each microservice AMI (Amazon Machine Image) is created on the fly using linuxkit. Even though container cluster management tools have more flexibility for resource allocation optimization, we defend that adding a new control layer implies more important disadvantages. Resource allocation is greatly improved by using linuxkit, which introduces a very small footprint (around 35MB). Also, the system is more secure since linuxkit installs the minimum set of dependencies to run containers. The toolkit i2kit is currently under development at the IMDEA Software Institute.

Keywords: container, deployment, immutable infrastructure, microservice

Procedia PDF Downloads 153
105 Recognition of Sanitation as a Human Right: An Overview of Unresolutions and Reports That Recognizes the Human Right to Sanitation in South-Asian Countries

Authors: Anju Vaidya

Abstract:

Sanitation is concerned with proper disposal of human excreta, waste water and promotion of hygiene. Lack of sanitation impacts our environment affecting our finance, schooling, health, and thus exacerbating poverty, discrimination and exclusion of the marginalized group. Sanitation can be a route and one of the most important factor to reach the goals of all Millennium Development goals. This study aims at exploring what are the rights to sanitation of the people, how it is enacted and what challenges are being faced while implementing the right to sanitation in South-Asian countries (India, Nepal, Pakistan, Bangladesh, Srilanka) at government, non-government and international level. This study also aims at finding how right sanitation is interlinked with children rights. The available reports submitted by government and civil society organizations working in South-Asian countries from the website of the Office of High Commissioner for Human Rights that were submitted under International covenant on economic, social and cultural rights and Convention on rights of the child have been selected and analyzed. The study uses Literature review to analyze these UN documents submitted from 2000 to 2015 in the context of South-Asian countries. Preliminary insight reveals that sanitation is recognized as one of the important factor to attain adequate standard of living. It has been found that inadequate sanitation has been a major factor that affects all aspects of life and one of its devastating impacts is increased child mortality. Many efforts have been made at national and international level in South-Asian countries to improve the state of sanitation and sanitation services. Various approaches such as Community led Total Sanitation, School led Total Sanitation, establishing Open Defecation free zone, water supply services and other sanitation and hygiene awareness programs are being launched. Despite different efforts and programs being implemented, sanitation and hygiene practices and behavior change remains to be a big challenge. Disparity in access and imbalance between urban and rural services and geographical regions, inadequate financing, clear policy framework and fragile functionality are some of the significant challenges faced while implementing these programs. Children are one of the most vulnerable group that are affected to a large extent. The study brings into light varied approaches that are being made and challenges that are being faced by government, non-government and civil society organizations while implementing the programs and strategies related to sanitation. It also highlights the relation of sanitation as a human right with child rights. This can help the stakeholders and policymakers better understand that improving sanitation situation is a process that requires learning, planning and behavior change and achieving sanitation coverage targets and motivating behavior change requires additional tools based on participation, non-discrimination and process approaches for planning and feedback.

Keywords: challenges, child rights, open defecation, sanitation as a human right

Procedia PDF Downloads 255
104 Developing the Collaboration Model of Physical Education and Sport Sciences Faculties with Service Section of Sport Industrial

Authors: Vahid Saatchian, Seyyed Farideh Hadavi

Abstract:

The main aim of this study was developing the collaboration model of physical education and sport sciences faculties with service section of sport industrial.The research methods of this study was a qualitative. So researcher with of identifying the priority list of collaboration between colleges and service section of sport industry and according to sampling based of subjective and snowball approach, conducted deep interviews with 22 elites that study around the field of research topic. indeed interviews were analyzed through qualitative coding (open, axial and selective) with 5 category such as causal condition, basic condition, intervening conditions, action/ interaction and strategy. Findings exposed that in causal condition 10 labels appeared. So because of heterogeneity of labes, researcher categorized in total subject. In basic condition 59 labels in open coding identified this categorized in 14 general concepts. Furthermore with composition of the declared category and relationship between them, 5 final and internal categories (culture, intelligence, marketing, environment and ultra-powers) were appeared. Also an intervening condition in the study includes 5 overall scopes of social factors, economic, cultural factors, and the management of the legal and political factors that totally named macro environment. Indeed for identifying strategies, 8 areas that covered with internal and external challenges relationship management were appeared. These are including, understanding, outside awareness, manpower, culture, integrated management, the rules and regulations and marketing. Findings exposed 8 labels in open coding which covered the internal and external of challenges of relation management of two sides and these concepts were knowledge and awareness, external view, human source, madding organizational culture, parties’ thoughts, unit responsible for/integrated management, laws and regulations and marketing. Eventually the consequences categorized in line of strategies and were at scope of the cultural development, general development, educational development, scientific development, under development, international development, social development, economic development, technology development and political development that consistent with strategies. The research findings could help the sport managers witch use to scientific collaboration management and the consequences of this in those sport institutions. Finally, the consequences that identified as a result of the devopmental strategies include: cultural, governmental, educational, scientific, infrastructure, international, social, economic, technological and political that is largely consistent with strategies. With regard to the above results, enduring and systematic relation with long term cooperation between the two sides requires strategic planning were based on cooperation of all stakeholders. Through this, in the turbulent constantly changing current sustainable environment, competitive advantage for university and industry obtained. No doubt that lack of vision and strategic thinking for cooperation in the planning of the university and industry from its capability and instead of using the opportunity, lead the opportunities to problems.

Keywords: university and industry collaboration, sport industry, physical education and sport science college, service section of sport industry

Procedia PDF Downloads 362
103 Process of Production of an Artisanal Brewery in a City in the North of the State of Mato Grosso, Brazil

Authors: Ana Paula S. Horodenski, Priscila Pelegrini, Salli Baggenstoss

Abstract:

The brewing industry with artisanal concepts seeks to serve a specific market, with diversified production that has been gaining ground in the national environment, also in the Amazon region. This growth is due to the more demanding consumer, with a diversified taste that wants to try new types of beer, enjoying products with new aromas, flavors, as a differential of what is so widely spread through the big industrial brands. Thus, through qualitative research methods, the study aimed to investigate how is the process of managing the production of a craft brewery in a city in the northern State of Mato Grosso (BRAZIL), providing knowledge of production processes and strategies in the industry. With the efficient use of resources, it is possible to obtain the necessary quality and provide better performance and differentiation of the company, besides analyzing the best management model. The research is descriptive with a qualitative approach through a case study. For the data collection, a semi-structured interview was elaborated, composed of the areas: microbrewery characterization, artisan beer production process, and the company supply chain management. Also, production processes were observed during technical visits. With the study, it was verified that the artisan brewery researched develops preventive maintenance strategies with the inputs, machines, and equipment, so that the quality of the product and the production process are achieved. It was observed that the distance from the supplying centers makes the management of processes and the supply chain be carried out with a longer planning time so that the delivery of the final product is satisfactory. The production process of the brewery is composed of machines and equipment that allows the control and quality of the product, which the manager states that for the productive capacity of the industry and its consumer market, the available equipment meets the demand. This study also contributes to highlight one of the challenges for the development of small breweries in front of the market giants, that is, the legislation, which fits the microbreweries as producers of alcoholic beverages. This makes the micro and small business segment to be taxed as a major, who has advantages in purchasing large batches of raw materials and tax incentives because they are large employers and tax pickers. It was possible to observe that the supply chain management system relies on spreadsheets and notes that are done manually, which could be simplified with a computer program to streamline procedures and reduce risks and failures of the manual process. In relation to the control of waste and effluents affected by the industry is outsourced and meets the needs. Finally, the results showed that the industry uses preventive maintenance as a productive strategy, which allows better conditions for the production and quality of artisanal beer. The quality is directly related to the satisfaction of the final consumer, being prized and performed throughout the production process, with the selection of better inputs, the effectiveness of the production processes and the relationship with the commercial partners.

