Search results for: washing powders
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 505

Search results for: washing powders

55 CLEAN Jakarta Waste Bank Project: Alternative Solution in Urban Solid Waste Management by Community Based Total Sanitation (CBTS) Approach

Authors: Mita Sirait

Abstract:

Everyday Jakarta produces 7,000 tons of solid waste and only about 5,200 tons delivered to landfill out of the city by 720 trucks, the rest are left yet manageable, as reported by Government of Clean Sector. CLEAN Jakarta Project is aimed at empowering community to achieve healthy environment for children and families in urban slum in Semper Barat and Penjaringan sub-district of North Jakarta that consisted of 20,584 people. The project applies Community Based Total Sanitation, an approach to empowering community to achieve total hygiene and sanitation behaviour by triggering activities. As regulated by Ministry of Health, it has 5 pillars: (1) open defecation free, (2) hand-washing with soaps, (3) drinking-water treatment, (4) solid-waste management and (5) waste-water management; and 3 strategic components: 1) demand creation, 2) supply creation and 3) enabling environment. Demand creation is generated by triggering community’s reaction to their daily sanitation habits by exposing them to their surrounding where they can see faeces, waste and other environmental pollutant to stimulate disgusting, embarrassing and responsibility sense. Triggered people then challenged to commit to improving their hygiene practice such as to stop littering and start waste separation. In order to support this commitment, and for supply creation component, the project initiated waste bank with community working group. It facilitated capacity-building trainings, waste bank system formulation and meetings with local authorities to solicit land permit and waste bank decree. As it is of a general banking system, waste bank has customer service, teller, manager, legal paper and provides saving book and money transaction. In 8 months, two waste banks have established with 148 customers, 17 million rupiah cash, and about 9 million of stored recyclables. Approximately 2.5 tons of 15-35 types of recyclable are managed in both waste banks per week. On enabling environment, the project has initiated sanitation working group in community and multi sectors government level, and advocated both parties. The former is expected to promote behaviour change and monitoring in the community, while the latter is expected to support sanitation with regulations, strategies, appraisal and awards; to coordinate partnering and networking, and to replicate best practices to other areas.

Keywords: urban community, waste management, Jakarta, community based total sanitation (CBTS)

Procedia PDF Downloads 263
54 Pond Site Diagnosis: Monoclonal Antibody-Based Farmer Level Tests to Detect the Acute Hepatopancreatic Necrosis Disease in Shrimp

Authors: B. T. Naveen Kumar, Anuj Tyagi, Niraj Kumar Singh, Visanu Boonyawiwat, A. H. Shanthanagouda, Orawan Boodde, K. M. Shankar, Prakash Patil, Shubhkaramjeet Kaur

Abstract:

Early mortality syndrome (EMS)/Acute Hepatopancreatic Necrosis Disease (AHPND) has emerged as a major obstacle for the shrimp farming around the world. It is caused by a strain of Vibrio parahaemolyticus. The possible preventive and control measure is, early and rapid detection of the pathogen in the broodstock, post-larvae and monitoring the shrimp during the culture period. Polymerase chain reaction (PCR) based early detection methods are good, but they are costly, time taking and requires a sophisticated laboratory. The present study was conducted to develop a simple, sensitive and rapid diagnostic farmer level kit for the reliable detection of AHPND in shrimp. A panel of monoclonal antibodies (MAbs) were raised against the recombinant Pir B protein (rPirB). First, an immunodot was developed by using MAbs G3B8 and Mab G3H2 which showed specific reactivity to purified r-PirB protein with no cross-reactivity to other shrimp bacterial pathogens (AHPND free Vibrio parahaemolyticus (Indian strains), V. anguillarum, WSSV, Aeromonas hydrophila, and Aphanomyces invadans). Immunodot developed using Mab G3B8 is more sensitive than that with the Mab G3H2. However, immunodot takes almost 2.5 hours to complete with several hands-on steps. Therefore, the flow-through assay (FTA) was developed by using a plastic cassette containing the nitrocellulose membrane with absorbing pads below. The sample was dotted in the test zone on the nitrocellulose membrane followed by continuos addition of five solutions in the order of i) blocking buffer (BSA) ii) primary antibody (MAb) iii) washing Solution iv) secondary antibody and v) chromogen substrate (TMB) clear purple dots against a white background were considered as positive reactions. The FTA developed using MAbG3B8 is more sensitive than that with MAb G3H2. In FTA the two MAbs showed specific reactivity to purified r-PirB protein and not to other shrimp bacterial pathogens. The FTA is simple to farmer/field level, sensitive and rapid requiring only 8-10 min for completion. Tests can be developed to kits, which will be ideal for use in biosecurity, for the first line of screening (at the port or pond site) and during monitoring and surveillance programmes overall for the good management practices to reduce the risk of the disease.