Keywords: artisanal brewery, production management, production processes, supply chain

Procedia PDF Downloads 98
102 Modeling and Simulation of the Structural, Electronic and Magnetic Properties of Fe-Ni Based Nanoalloys

Authors: Ece A. Irmak, Amdulla O. Mekhrabov, M. Vedat Akdeniz

Abstract:

There is a growing interest in the modeling and simulation of magnetic nanoalloys by various computational methods. Magnetic crystalline/amorphous nanoparticles (NP) are interesting materials from both the applied and fundamental points of view, as their properties differ from those of bulk materials and are essential for advanced applications such as high-performance permanent magnets, high-density magnetic recording media, drug carriers, sensors in biomedical technology, etc. As an important magnetic material, Fe-Ni based nanoalloys have promising applications in the chemical industry (catalysis, battery), aerospace and stealth industry (radar absorbing material, jet engine alloys), magnetic biomedical applications (drug delivery, magnetic resonance imaging, biosensor) and computer hardware industry (data storage). The physical and chemical properties of the nanoalloys depend not only on the particle or crystallite size but also on composition and atomic ordering. Therefore, computer modeling is an essential tool to predict structural, electronic, magnetic and optical behavior at atomistic levels and consequently reduce the time for designing and development of new materials with novel/enhanced properties. Although first-principles quantum mechanical methods provide the most accurate results, they require huge computational effort to solve the Schrodinger equation for only a few tens of atoms. On the other hand, molecular dynamics method with appropriate empirical or semi-empirical inter-atomic potentials can give accurate results for the static and dynamic properties of larger systems in a short span of time. In this study, structural evolutions, magnetic and electronic properties of Fe-Ni based nanoalloys have been studied by using molecular dynamics (MD) method in Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) and Density Functional Theory (DFT) in the Vienna Ab initio Simulation Package (VASP). The effects of particle size (in 2-10 nm particle size range) and temperature (300-1500 K) on stability and structural evolutions of amorphous and crystalline Fe-Ni bulk/nanoalloys have been investigated by combining molecular dynamic (MD) simulation method with Embedded Atom Model (EAM). EAM is applicable for the Fe-Ni based bimetallic systems because it considers both the pairwise interatomic interaction potentials and electron densities. Structural evolution of Fe-Ni bulk and nanoparticles (NPs) have been studied by calculation of radial distribution functions (RDF), interatomic distances, coordination number, core-to-surface concentration profiles as well as Voronoi analysis and surface energy dependences on temperature and particle size. Moreover, spin-polarized DFT calculations were performed by using a plane-wave basis set with generalized gradient approximation (GGA) exchange and correlation effects in the VASP-MedeA package to predict magnetic and electronic properties of the Fe-Ni based alloys in bulk and nanostructured phases. The result of theoretical modeling and simulations for the structural evolutions, magnetic and electronic properties of Fe-Ni based nanostructured alloys were compared with experimental and other theoretical results published in the literature.

Keywords: density functional theory, embedded atom model, Fe-Ni systems, molecular dynamics, nanoalloys

Procedia PDF Downloads 206
101 Keratin Reconstruction: Evaluation of Green Peptides Technology on Hair Performance

Authors: R. Di Lorenzo, S. Laneri, A. Sacchi

Abstract:

Hair surface properties affect hair texture and shine, whereas the healthy state of the hair cortex sways hair ends. Even if cosmetic treatments are intrinsically safe, there is potentially damaging action on the hair fibers. Loss of luster, frizz, split ends, and other hair problems are particularly prevalent among people who repeatedly alter the natural style of their hair or among people with intrinsically weak hair. Technological and scientific innovations in hair care thus become invaluable allies to preserve their natural well-being and shine. The study evaluated restoring keratin-like ingredients that improve hair fibers' structural integrity, increase tensile strength, improve hair manageability and moisturizing. The hair shaft is composed of 65 - 95% of keratin. It gives the hair resistance, elasticity, and plastic properties and also contributes to their waterproofing. Providing exogenous keratin is, therefore, a practical approach to protect and nourish the hair. By analyzing the amino acid composition of keratin, we find a high frequency of hydrophobic amino acids. It confirms the critical role interactions, mainly hydrophobic, between cosmetic products and hair. The active ingredient analyzed comes from vegetable proteins through an enzymatic cut process that selected only oligo- and polypeptides (> 3500 KDa) rich in amino acids with hydrocarbon side chains apolar or sulfur. These chemical components are the most expressed amino acids at the level of the capillary keratin structure, and it determines the most significant possible compatibility with the target substrate. Given the biological variability of the sources, it isn't easy to define a constant and reproducible molecular formula of the product. Still, it consists of hydroxypropiltrimonium vegetable peptides with keratin-like performances. 20 natural hair tresses (30 cm in length and 0.50 g weight) were treated with the investigated products (5 % v/v aqueous solution) following a specific protocol and compared with non-treated (Control) and benchmark-keratin-treated strands (Benchmark). Their brightness, moisture content, cortical and surface integrity, and tensile strength were evaluated and statistically compared. Keratin-like treated hair tresses showed better results than the other two groups (Control and Benchmark). The product improves the surface with significant regularization of the cuticle closure, improves the cortex and the peri-medullar area filling, gives a highly organized and tidy structure, delivers a significant amount of sulfur on the hair, and is more efficient moisturization and imbibition power, increases hair brightness. The hydroxypropyltrimonium quaternized group added to the C-terminal end interacts with the negative charges that form on the hair after washing when disheveled and tangled. The interactions anchor the product to the hair surface, keeping the cuticles adhered to the shaft. The small size allows the peptides to penetrate and give body to the hair, together with a conditioning effect that gives an image of healthy hair. Results suggest that the product is a valid ally in numerous restructuring/conditioning, shaft protection, straightener/dryer-damage prevention hair care product.

Keywords: conditioning, hair damage, hair, keratin, polarized light microscopy, scanning electron microscope, thermogravimetric analysis

Procedia PDF Downloads 104
100 Electroactive Ferrocenyl Dendrimers as Transducers for Fabrication of Label-Free Electrochemical Immunosensor

Authors: Sudeshna Chandra, Christian Gäbler, Christian Schliebe, Heinrich Lang

Abstract:

Highly branched dendrimers provide structural homogeneity, controlled composition, comparable size to biomolecules, internal porosity and multiple functional groups for conjugating reactions. Electro-active dendrimers containing multiple redox units have generated great interest in their use as electrode modifiers for development of biosensors. The electron transfer between the redox-active dendrimers and the biomolecules play a key role in developing a biosensor. Ferrocenes have multiple and electrochemically equivalent redox units that can act as electron “pool” in a system. The ferrocenyl-terminated polyamidoamine dendrimer is capable of transferring multiple numbers of electrons under the same applied potential. Therefore, they can be used for dual purposes: one in building a film over the electrode for immunosensors and the other for immobilizing biomolecules for sensing. Electrochemical immunosensor, thus developed, exhibit fast and sensitive analysis, inexpensive and involve no prior sample pre-treatment. Electrochemical amperometric immunosensors are even more promising because they can achieve a very low detection limit with high sensitivity. Detection of the cancer biomarkers at an early stage can provide crucial information for foundational research of life science, clinical diagnosis and prevention of disease. Elevated concentration of biomarkers in body fluid is an early indication of some type of cancerous disease and among all the biomarkers, IgG is the most common and extensively used clinical cancer biomarkers. We present an IgG (=immunoglobulin) electrochemical immunosensor using a newly synthesized redox-active ferrocenyl dendrimer of generation 2 (G2Fc) as glassy carbon electrode material for immobilizing the antibody. The electrochemical performance of the modified electrodes was assessed in both aqueous and non-aqueous media using varying scan rates to elucidate the reaction mechanism. The potential shift was found to be higher in an aqueous electrolyte due to presence of more H-bond which reduced the electrostatic attraction within the amido groups of the dendrimers. The cyclic voltammetric studies of the G2Fc-modified GCE in 0.1 M PBS solution of pH 7.2 showed a pair of well-defined redox peaks. The peak current decreased significantly with the immobilization of the anti-goat IgG. After the immunosensor is blocked with BSA, a further decrease in the peak current was observed due to the attachment of the protein BSA to the immunosensor. A significant decrease in the current signal of the BSA/anti-IgG/G2Fc/GCE was observed upon immobilizing IgG which may be due to the formation of immune-conjugates that blocks the tunneling of mass and electron transfer. The current signal was found to be directly related to the amount of IgG captured on the electrode surface. With increase in the concentration of IgG, there is a formation of an increasing amount of immune-conjugates that decreased the peak current. The incubation time and concentration of the antibody was optimized for better analytical performance of the immunosensor. The developed amperometric immunosensor is sensitive to IgG concentration as low as 2 ng/mL. Tailoring of redox-active dendrimers provides enhanced electroactivity to the system and enlarges the sensor surface for binding the antibodies. It may be assumed that both electron transfer and diffusion contribute to the signal transformation between the dendrimers and the antibody.

Keywords: ferrocenyl dendrimers, electrochemical immunosensors, immunoglobulin, amperometry

Procedia PDF Downloads 308
99 Revolutionizing Product Packaging: The Impact of Transparent Graded Lanes on Ketchup and Edible Oils Containers on Consumer Behavior

Authors: Saeid Asghari

Abstract:

The growing interest in sustainability and healthy lifestyles has stimulated the development of solutions that promote mindful consumption and healthier choices. One such solution is the use of transparent graded lanes in product packaging, which enables consumers to visually track their product consumption and encourages portion control. However, the extent to which this packaging affects consumer behavior, trust, and loyalty towards a product or brand, as well as the effectiveness of messaging on the graded lanes, remains unclear. The research aims to examine the impact of transparent graded lanes on consumer behavior, trust, and loyalty towards products or brands in the context of the Janbo chain supermarket in Tehran, Iran, focusing on Ketchup and edible oils containers. A representative sample of 720 respondents is selected using quota sampling based on sex, age, and financial status. The study assesses the effect of messaging on the graded lanes in enhancing consumer recall and recognition of the product at the time of purchase, increasing repeat purchases, and fostering long-term relationships with customers. Furthermore, the potential outcomes of using transparent graded lanes, including the promotion of healthy consumption habits and the reduction of food waste, are also considered. The findings and results can inform the development of effective messaging strategies for graded lanes and suggest ways to enhance consumer engagement with product packaging. Moreover, the study's outcomes can contribute to the broader discourse on sustainable consumption and healthy lifestyles, highlighting the potential role of packaging innovations in promoting these values. We used four theories (social cognitive theory, self-perception theory, nudge theory, and marketing and consumer behavior) to examine the effect of these transparent graded lanes on consumer behavior. The conceptual model integrates the use of transparent graded lanes, consumer behavior, trust and loyalty, messaging, and promotion of healthy consumption habits. The study aims to provide insights into how transparent graded lanes can promote mindful consumption, increase consumer recognition and recall of the product, and foster long-term relationships with customers. Findings suggest that the use of transparent graded lanes on Ketchup and edible oils containers can have a positive impact on consumer behavior, trust, and loyalty towards a product or brand, as well as promote mindful consumption and healthier choices. The messaging on the graded lanes is also found to be effective in promoting recall and recognition of the product at the time of purchase and encouraging repeat purchases. However, the impact of transparent graded lanes may be limited by factors such as cultural norms, personal values, and financial status. Broadly speaking, the investigation provides valuable insights into the potential benefits and challenges of using transparent graded lanes in product packaging, as well as effective strategies for promoting healthy consumption habits and building long-term relationships with customers.