Keywords: acute hepatopancreatic necrosis disease, AHPND, flow-through assay, FTA, farmer level, immunodot, pond site, shrimp

Procedia PDF Downloads 151
53 Global Experiences in Dealing with Biological Epidemics with an Emphasis on COVID-19 Disease: Approaches and Strategies

Authors: Marziye Hadian, Alireza Jabbari

Abstract:

Background: The World Health Organization has identified COVID-19 as a public health emergency and is urging governments to stop the virus transmission by adopting appropriate policies. In this regard, authorities have taken different approaches to cut the chain or controlling the spread of the disease. Now, the questions we are facing include what these approaches are? What tools should be used to implement each preventive protocol? In addition, what is the impact of each approach? Objective: The aim of this study was to determine the approaches to biological epidemics and related prevention tools with an emphasis on COVID-19 disease. Data sources: Databases including ISI web of science, PubMed, Scopus, Science Direct, Ovid, and ProQuest were employed for data extraction. Furthermore, authentic sources such as the WHO website, the published reports of relevant countries, as well as the Worldometer website were evaluated for gray studies. The time-frame of the study was from 1 December 2019 to 30 May 2020. Methods: The present study was a systematic study of publications related to the prevention strategies for the COVID-19 disease. The study was carried out based on the PRISMA guidelines and CASP for articles and AACODS for grey literature. Results: The study findings showed that in order to confront the COVID-19 epidemic, in general, there are three approaches of "mitigation", "active control" and "suppression" and four strategies of "quarantine", "isolation", "social distance" and "lockdown" in both individual and social dimensions to deal with epidemics. Selection and implementation of each approach requires specific strategies and has different effects when it comes to controlling and inhibiting the disease. Key finding: One possible approach to control the disease is to change individual behavior and lifestyle. In addition to prevention strategies, use of masks, observance of personal hygiene principles such as regular hand washing and non-contact of contaminated hands with the face, as well as an observance of public health principles such as sneezing and coughing etiquettes, safe extermination of personal protective equipment, must be strictly observed. Have not been included in the category of prevention tools. However, it has a great impact on controlling the epidemic, especially the new coronavirus epidemic. Conclusion: Although the use of different approaches to control and inhibit biological epidemics depends on numerous variables, however, despite these requirements, global experience suggests that some of these approaches are ineffective. The use of previous experiences in the world, along with the current experiences of countries, can be very helpful in choosing the accurate approach for each country in accordance with the characteristics of that country and lead to the reduction of possible costs at the national and international levels.

Keywords: novel corona virus, COVID-19, approaches, prevention tools, prevention strategies

Procedia PDF Downloads 102
52 Investigation of Municipal Solid Waste Incineration Filter Cake as Minor Additional Constituent in Cement Production

Authors: Veronica Caprai, Katrin Schollbach, Miruna V. A. Florea, H. J. H. Brouwers

Abstract:

Nowadays MSWI (Municipal Solid Waste Incineration) bottom ash (BA) produced by Waste-to-Energy (WtE) plants represents the majority of the solid residues derived from MSW incineration. Once processed, the BA is often landfilled resulting in possible environmental problems, additional costs for the plant and increasing occupation of public land. In order to limit this phenomenon, European countries such as the Netherlands aid the utilization of MSWI BA in the construction field, by providing standards about the leaching of contaminants into the environment (Dutch Soil Quality Decree). Commonly, BA has a particle size below 32 mm and a heterogeneous chemical composition, depending on its source. By washing coarser BA, an MSWI sludge is obtained. It is characterized by a high content of heavy metals, chlorides, and sulfates as well as a reduced particle size (below 0.25 mm). To lower its environmental impact, MSWI sludge is filtered or centrifuged for removing easily soluble contaminants, such as chlorides. However, the presence of heavy metals is not easily reduced, compromising its possible application. For lowering the leaching of those contaminants, the use of MSWI residues in combination with cement represents a precious option, due to the known retention of those ions into the hydrated cement matrix. Among the applications, the European standard for common cement EN 197-1:1992 allows the incorporation of up to 5% by mass of a minor additional constituent (MAC), such as fly ash or blast furnace slag but also an unspecified filler into cement. To the best of the author's knowledge, although it is widely available, it has the appropriate particle size and a chemical composition similar to cement, FC has not been investigated as possible MAC in cement production. Therefore, this paper will address the suitability of MSWI FC as MAC for CEM I 52.5 R, within a 5% maximum replacement by mass. After physical and chemical characterization of the raw materials, the crystal phases of the pastes are determined by XRD for 3 replacement levels (1%, 3%, and 5%) at different ages. Thereafter, the impact of FC on mechanical and environmental performances of cement is assessed according to EN 196-1 and the Dutch Soil Quality Decree, respectively. The investigation of the reaction products evidences the formation of layered double hydroxides (LDH), in the early stage of the reaction. Mechanically the presence of FC results in a reduction of 28 days compressive strength by 8% for a replacement of 5% wt., compared with the pure CEM I 52.5 R without any MAC. In contrast, the flexural strength is not affected by the presence of FC. Environmentally, the Dutch legislation for the leaching of contaminants for unshaped (granular) material is satisfied. Based on the collected results, FC represents a suitable candidate as MAC in cement production.