Keywords: packaging customer behavior, purchase, brand loyalty, healthy consumption

Procedia PDF Downloads 224
98 Potential of Dredged Material for CSEB in Building Structure

Authors: BoSheng Liu

Abstract:

The research goal is to re-image a locally-sourced waste product as abuilding material. The author aims to contribute to the compressed stabilized earth block (CSEB) by investigating the promising role of dredged material as an alternative building ingredient in the production of bricks and tiles. Dredged material comes from the sediment deposited near the shore or downstream, where the water current velocity decreases. This sediment needs to be dredged to provide water transportation; thus, there are mounds of the dredged material stored at bay. It is the interest of this research to reduce the filtered un-organic soil in the production of CSEB and replace it with locally dredged material from the Atchafalaya River in Morgan City, Louisiana. Technology and mechanical innovations have evolved the traditional adobe production method, which mixes the soil and natural fiber into molded bricks, into chemically stabilized CSEB made by compressing the clay mixture and stabilizer in a compression chamber with particular loads. In the case of dredged material CSEB (DM-CSEB), cement plays an essential role as the bending agent contributing to the unit strength while sustaining the filtered un-organic soil. Each DM-CSEB unit is made in a compression chamber with 580 PSI (i.e., 4 MPa) force. The research studied the cement content from 5% to 10% along with the range of dredged material mixtures, which differed from 20% to 80%. The material mixture content affected the DM-CSEB's strength and workability during and after its compression. Results indicated two optimal workabilities of the mixture: 27% fine clay content and 63% dredged material with 10% cement, or 28% fine clay content, and 67% dredged material with 5% cement. The final product of DM-CSEB emitted between 10 to 13 times fewer carbon emissions compared to the conventional fired masonry structure. DM-CSEB satisfied the strength requirement given by the ASTM C62 and ASTM C34 standards for construction material. One of the final evaluations tested and validated the material performance by designing and constructing an architectural, conical tile-vault prototype that was 28" by 40" by 24." The vault utilized a computational form-finding approach to generate the form's geometry, which optimized the correlation between the vault geometry and structural load distribution. A series of scaffolding was deployed to create the framework for the tile-vault construction. The final tile-vault structure was made from 2 layers of DM-CSEB tiles jointed by mortar, and the construction of the structure used over 110 tiles. The tile-vault prototype was capable of carrying over 400 lbs of live loads, which further demonstrated the dredged material feasibility as a construction material. The presented case study of Dredged Material Compressed Stabilized Earth Block (DM-CSEB) provides the first impression of dredged material in the clayey mixture process, structural performance, and construction practice. Overall, the approach of integrating dredged material in building material can be feasible, regionally sourced, cost-effective, and environment-friendly.

Keywords: dredged material, compressed stabilized earth block, tile-vault, regionally sourced, environment-friendly

Procedia PDF Downloads 93
97 Essential Oils of Polygonum L. Plants Growing in Kazakhstan and Their Antibacterial and Antifungal Activity

Authors: Dmitry Yu. Korulkin, Raissa A. Muzychkina

Abstract:

Bioactive substances of plant origin can be one of the advanced means of solution to the issue of combined therapy to inflammation. The main advantages of medical plants are softness and width of their therapeutic effect on an organism, the absence of side effects and complications even if the used continuously, high tolerability by patients. Moreover, medial plants are often the only and (or) cost-effective sources of natural biologically active substances and medicines. Along with other biologically active groups of chemical compounds, essential oils with wide range of pharmacological effects became very ingrained in medical practice. Essential oil was obtained by the method hydrodistillation air-dry aerial part of Polygonum L. plants using Clevenger apparatus. Qualitative composition of essential oils was analyzed by chromatography-mass-spectrometry method using Agilent 6890N apparatus. The qualitative analysis is based on the comparison of retention time and full mass-spectra with respective data on components of reference oils and pure compounds, if there were any, and with the data of libraries of mass-spectra Wiley 7th edition and NIST 02. The main components of essential oil are for: Polygonum amphibium L. - γ-terpinene, borneol, piperitol, 1,8-cyneole, α-pinene, linalool, terpinolene and sabinene; Polygonum minus Huds. Fl. Angl. – linalool, terpinolene, camphene, borneol, 1,8-cyneole, α-pinene, 4-terpineol and 1-octen-3-ol; Polygonum alpinum All. – camphene, sabinene, 1-octen-3-ol, 4-carene, p- and o-cymol, γ-terpinene, borneol, -terpineol; Polygonum persicaria L. - α-pinene, sabinene, -terpinene, 4-carene, 1,8-cyneole, borneol, 4-terpineol. Antibacterial activity was researched relating to strains of gram-positive bacteria Staphylococcus aureus, Bacillus subtilis, Streptococcus agalacticae, relating to gram-negative strain Escherichia coli and to yeast fungus Сandida albicans using agar diffusion method. The medicines of comparison were gentamicin for bacteria and nystatin for yeast fungus Сandida albicans. It has been shown that Polygonum L. essential oils has moderate antibacterial effect to gram-positive microorganisms and weak antifungal activity to Candida albicans yeast fungus. At the second stage of our researches wound healing properties of ointment form of 3% essential oil was researched on the model of flat dermal wounds. To assess the influence of essential oil on healing processes the model of flat dermal wound. The speed of wound healing on rats of different groups was judged based on assessment the area of a wound from time to time. During research of wound healing properties disturbance of integral in neither group: general condition and behavior of animals, food intake, and excretion. Wound healing action of 3% ointment on base of Polygonum L. essential oil and polyethyleneglycol is comparable with the action of reference substances. As more favorable healing dynamics was observed in the experimental group than in control group, the tested ointment can be deemed more promising for further detailed study as wound healing means.

Keywords: antibacterial, antifungal, bioactive substances, essential oils, isolation, Polygonum L.

Procedia PDF Downloads 510
96 Modeling and Performance Evaluation of an Urban Corridor under Mixed Traffic Flow Condition

Authors: Kavitha Madhu, Karthik K. Srinivasan, R. Sivanandan

Abstract:

Indian traffic can be considered as mixed and heterogeneous due to the presence of various types of vehicles that operate with weak lane discipline. Consequently, vehicles can position themselves anywhere in the traffic stream depending on availability of gaps. The choice of lateral positioning is an important component in representing and characterizing mixed traffic. The field data provides evidence that the trajectory of vehicles in Indian urban roads have significantly varying longitudinal and lateral components. Further, the notion of headway which is widely used for homogeneous traffic simulation is not well defined in conditions lacking lane discipline. From field data it is clear that following is not strict as in homogeneous and lane disciplined conditions and neighbouring vehicles ahead of a given vehicle and those adjacent to it could also influence the subject vehicles choice of position, speed and acceleration. Given these empirical features, the suitability of using headway distributions to characterize mixed traffic in Indian cities is questionable, and needs to be modified appropriately. To address these issues, this paper attempts to analyze the time gap distribution between consecutive vehicles (in a time-sense) crossing a section of roadway. More specifically, to characterize the complex interactions noted above, the influence of composition, manoeuvre types, and lateral placement characteristics on time gap distribution is quantified in this paper. The developed model is used for evaluating various performance measures such as link speed, midblock delay and intersection delay which further helps to characterise the vehicular fuel consumption and emission on urban roads of India. Identifying and analyzing exact interactions between various classes of vehicles in the traffic stream is essential for increasing the accuracy and realism of microscopic traffic flow modelling. In this regard, this study aims to develop and analyze time gap distribution models and quantify it by lead lag pair, manoeuvre type and lateral position characteristics in heterogeneous non-lane based traffic. Once the modelling scheme is developed, this can be used for estimating the vehicle kilometres travelled for the entire traffic system which helps to determine the vehicular fuel consumption and emission. The approach to this objective involves: data collection, statistical modelling and parameter estimation, simulation using calibrated time-gap distribution and its validation, empirical analysis of simulation result and associated traffic flow parameters, and application to analyze illustrative traffic policies. In particular, video graphic methods are used for data extraction from urban mid-block sections in Chennai, where the data comprises of vehicle type, vehicle position (both longitudinal and lateral), speed and time gap. Statistical tests are carried out to compare the simulated data with the actual data and the model performance is evaluated. The effect of integration of above mentioned factors in vehicle generation is studied by comparing the performance measures like density, speed, flow, capacity, area occupancy etc under various traffic conditions and policies. The implications of the quantified distributions and simulation model for estimating the PCU (Passenger Car Units), capacity and level of service of the system are also discussed.

Keywords: lateral movement, mixed traffic condition, simulation modeling, vehicle following models

Procedia PDF Downloads 320
95 Effects of Combined Lewis Acid and Ultrasonic Pretreatment on the Physicochemical Properties of Heat-Treated Moso Bamboo

Authors: Tianfang Zhang, Luxi He, Zhengbin He, Songlin Yi

Abstract:

Moso bamboo is a common non-wood forest resource in Asia that is widely used in construction, furniture, and other fields. Influenced by the heterogeneous structure and various hygroscopic groups of bamboo, the deformation occurs as moisture absorption and desorption when the environment temperature and humidity conditions change. Thermal modification is a well-established commercial technology for improving the dimensional stability of bamboo. However, the higher energy consumption and carbon emissions limit its further development. Previous studies have indicated that inorganic salt-assisted thermal modification could lead to significant reductions in moisture absorption and energy consumption. Represented by metal chlorides, it could show Lewis acid properties when dissolved in water, generating metal ion ligand complexes. In addition, ultrasonic treatment, as an efficient and environmentally friendly physical treatment method, improved the accessibility of pretreatment chemical impregnation agents and intensified mass and heat transfer during reactions. To save energy and reduce deformation, this study elucidates the influence of zinc chloride-ultrasonic treatment on the physicochemical properties of heat-treated bamboo, and the details of the bamboo deformation mechanism with Lewis acid are explained. Three sets of parameters (inorganic salt concentration, ultrasonic frequency and heat treatment temperature) were designed, and an optimized process was proposed to clarify this scientific question, that is: 5% (w/w) zinc chloride solution, 40 kHz ultrasonic waves and heat treatment at 160 °C. The samples were characterized by different means to analyze changes in their macroscopic features, pore structure, chemical structure and chemical composition. The results suggested that the maximum weight loss rate was reduced by at least 19.75%. The maximum thermal degradation peak of hemicellulose was significantly shifted forward. The hygroscopicity was reduced by 10.15%, the relative crystallinity was increased by 4.4%, the surface contact angle was increased by 25.2%, and the color change was increased by 23.60 in the optimal condition. From the electron microscope observation, the treated surface became rougher, and cracks appeared in some weaker areas, accelerating starch loss and removing granular attachments around the pits. By ion diffusion, zinc ions diffused into hemicellulose and a partial amorphous region of cellulose. Parts of the cell wall structure were subjected to swelling and degradation, leading to the broken state of parenchyma cells. From the Raman spectrum, compared to conventional thermal modifications, hemicellulose thermal degradation and lignin migration is promoted by Lewis acid under dilute acid-thermal condition. As shown in this work, the combined Lewis acid and ultrasonic pretreatment as an environmentally friendly, safe, and efficient physic-chemical combined pretreatment method improved the dimensional stability of Moso bamboo and lowered the thermal degradation conditions. This method has great potential for development in the field of bamboo heat treatment, and it might provide some guidance for making dark bamboo flooring.

Keywords: Moso bamboo, Lewis acid, ultrasound, heat treatment

Procedia PDF Downloads 42
94 Development and Experimental Validation of Coupled Flow-Aerosol Microphysics Model for Hot Wire Generator

Authors: K. Ghosh, S. N. Tripathi, Manish Joshi, Y. S. Mayya, Arshad Khan, B. K. Sapra

Abstract:

We have developed a CFD coupled aerosol microphysics model in the context of aerosol generation from a glowing wire. The governing equations can be solved implicitly for mass, momentum, energy transfer along with aerosol dynamics. The computationally efficient framework can simulate temporal behavior of total number concentration and number size distribution. This formulation uniquely couples standard K-Epsilon scheme with boundary layer model with detailed aerosol dynamics through residence time. This model uses measured temperatures (wire surface and axial/radial surroundings) and wire compositional data apart from other usual inputs for simulations. The model predictions show that bulk fluid motion and local heat distribution can significantly affect the aerosol behavior when the buoyancy effect in momentum transfer is considered. Buoyancy generated turbulence was found to be affecting parameters related to aerosol dynamics and transport as well. The model was validated by comparing simulated predictions with results obtained from six controlled experiments performed with a laboratory-made hot wire nanoparticle generator. Condensation particle counter (CPC) and scanning mobility particle sizer (SMPS) were used for measurement of total number concentration and number size distribution at the outlet of reactor cell during these experiments. Our model-predicted results were found to be in reasonable agreement with observed values. The developed model is fast (fully implicit) and numerically stable. It can be used specifically for applications in the context of the behavior of aerosol particles generated from glowing wire technique and in general for other similar large scale domains. Incorporation of CFD in aerosol microphysics framework provides a realistic platform to study natural convection driven systems/ applications. Aerosol dynamics sub-modules (nucleation, coagulation, wall deposition) have been coupled with Navier Stokes equations modified to include buoyancy coupled K-Epsilon turbulence model. Coupled flow-aerosol dynamics equation was solved numerically and in the implicit scheme. Wire composition and temperature (wire surface and cell domain) were obtained/measured, to be used as input for the model simulations. Model simulations showed a significant effect of fluid properties on the dynamics of aerosol particles. The role of buoyancy was highlighted by observation and interpretation of nucleation zones in the planes above the wire axis. The model was validated against measured temporal evolution, total number concentration and size distribution at the outlet of hot wire generator cell. Experimentally averaged and simulated total number concentrations were found to match closely, barring values at initial times. Steady-state number size distribution matched very well for sub 10 nm particle diameters while reasonable differences were noticed for higher size ranges. Although tuned specifically for the present context (i.e., aerosol generation from hotwire generator), the model can also be used for diverse applications, e.g., emission of particles from hot zones (chimneys, exhaust), fires and atmospheric cloud dynamics.