Keywords: environmental impact evaluation, Minor additional constituent, MSWI residues, X-ray diffraction crystallography

Procedia PDF Downloads 124
51 Obtaining Composite Cotton Fabric by Cyclodextrin Grafting

Authors: U. K. Sahin, N. Erdumlu, C. Saricam, I. Gocek, M. H. Arslan, H. Acikgoz-Tufan, B. Kalav

Abstract:

Finishing is an important part of fabric processing with which a wide range of features are imparted to greige or colored fabrics for various end-uses. Especially, by the addition or impartation of nano-scaled particles to the fabric structure composite fabrics, a kind of composite materials can be acquired. Composite materials, generally shortened as composites or in other words composition materials, are engineered or naturally occurring materials made from two or more component materials with significantly different physical, mechanical or chemical characteristics remaining separate and distinctive at the macroscopic or microscopic scale within the end product structure. Therefore, the technique finishing which is one of the fundamental methods to be applied on fabrics for obtainment of composite fabrics with many functionalities was used in the current study with the same purpose. However, regardless of the finishing materials applied, the efficient life of finished product on offering desired feature is low, since the durability of finishes on the material is limited. Any increase in durability of these finishes on textiles would enhance the life of use for textiles, which will result in happier users. Therefore, in this study, since higher durability was desired for the finishing materials fixed on the fabrics, nano-scaled hollow structured cyclodextrins were chemically imparted by grafting to the structure of conventional cotton fabrics by the help of finishing technique in order to be fixed permanently. By this way, a processed and functionalized base fabric having potential to be treated in the subsequent processes with many different finishing agents and nanomaterials could be obtained. Henceforth, this fabric can be used as a multi-functional fabric due to the encapturing ability of cyclodextrins to molecules/particles via physical/chemical means. In this study, scoured and rinsed woven bleached plain weave 100% cotton fabrics were utilized because textiles made of cotton are the most demanded textile products in the textile market by the textile consumers in daily life. Cotton fabric samples were immersed in treating baths containing β-cyclodextrin and 1,2,3,4-butanetetracarboxylic acid and to reduce the curing temperature the catalyst sodium hypophosphite monohydrate was used. All impregnated fabric samples were pre-dried. The reaction of grafting was performed in dry state. The treated and cured fabric samples were rinsed with warm distilled water and dried. The samples were dried for 4 h and weighed before and after finishing and rinsing. Stability and durability of β-cyclodextrins on fabric surface against external factors such as washing as well as strength of functionalized fabric in terms of tensile and tear strength were tested. Presence and homogeneity of distribution of β-cyclodextrins on fabric surface were characterized.

Keywords: cotton fabric, cyclodextrine, improved durability, multifunctional composite textile

Procedia PDF Downloads 268
50 Impact of Collieries on Groundwater in Damodar River Basin

Authors: Rajkumar Ghosh

Abstract:

The industrialization of coal mining and related activities has a significant impact on groundwater in the surrounding areas of the Damodar River. The Damodar River basin, located in eastern India, is known as the "Ruhr of India" due to its abundant coal reserves and extensive coal mining and industrial operations. One of the major consequences of collieries on groundwater is the contamination of water sources. Coal mining activities often involve the excavation and extraction of coal through underground or open-pit mining methods. These processes can release various pollutants and chemicals into the groundwater, including heavy metals, acid mine drainage, and other toxic substances. As a result, the quality of groundwater in the Damodar River region has deteriorated, making it unsuitable for drinking, irrigation, and other purposes. The high concentration of heavy metals, such as arsenic, lead, and mercury, in the groundwater has posed severe health risks to the local population. Prolonged exposure to contaminated water can lead to various health problems, including skin diseases, respiratory issues, and even long-term ailments like cancer. The contamination has also affected the aquatic ecosystem, harming fish populations and other organisms dependent on the river's water. Moreover, the excessive extraction of groundwater for industrial processes, including coal washing and cooling systems, has resulted in a decline in the water table and depletion of aquifers. This has led to water scarcity and reduced availability of water for agricultural activities, impacting the livelihoods of farmers in the region. Efforts have been made to mitigate these issues through the implementation of regulations and improved industrial practices. However, the historical legacy of coal industrialization continues to impact the groundwater in the Damodar River area. Remediation measures, such as the installation of water treatment plants and the promotion of sustainable mining practices, are essential to restore the quality of groundwater and ensure the well-being of the affected communities. In conclusion, the coal industrialization in the Damodar River surrounding has had a detrimental impact on groundwater. This research focuses on soil subsidence induced by the over-exploitation of ground water for dewatering open pit coal mines. Soil degradation happens in arid and semi-arid regions as a result of land subsidence in coal mining region, which reduces soil fertility. Depletion of aquifers, contamination, and water scarcity are some of the key challenges resulting from these activities. It is crucial to prioritize sustainable mining practices, environmental conservation, and the provision of clean drinking water to mitigate the long-lasting effects of collieries on the groundwater resources in the region.