Keywords: nanoparticles, k-epsilon model, buoyancy, CFD, hot wire generator, aerosol dynamics

Procedia PDF Downloads 116
93 Alternative Energy and Carbon Source for Biosurfactant Production

Authors: Akram Abi, Mohammad Hossein Sarrafzadeh

Abstract:

Because of their several advantages over chemical surfactants, biosurfactants have given rise to a growing interest in the past decades. Advantages such as lower toxicity, higher biodegradability, higher selectivity and applicable at extreme temperature and pH which enables them to be used in a variety of applications such as: enhanced oil recovery, environmental and pharmaceutical applications, etc. Bacillus subtilis produces a cyclic lipopeptide, called surfactin, which is one of the most powerful biosurfactants with ability to decrease surface tension of water from 72 mN/m to 27 mN/m. In addition to its biosurfactant character, surfactin exhibits interesting biological activities such as: inhibition of fibrin clot formation, lyses of erythrocytes and several bacterial spheroplasts, antiviral, anti-tumoral and antibacterial properties. Surfactin is an antibiotic substance and has been shown recently to possess anti-HIV activity. However, application of biosurfactants is limited by their high production cost. The cost can be reduced by optimizing biosurfactant production using cheap feed stock. Utilization of inexpensive substrates and unconventional carbon sources like urban or agro-industrial wastes is a promising strategy to decrease the production cost of biosurfactants. With suitable engineering optimization and microbiological modifications, these wastes can be used as substrates for large-scale production of biosurfactants. As an effort to fulfill this purpose, in this work we have tried to utilize olive oil as second carbon source and also yeast extract as second nitrogen source to investigate the effect on both biomass and biosurfactant production improvement in Bacillus subtilis cultures. Since the turbidity of the culture was affected by presence of the oil, optical density was compromised and no longer could be used as an index of growth and biomass concentration. Therefore, cell Dry Weight measurements with applying necessary tactics for removing oil drops to prevent interference with biomass weight were carried out to monitor biomass concentration during the growth of the bacterium. The surface tension and critical micelle dilutions (CMD-1, CMD-2) were considered as an indirect measurement of biosurfactant production. Distinctive and promising results were obtained in the cultures containing olive oil compared to cultures without it: more than two fold increase in biomass production (from 2 g/l to 5 g/l) and considerable reduction in surface tension, down to 40 mN/m at surprisingly early hours of culture time (only 5hr after inoculation). This early onset of biosurfactant production in this culture is specially interesting when compared to the conventional cultures at which this reduction in surface tension is not obtained until 30 hour of culture time. Reducing the production time is a very prominent result to be considered for large scale process development. Furthermore, these results can be used to develop strategies for utilization of agro-industrial wastes (such as olive oil mill residue, molasses, etc.) as cheap and easily accessible feed stocks to decrease the high costs of biosurfactant production.

Keywords: agro-industrial waste, bacillus subtilis, biosurfactant, fermentation, second carbon and nitrogen source, surfactin

Procedia PDF Downloads 268
92 La0.80Ag0.15MnO3 Magnetic Nanoparticles for Self-Controlled Magnetic Fluid Hyperthermia

Authors: Marian Mihalik, Kornel Csach, Martin Kovalik, Matúš Mihalik, Martina Kubovčíková, Maria Zentková, Martin Vavra, Vladimír Girman, Jaroslav Briančin, Marija Perovic, Marija Boškovic, Magdalena Fitta, Robert Pelka

Abstract:

Current nanomaterials for use in biomedicine are based mainly on iron oxides and on present knowledge on magnetic nanostructures. Manganites can represent another material which can be used optionally. Manganites and their unique electronic properties have been extensively studied in the last decades not only due to fundamental interest but to possible applications of colossal magnetoresistance, magnetocaloric effect, and ferroelectric properties. It was found that the oxygen-reduction reaction on perovskite oxide is intimately connected with metal ion e.g., orbital occupation. The effect of oxygen deviation from the stoichiometric composition on crystal structure was studied very carefully by many authors on LaMnO₃. Depending on oxygen content, the crystal structure changes from orthorhombic one to rhombohedric for oxygen content 3.1. In the case of hole-doped manganites, the change from the orthorhombic crystal structure, which is typical for La1-xCaxMnO3 based manganites, to the rhombohedric crystal structure (La1-xMxMnO₃ where M = K, Ag, and Sr based materials) results in an enormous increase of the Curie temperature. In our paper, we study the effect of oxygen content on crystal structure, thermal, and magnetic properties (including magnetocaloric effect) of La1-xAgxMnO₃nano particle system. The content of oxygen in samples was tuned by heat treatment in different thermal regimes and in various environment (air, oxygen, argon). Water nanosuspensions based on La0.80Ag0.15MnO₃ magnetic particles with the Curie temperature of about 43oC were prepared by two different approaches. First, by using a laboratory circulation mill for milling of powder in the presence of sodium dodecyl sulphate (SDS) and subsequent centrifugation. Second nanosuspension was prepared using an agate bowl, etching in citric acid and HNO3, ultrasound homogeniser, centrifugation, and dextran 40 kDA or 15 kDA as surfactant. Electrostatic stabilisation obtained by the first approach did not offer long term kinetic and aggregation colloidal stability and was unable to compensate for attractive forces between particles under a magnetic field. By the second approach, we prepared suspension oversaturated by dextran 40 kDA for steric stabilisation, with evidence of the presence of superparamagnetic behaviour. Low concentration of nanoparticles and not ideal coverage of nanoparticles impacting the stability of ferrofluids was the disadvantage of this approach. Strong steric stabilisation was observable at alcaic conditions under pH = ~10. Application of dextran 15 kDA leads to relatively stable ferrofluid with pH around physiological conditions, but desegregation of powder by HNO₃ was not effective enough, and the average size of fragments was to large of about 150 nm, and we did not see any signature of superparamagnetic behaviour. The prepared ferrofluids were characterised by scanning and transition microscope method, thermogravimetry, magnetization, and AC susceptibility measurements. Specific Absorption Rate measurements were undertaken on powder as well on ferrofluids in order to estimate the potential application of La₀.₈₀Ag₀.₁₅MnO₃ magnetic particles based ferrofluid for hyperthermia. Our complex study contains an investigation of biocompatibility and potential biohazard of this material.

Keywords: manganites, magnetic nanoparticles, oxygen content, magnetic phase transition, magnetocaloric effect, ferrofluid, hyperthermia

Procedia PDF Downloads 64
91 An Analysis of Younger Consumers’ Perceptions, Purchasing Decisions, and Pro-Environmental Behavior: A Market Experiment on Green Advertising

Authors: Mokhlisur Rahman

Abstract:

Consumers have developed a sense of responsibility in the past decade, reflecting on their purchasing behavior after viewing an advertisement. Consumers tend to buy ideal products that enable them to be judged by their close network in the opinion world. In such value considerations, any information that feeds consumers' desire for social status helps, which becomes capital for educating consumers on the importance of purchasing green products for manufacturing companies. Companies' effort in manufacturing green products to get high conversion demands a good deal of promotion with quality information and engaging representation. Additionally, converting people from traditional to eco-friendly products requires innovative alternatives to replace the existing product. Considering consumers' understanding of products and their purchasing behavior, it becomes essential for the brands to know the extent to which consumers' level of awareness of the ecosystem is to make them more responsive to green products. Another is brand image plays a vital role in consumers' perception regarding the credibility of the claim regarding the product. Brand image is a significant positive influence on the younger generation, and younger generations tend to engage more in pro-environmental behavior, including purchasing sustainable products. For example, Adidas senses the necessity of satisfying consumers with something that brings more profits and serves the planet. Several of their eco-friendly products are already in the market, and one is UltraBOOST DNA parley, made from 3D-printed recycled ocean waste. As a big brand image, Adidas has leveraged an interest among the younger generation by incorporating sustainability into its advertising. Therefore, influential brands' effort in the sustainable revolution through engaging advertisement makes it more prominent by educating consumers about the reason behind launching the product. This study investigates younger consumers' attitudes toward sustainability, brand recognition, exposure to green advertising, willingness to receive more green advertising, purchasing green products, and motivation. The study conducts a market experiment by creating two video advertisements: a sustainable product video advertisement and a non-sustainable product video advertisement. Both the videos have similar content design and the same length of 2 minutes, but the messages are different based on the identical product type college bags. The first video advertisement promotes eco-friendly college bags made from biodegradable raw materials, and the second promotes non-sustainable college bags made from plastics. After viewing the videos, consumers make purchasing decisions and complete an online survey to collect their attitudes toward sustainable products. The study finds the importance of a sense of responsibility to the consumers for climate change issues. Also, it empowers people to take a step, even small, and increases environmental awareness. This study provides companies with the knowledge to participate in sustainable product launches by collecting consumers' perceptions and attitudes toward green products. Also, it shows how important it is to build a brand's image for the younger generation.

Keywords: brand-image, environment, green-advertising, sustainability, younger-consumer

Procedia PDF Downloads 45
90 In situ Growth of ZIF-8 on TEMPO-Oxidized Cellulose Nanofibril Film and Coated with Pectin for pH and Enzyme Dual-Responsive Controlled Release Active Packaging

Authors: Tiantian Min, Chuanxiang Cheng, Jin Yue

Abstract:

The growth and reproduction of microorganisms in food packaging can cause food decay and foodborne diseases, which pose a serious threat to the health of consumers and even cause serious economic losses. Active food packaging containing antibacterial bioactive compounds is a promising strategy for extending the shelf life of products and maintaining the food quality, as well as reducing the food waste. However, most active packaging can only act as slow-release effect for antimicrobials, which causes the release rate of antimicrobials not match the growth rate of microorganisms. Stimuli-responsive active packaging materials based on biopolymeric substrates and bioactive substances that respond to some biological and non-biological trigger factors provide more opportunities for fresh food preservation. The biological stimuli factors such as relative humidity, pH and enzyme existed in the exudate secreted by microorganisms have been expected to design food packaging materials. These stimuli-responsive materials achieved accurate release or delivery of bioactive substances at specific time and appropriate dose. Recently, metal-organic-frameworks (MOFs) nanoparticles become attractive carriers to enhance the efficiency of bioactive compounds or drugs. Cellulose nanofibrils have been widely applied for film substrates due to their biodegradability and biocompatibility. The abundant hydroxyl groups in cellulose can be oxidized to carboxyl groups by TEMPO, making it easier to anchoring MOFs and to be further modification. In this study, a pH and enzyme dual-responsive CAR@ZIF-8/TOCNF/PE film was fabricated by in-situ growth of ZIF-8 nanoparticles onto TEMPO-oxidized cellulose (TOCNF) film and further coated with pectin (PE) for stabilization and controlled release of carvacrol (CAR). The enzyme triggered release of CAR was achieved owing to the degradation of pectin by pectinase secreted by microorganisms. Similarly, the pH-responsive release of CAR was attributed to the unique skeleton degradation of ZIF-8, further accelerating the release of CAR from the topological structure of ZIF-8. The composite film performed excellent crystallinity and adsorb ability confirmed by X-ray diffraction and BET analysis, and the inhibition efficiency against Escherichia coli, Staphylococcus aureus and Aspergillus niger reached more than 99%. The composite film was capable of releasing CAR when exposure to dose-dependent enzyme (0.1, 0.2, and 0.3 mg/mL) and acidic condition (pH = 5). When inoculated 10 μL of Aspergillus niger spore suspension on the equatorial position of mango and raspberries, this composite film acted as packaging pads effectively inhibited the mycelial growth and prolonged the shelf life of mango and raspberries to 7 days. Such MOF-TOCNF based film provided a targeted, controlled and sustained release of bioactive compounds for long-term antibacterial activity and preservation effect, which can also avoid the cross-contamination of fruits.

Keywords: active food packaging, controlled release, fruit preservation, in-situ growth, stimuli-responsive

Procedia PDF Downloads 35
89 Optimized Electron Diffraction Detection and Data Acquisition in Diffraction Tomography: A Complete Solution by Gatan

Authors: Saleh Gorji, Sahil Gulati, Ana Pakzad

Abstract:

Continuous electron diffraction tomography, also known as microcrystal electron diffraction (MicroED) or three-dimensional electron diffraction (3DED), is a powerful technique, which in combination with cryo-electron microscopy (cryo-ED), can provide atomic-scale 3D information about the crystal structure and composition of different classes of crystalline materials such as proteins, peptides, and small molecules. Unlike the well-established X-ray crystallography method, 3DED does not require large single crystals and can collect accurate electron diffraction data from crystals as small as 50 – 100 nm. This is a critical advantage as growing larger crystals, as required by X-ray crystallography methods, is often very difficult, time-consuming, and expensive. In most cases, specimens studied via 3DED method are electron beam sensitive, which means there is a limitation on the maximum amount of electron dose one can use to collect the required data for a high-resolution structure determination. Therefore, collecting data using a conventional scintillator-based fiber coupled camera brings additional challenges. This is because of the inherent noise introduced during the electron-to-photon conversion in the scintillator and transfer of light via the fibers to the sensor, which results in a poor signal-to-noise ratio and requires a relatively higher and commonly specimen-damaging electron dose rates, especially for protein crystals. As in other cryo-EM techniques, damage to the specimen can be mitigated if a direct detection camera is used which provides a high signal-to-noise ratio at low electron doses. In this work, we have used two classes of such detectors from Gatan, namely the K3® camera (a monolithic active pixel sensor) and Stela™ (that utilizes DECTRIS hybrid-pixel technology), to address this problem. The K3 is an electron counting detector optimized for low-dose applications (like structural biology cryo-EM), and Stela is also a counting electron detector but optimized for diffraction applications with high speed and high dynamic range. Lastly, data collection workflows, including crystal screening, microscope optics setup (for imaging and diffraction), stage height adjustment at each crystal position, and tomogram acquisition, can be one of the other challenges of the 3DED technique. Traditionally this has been all done manually or in a partly automated fashion using open-source software and scripting, requiring long hours on the microscope (extra cost) and extensive user interaction with the system. We have recently introduced Latitude® D in DigitalMicrograph® software, which is compatible with all pre- and post-energy-filter Gatan cameras and enables 3DED data acquisition in an automated and optimized fashion. Higher quality 3DED data enables structure determination with higher confidence, while automated workflows allow these to be completed considerably faster than before. Using multiple examples, this work will demonstrate how to direct detection electron counting cameras enhance 3DED results (3 to better than 1 Angstrom) for protein and small molecule structure determination. We will also show how Latitude D software facilitates collecting such data in an integrated and fully automated user interface.