Keywords: coal mining, groundwater, soil subsidence, water table, damodar river

Procedia PDF Downloads 50
49 Carbon-Supported Pd Nano-Particles as Green Catalysts for the Production of Fuels from Biomass

Authors: Andrea Dragu, Solen Kinayyigit, Valerie Colliere, Karin Karin Philippot, Camelia Bala, Vasile I. Parvulescu

Abstract:

The production of transportation fuels from biomass has gained a growing attention due to diminishing fossil fuel reserves, rising petroleum prices and increasing concern about global warming. In recent years, renewable hydrocarbons that are completely fungible with fossil fuels have been suggested to be efficiently produced by catalytic deoxygenation of fatty acids and their derivatives viadecarboxylation / decarbonylation. Several triglycerides (tall oil fatty acids) and saturated/unsaturated fatty acids and their corresponding esters were used as feedstocks. Their impact together with the influence of the reaction conditions and the catalyst composition on the nature of the reaction pathways of the deoxygenation of vegetable oils and their derivatives were recently reviewed. Following this state of the art the aim of the present study was the investigation of Pd NPs deposited onto mesoporous carbon supports as active and stable catalysts for the deoxygenation of oleic acid. The catalysts were prepared by the deposition of Pd NPs synthesised following an organometallic route on mesoporous carbons with different characteristics. Experiments were carried out under both batch and flow conditions. They demonstrated that under batch conditions (200 atm; 573K), the extent of the reaction depended, firstly, on the Pd loading and then on the metal dispersion and the oxidation state of palladium, both influenced by the way the support has been treated before the NPs deposition and by the preparation/stabilization methodology of Pd NPs. No aromatic compounds were detected in the reaction products but octadecanol and octadecane were observed in large extents. Under flow conditions (4 atm; 573 K), the conversion of stearic acid was superior to that observed in batch conditions. The product mixture contained over 20% heptadecane. No octadecanol, octadecane, and aromatic compounds were detected. The maxima in performances are obtained after only 0.5 h. After that, the yields in heptadecane suffer from a severe decrease until 3h reaction time. However, at that time, stopping feeding the reactor with oleic acid and flushing the catalyst only with mesitylene recovered the activity and the selectivity of the catalysts. With the complete removal of H2, the analysis revealed the presence of heptadecene in high excess compared to heptadecane (almost 7 to 1), thus suggesting decarbonylation as the main route. ICP-OES measurements indicated no leaching of palladium and simple washing of catalysts with mesitylene allowed recycling without any change in conversion or product distribution. Noteworthy, mesitylene as solvent exhibited no effect in this reaction. In conclusion, this study demonstrates the feasibility of such catalysts for the green production of fuels from biomass.

Keywords: fuels from biomass, green catalyst, Pd nano-particles , recycble catalyst

Procedia PDF Downloads 279
48 The Effect of Metal-Organic Framework Pore Size to Hydrogen Generation of Ammonia Borane via Nanoconfinement

Authors: Jing-Yang Chung, Chi-Wei Liao, Jing Li, Bor Kae Chang, Cheng-Yu Wang

Abstract:

Chemical hydride ammonia borane (AB, NH3BH3) draws attentions to hydrogen energy researches for its high theoretical gravimetrical capacity (19.6 wt%). Nevertheless, the elevated AB decomposition temperatures (Td) and unwanted byproducts are main hurdles in practical application. It was reported that the byproducts and Td can be reduced with nanoconfinement technique, in which AB molecules are confined in porous materials, such as porous carbon, zeolite, metal-organic frameworks (MOFs), etc. Although nanoconfinement empirically shows effectiveness on hydrogen generation temperature reduction in AB, the theoretical mechanism is debatable. Low Td was reported in AB@IRMOF-1 (Zn4O(BDC)3, BDC = benzenedicarboxylate), where Zn atoms form closed metal clusters secondary building unit (SBU) with no exposed active sites. Other than nanosized hydride, it was also observed that catalyst addition facilitates AB decomposition in the composite of Li-catalyzed carbon CMK-3, MOF JUC-32-Y with exposed Y3+, etc. It is believed that nanosized AB is critical for lowering Td, while active sites eliminate byproducts. Nonetheless, some researchers claimed that it is the catalytic sites that are the critical factor to reduce Td, instead of the hydride size. The group physically ground AB with ZIF-8 (zeolitic imidazolate frameworks, (Zn(2-methylimidazolate)2)), and found similar reduced Td phenomenon, even though AB molecules were not ‘confined’ or forming nanoparticles by physical hand grinding. It shows the catalytic reaction, not nanoconfinement, leads to AB dehydrogenation promotion. In this research, we explored the possible criteria of hydrogen production temperature from nanoconfined AB in MOFs with different pore sizes and active sites. MOFs with metal SBU such as Zn (IRMOF), Zr (UiO), and Al (MIL-53), accompanying with various organic ligands (BDC and BPDC; BPDC = biphenyldicarboxylate) were modified with AB. Excess MOFs were used for AB size constrained in micropores estimated by revisiting Horvath-Kawazoe model. AB dissolved in methanol was added to MOFs crystalline with MOF pore volume to AB ratio 4:1, and the slurry was dried under vacuum to collect AB@MOF powders. With TPD-MS (temperature programmed desorption with mass spectroscopy), we observed Td was reduced with smaller MOF pores. For example, it was reduced from 100°C to 64°C when MOF micropore ~1 nm, while ~90°C with pore size up to 5 nm. The behavior of Td as a function of AB crystalline radius obeys thermodynamics when the Gibbs free energy of AB decomposition is zero, and no obvious correlation with metal type was observed. In conclusion, we discovered Td of AB is proportional to the reciprocal of MOF pore size, possibly stronger than the effect of active sites.

Keywords: ammonia borane, chemical hydride, metal-organic framework, nanoconfinement

Procedia PDF Downloads 157
47 Evaluation of Differential Interaction between Flavanols and Saliva Proteins by Diffusion and Precipitation Assays on Cellulose Membranes

Authors: E. Obreque-Slier, V. Contreras-Cortez, R. López-Solís

Abstract:

Astringency is a drying, roughing, and sometimes puckering sensation that is experienced on the various oral surfaces during or immediately after tasting foods. This sensation has been closely related to the interaction and precipitation between salivary proteins and polyphenols, specifically flavanols or proanthocyanidins. In addition, the type and concentration of proanthocyanidin influences significantly the intensity of the astringency and consequently the protein/proanthocyanidin interaction. However, most of the studies are based on the interaction between saliva and highly complex polyphenols, without considering the effect of monomeric proanthoancyanidins present in different foods. The aim of this study was to evaluate the effect of different monomeric proanthocyanidins on the diffusion and precipitation of salivary proteins. Thus, solutions of catechin, epicatechin, epigallocatechin and gallocatechin (0, 2.0, 4.0, 6.0, 8.0 and 10 mg/mL) were mixed with human saliva (1: 1 v/v). After incubation for 5 min at room temperature, 15 µL aliquots of each mix were dotted on a cellulose membrane and allowed to dry spontaneously at room temperature. The membrane was fixed, rinsed and stained for proteins with Coomassie blue. After exhaustive washing in 7% acetic acid, the membrane was rinsed once in distilled water and dried under a heat lamp. Both diffusion area and stain intensity of the protein spots were semiqualitative estimates for protein-tannin interaction (diffusion test). The rest of the whole saliva-phenol solution mixtures of the diffusion assay were centrifuged, and 15-μL aliquots from each of the supernatants were dotted on a cellulose membrane. The membrane was processed for protein staining as indicated above. The blue-stained area of protein distribution corresponding to each of the extract dilution-saliva mixtures was quantified by Image J 1.45 software. Each of the assays was performed at least three times. Initially, salivary proteins display a biphasic distribution on cellulose membranes, that is, when aliquots of saliva are placed on absorbing cellulose membranes, and free diffusion of saliva is allowed to occur, a non-diffusible protein fraction becomes surrounded by highly diffusible salivary proteins. In effect, once diffusion has ended, a protein-binding dye shows an intense blue-stained roughly circular area close to the spotting site (non-diffusible fraction) (NDF) which becomes surrounded by a weaker blue-stained outer band (diffusible fraction) (DF). Likewise, the diffusion test showed that epicatechin caused the complete disappearance of DF from saliva with 2 mg/mL. Also, epigallocatechin and gallocatechin caused a similar effect with 4 mg/mL, while catechin generated the same effect at 8 mg/mL. In the precipitation test, the use of epicatechin and gallocatechin generated evident precipitates at the bottom of the Eppendorf tubes. In summary, the flavanol type differentially affects the diffusion and precipitation of saliva, which would affect the sensation of astringency perceived by consumers.