Keywords: continuous electron diffraction tomography, direct detection, diffraction, Latitude D, Digitalmicrograph, proteins, small molecules

Procedia PDF Downloads 62
88 Structured-Ness and Contextual Retrieval Underlie Language Comprehension

Authors: Yao-Ying Lai, Maria Pinango, Ashwini Deo

Abstract:

While grammatical devices are essential to language processing, how comprehension utilizes cognitive mechanisms is less emphasized. This study addresses this issue by probing the complement coercion phenomenon: an entity-denoting complement following verbs like begin and finish receives an eventive interpretation. For example, (1) “The queen began the book” receives an agentive reading like (2) “The queen began [reading/writing/etc.…] the book.” Such sentences engender additional processing cost in real-time comprehension. The traditional account attributes this cost to an operation that coerces the entity-denoting complement to an event, assuming that these verbs require eventive complements. However, in closer examination, examples like “Chapter 1 began the book” undermine this assumption. An alternative, Structured Individual (SI) hypothesis, proposes that the complement following aspectual verbs (AspV; e.g. begin, finish) is conceptualized as a structured individual, construed as an axis along various dimensions (e.g. spatial, eventive, temporal, informational). The composition of an animate subject and an AspV such as (1) engenders an ambiguity between an agentive reading along the eventive dimension like (2), and a constitutive reading along the informational/spatial dimension like (3) “[The story of the queen] began the book,” in which the subject is interpreted as a subpart of the complement denotation. Comprehenders need to resolve the ambiguity by searching contextual information, resulting in additional cost. To evaluate the SI hypothesis, a questionnaire was employed. Method: Target AspV sentences such as “Shakespeare began the volume.” were preceded by one of the following types of context sentence: (A) Agentive-biasing, in which an event was mentioned (…writers often read…), (C) Constitutive-biasing, in which a constitutive meaning was hinted (Larry owns collections of Renaissance literature.), (N) Neutral context, which allowed both interpretations. Thirty-nine native speakers of English were asked to (i) rate each context-target sentence pair from a 1~5 scale (5=fully understandable), and (ii) choose possible interpretations for the target sentence given the context. The SI hypothesis predicts that comprehension is harder for the Neutral condition, as compared to the biasing conditions because no contextual information is provided to resolve an ambiguity. Also, comprehenders should obtain the specific interpretation corresponding to the context type. Results: (A) Agentive-biasing and (C) Constitutive-biasing were rated higher than (N) Neutral conditions (p< .001), while all conditions were within the acceptable range (> 3.5 on the 1~5 scale). This suggests that when lacking relevant contextual information, semantic ambiguity decreases comprehensibility. The interpretation task shows that the participants selected the biased agentive/constitutive reading for condition (A) and (C) respectively. For the Neutral condition, the agentive and constitutive readings were chosen equally often. Conclusion: These findings support the SI hypothesis: the meaning of AspV sentences is conceptualized as a parthood relation involving structured individuals. We argue that semantic representation makes reference to spatial structured-ness (abstracted axis). To obtain an appropriate interpretation, comprehenders utilize contextual information to enrich the conceptual representation of the sentence in question. This study connects semantic structure to human’s conceptual structure, and provides a processing model that incorporates contextual retrieval.

Keywords: ambiguity resolution, contextual retrieval, spatial structured-ness, structured individual

Procedia PDF Downloads 302
87 Using Business Interactive Games to Improve Management Skills

Authors: Nuno Biga

Abstract:

Continuous processes’ improvement is a permanent challenge for managers of any organization. Lean management means that efficiency gains can be obtained through a systematic framework able to explore synergies between processes, eliminate waste of time, and other resources. Leaderships in organizations determine the efficiency of the teams through their influence on collaborators, their motivation, and consolidation of ownership (group) feeling. The “organization health” depends on the leadership style, which is directly influenced by the intrinsic characteristics of each personality and leadership ability (leadership competencies). Therefore, it’s important that managers can correct in advance any deviation from expected leadership exercises. Top management teams must assume themselves as regulatory agents of leadership within the organization, ensuring monitoring of actions and the alignment of managers in accordance with the humanist standards anchored in a visible Code of Ethics and Conduct. This article is built around an innovative model of “Business Interactive Games” (BI GAMES) that simulates a real-life management environment. It shows that the strategic management of operations depends on a complex set of endogenous and exogenous variables to the intervening agents that require specific skills and a set of critical processes to monitor. BI GAMES are designed for each management reality and have already been applied successfully in several contexts over the last five years comprising the educational and enterprise ones. Results from these experiences are used to demonstrate how serious games in working living labs contributed to improve the organizational environment by focusing on the evaluation of players’ (agents’) skills, empower its capabilities, and the critical factors that create value in each context. The implementation of the BI GAMES simulator highlights that leadership skills are decisive for the performance of teams, regardless of the sector of activity and the specificities of each organization whose operation is intended to simulate. The players in the BI GAMES can be managers or employees of different roles in the organization or students in the learning context. They interact with each other and are asked to decide/make choices in the presence of several options for the follow-up operation, for example, when the costs and benefits are not fully known but depend on the actions of external parties (e.g., subcontracted enterprises and actions of regulatory bodies). Each team must evaluate resources used/needed in each operation, identify bottlenecks in the system of operations, assess the performance of the system through a set of key performance indicators, and set a coherent strategy to improve efficiency. Through the gamification and the serious games approach, organizational managers will be able to confront the scientific approach in strategic decision-making versus their real-life approach based on experiences undertaken. Considering that each BI GAME’s team has a leader (chosen by draw), the performance of this player has a direct impact on the results obtained. Leadership skills are thus put to the test during the simulation of the functioning of each organization, allowing conclusions to be drawn at the end of the simulation, including its discussion amongst participants.

Keywords: business interactive games, gamification, management empowerment skills, simulation living labs

Procedia PDF Downloads 86