Keywords: astringency, polyphenols, tannins, tannin-protein interaction

Procedia PDF Downloads 175
46 Tuberculosis (TB) and Lung Cancer

Authors: Asghar Arif

Abstract:

Lung cancer has been recognized as one of the greatest common cancers, causing the annual mortality rate of about 1.2 million people in the world. Lung cancer is the most prevalent cancer in men and the third-most common cancer among women (after breast and digestive cancers).Recent evidences have shown the inflammatory process as one of the potential factors of cancer. Tuberculosis (TB), pneumonia, and chronic bronchitis are among the most important inflammation-inducing factors in the lungs, among which TB has a more profound role in the emergence of cancer.TB is one of the important mortality factors throughout the world, and 205,000 death cases are reported annually due to this disease. Chronic inflammation and fibrosis due to TB can induce genetic mutation and alternations. Parenchyma tissue of lung is involved in both diseases of TB and lung cancer, and continuous cough in lung cancer, morphological vascular variations, lymphocytosis processes, and generation of immune system mediators such as interleukins, are all among the factors leading to the hypothesis regarding the role of TB in lung cancer Some reports have shown that the induction of necrosis and apoptosis or TB reactivation, especially in patients with immune-deficiency, may result in increasing IL-17 and TNF_α, which will either decrease P53 activity or increase the expression of Bcl-2, decrease Bax-T, and cause the inhibition of caspase-3 expression due to decreasing the expression of mitochondria cytochrome oxidase. It has been also indicated that following the injection of BCG vaccine, the host immune system will be reinforced, and in particular, the rates of gamma interferon, nitric oxide, and interleukin-2 are increased. Therefore, CD4 + lymphocyte function will be improved, and the person will be immune against cancer.Numerous prospective studies have so far been conducted on the role of TB in lung cancer, and it seems that this disease is effective in that particular cancer.One of the main challenges of lung cancer is its correct and timely diagnosis. Unfortunately, clinical symptoms (such as continuous cough, hemoptysis, weight loss, fever, chest pain, dyspnea, and loss of appetite) and radiological images are similar in TB and lung cancer. Therefore, anti-TB drugs are routinely prescribed for the patients in the countries with high prevalence of TB, like Pakistan. Regarding the similarity in clinical symptoms and radiological findings of lung cancer, proper diagnosis is necessary for TB and respiratory infections due to nontuberculousmycobacteria (NTM). Some of the drug resistive TB cases are, in fact, lung cancer or NTM lung infections. Acid-fast staining and histological study of phlegm and bronchial washing, culturing and polymerase chain reaction TB are among the most important solutions for differential diagnosis of these diseases. Briefly, it is assumed that TB is one of the risk factors for cancer. Numerous studies have been conducted in this regard throughout the world, and it has been observed that there is a significant relationship between previous TB infection and lung cancer. However, to prove this hypothesis, further and more extensive studies are required. In addition, as the clinical symptoms and radiological findings of TB, lung cancer, and non-TB mycobacteria lung infections are similar, they can be misdiagnosed as TB.

Keywords: TB and lung cancer, TB people, TB servivers, TB and HIV aids

Procedia PDF Downloads 47
45 Chemical Technology Approach for Obtaining Carbon Structures Containing Reinforced Ceramic Materials Based on Alumina

Authors: T. Kuchukhidze, N. Jalagonia, T. Archuadze, G. Bokuchava

Abstract:

The growing scientific-technological progress in modern civilization causes actuality of producing construction materials which can successfully work in conditions of high temperature, radiation, pressure, speed, and chemically aggressive environment. Such extreme conditions can withstand very few types of materials and among them, ceramic materials are in the first place. Corundum ceramics is the most useful material for creation of constructive nodes and products of various purposes for its low cost, easy accessibility to raw materials and good combination of physical-chemical properties. However, ceramic composite materials have one disadvantage; they are less plastics and have lower toughness. In order to increase the plasticity, the ceramics are reinforced by various dopants, that reduces the growth of the cracks. It is shown, that adding of even small amount of carbon fibers and carbon nanotubes (CNT) as reinforcing material significantly improves mechanical properties of the products, keeping at the same time advantages of alundum ceramics. Graphene in composite material acts in the same way as inorganic dopants (MgO, ZrO2, SiC and others) and performs the role of aluminum oxide inhibitor, as it creates shell, that gives possibility to reduce sintering temperature and at the same time it acts as damper, because scattering of a shock wave takes place on carbon structures. Application of different structural modification of carbon (graphene, nanotube and others) as reinforced material, gives possibility to create multi-purpose highly requested composite materials based on alundum ceramics. In the present work offers simplified technology for obtaining of aluminum oxide ceramics, reinforced with carbon nanostructures, during which chemical modification with doping carbon nanostructures will be implemented in the process of synthesis of final powdery composite – Alumina. In charge doping carbon nanostructures connected to matrix substance with C-O-Al bonds, that provide their homogeneous spatial distribution. In ceramic obtained as a result of consolidation of such powders carbon fragments equally distributed in the entire matrix of aluminum oxide, that cause increase of bending strength and crack-resistance. The proposed way to prepare the charge simplifies the technological process, decreases energy consumption, synthesis duration and therefore requires less financial expenses. In the implementation of this work, modern instrumental methods were used: electronic and optical microscopy, X-ray structural and granulometric analysis, UV, IR, and Raman spectroscopy.

Keywords: ceramic materials, α-Al₂O₃, carbon nanostructures, composites, characterization, hot-pressing

Procedia PDF Downloads 92
44 Catalytic Alkylation of C2-C4 Hydrocarbons

Authors: Bolysbek Utelbayev, Tasmagambetova Aigerim, Toktasyn Raila, Markayev Yergali, Myrzakhanov Maxat

Abstract:

Intensive development of secondary processes of destructive processing of crude oil has led to the occurrence of oil refining factories resources of C2-C4 hydrocarbons. Except for oil gases also contain basically C2-C4 hydrocarbon gases where some of the amounts are burned. All these data has induced interest to the study of producing alkylate from hydrocarbons С2-С4 which being as components of motor fuels. The purpose of this work was studying transformation propane-propene, butane-butene fractions at the presence of the ruthenium-chromic support catalyst whereas the carrier is served pillar - structural montmorillonite containing in native bentonite clay. In this work is considered condition and structure of the bentonite clay from the South-Kazakhstan area of the Republic Kazakhstan. For preparation rhodium support catalyst (0,5-1,0 mass. % Rh) was used chloride of rhodium-RhCl3∙3H2O, as a carrier was used modified bentonite clay. For modifying natural clay to pillar structural form were used polyhydroxy complexes of chromium. To aqueous solution of chloride chromium gradually flowed the solution of sodium hydroxide at gradual hashing up to pH~3-4. The concentration of chloride chromium was paid off proceeding from calculation 5-30 mmole Cr3+ per gram clay. Suspension bentonite (~1,0 mass. %) received by intensive washing it in water during 4 h, pH-water extract of clay makes -8-9. The acidity of environment supervised by means of digital pH meter OP-208/1. In order to prevent coagulation of a solution polyhydroxy complexes of chromium, it was slowly added to a suspension of clay. "Reserve of basicity" Cr3+:/OH-allowing to prevent coagulation chloride of rhodium made 1/3. After endurance processed suspensions of clay during 24 h, a deposit was washed by water and condensed. The sample, after separate from a liquid phase, dried at first at the room temperature, and then at 110°C (2h) with the subsequent rise the temperature up to 180°C (4h). After cooling the firm mass was pounded to a powder, it was shifted infractions with the certain sizes of particles. Fractions of particles modifying clay in the further were impregnated with an aqueous solution with rhodium-RhCl3∙3H2O (0,5-1,0 mаss % Rh ). Obtained pillar structural bentonite approaches heat resistance and its porous structure above the 773K. Pillar structural bentonite was used for preparation 1.0% Ru/Carrier (modifying bentonite) support catalysts where is realised alkylation of C2-C4 hydrocarbons. The process of alkylation is carried out at a partial pressure of hydrogen 0.5-1.0MPa. Outcome 2.2.4 three methyl pentane and 2.2.3 trimethylpentane achieved 40%. At alkylation butane-butene mixture outcome of the isooctane is achieved 60%. In this condition of studying the ethene is not undergoing to alkylation.

Keywords: alkylation, butene, pillar structure, ruthenium catalyst

Procedia PDF Downloads 371
43 Implementation of Ecological and Energy-Efficient Building Concepts

Authors: Robert Wimmer, Soeren Eikemeier, Michael Berger, Anita Preisler

Abstract:

A relatively large percentage of energy and resource consumption occurs in the building sector. This concerns the production of building materials, the construction of buildings and also the energy consumption during the use phase. Therefore, the overall objective of this EU LIFE project “LIFE Cycle Habitation” (LIFE13 ENV/AT/000741) is to demonstrate innovative building concepts that significantly reduce CO₂emissions, mitigate climate change and contain a minimum of grey energy over their entire life cycle. The project is being realised with the contribution of the LIFE financial instrument of the European Union. The ultimate goal is to design and build prototypes for carbon-neutral and “LIFE cycle”-oriented residential buildings and make energy-efficient settlements the standard of tomorrow in line with the EU 2020 objectives. To this end, a resource and energy-efficient building compound is being built in Böheimkirchen, Lower Austria, which includes 6 living units and a community area as well as 2 single family houses with a total usable floor surface of approximately 740 m². Different innovative straw bale construction types (load bearing and pre-fabricated non loadbearing modules) together with a highly innovative energy-supply system, which is based on the maximum use of thermal energy for thermal energy services, are going to be implemented. Therefore only renewable resources and alternative energies are used to generate thermal as well as electrical energy. This includes the use of solar energy for space heating, hot water and household appliances like dishwasher or washing machine, but also a cooking place for the community area operated with thermal oil as heat transfer medium on a higher temperature level. Solar collectors in combination with a biomass cogeneration unit and photovoltaic panels are used to provide thermal and electric energy for the living units according to the seasonal demand. The building concepts are optimised by support of dynamic simulations. A particular focus is on the production and use of modular prefabricated components and building parts made of regionally available, highly energy-efficient, CO₂-storing renewable materials like straw bales. The building components will be produced in collaboration by local SMEs that are organised in an efficient way. The whole building process and results are monitored and prepared for knowledge transfer and dissemination including a trial living in the residential units to test and monitor the energy supply system and to involve stakeholders into evaluation and dissemination of the applied technologies and building concepts. The realised building concepts should then be used as templates for a further modular extension of the settlement in a second phase.

Keywords: energy-efficiency, green architecture, renewable resources, sustainable building

Procedia PDF Downloads 126
42 Spray Nebulisation Drying: Alternative Method to Produce Microparticulated Proteins

Authors: Josef Drahorad, Milos Beran, Ondrej Vltavsky, Marian Urban, Martin Fronek, Jiri Sova

Abstract:

Engineering efforts of researchers of the Food research institute Prague and the Czech Technical University in spray drying technologies led to the introduction of a demonstrator ATOMIZER and a new technology of Carbon Dioxide-Assisted Spray Nebulization Drying (CASND). The equipment combines the spray drying technology, when the liquid to be dried is atomized by a rotary atomizer, with Carbon Dioxide Assisted Nebulization - Bubble Dryer (CAN-BD) process in an original way. A solution, emulsion or suspension is saturated by carbon dioxide at pressure up to 80 bar before the drying process. The atomization process takes place in two steps. In the first step, primary droplets are produced at the outlet of the rotary atomizer of special construction. In the second step, the primary droplets are divided in secondary droplets by the CO2 expansion from the inside of primary droplets. The secondary droplets, usually in the form of microbubbles, are rapidly dried by warm air stream at temperatures up to 60ºC and solid particles are formed in a drying chamber. Powder particles are separated from the drying air stream in a high efficiency fine powder separator. The product is frequently in the form of submicron hollow spheres. The CASND technology has been used to produce microparticulated protein concentrates for human nutrition from alternative plant sources - hemp and canola seed filtration cakes. Alkali extraction was used to extract the proteins from the filtration cakes. The protein solutions after the alkali extractions were dried with the demonstrator ATOMIZER. Aerosol particle size distribution and concentration in the draying chamber were determined by two different on-line aerosol spectrometers SMPS (Scanning Mobility Particle Sizer) and APS (Aerodynamic Particle Sizer). The protein powders were in form of hollow spheres with average particle diameter about 600 nm. The particles were characterized by the SEM method. The functional properties of the microparticulated protein concentrates were compared with the same protein concentrates dried by the conventional spray drying process. Microparticulated protein has been proven to have improved foaming and emulsifying properties, water and oil absorption capacities and formed long-term stable water dispersions. This work was supported by the research grants TH03010019 of the Technology Agency of the Czech Republic.

Keywords: carbon dioxide-assisted spray nebulization drying, canola seed, hemp seed, microparticulated proteins

Procedia PDF Downloads 138
41 Microbial Contamination of Cell Phones of Health Care Workers: Case Study in Mampong Municipal Government Hospital, Ghana

Authors: Francis Gyapong, Denis Yar

Abstract:

The use of cell phones has become an indispensable tool in the hospital's settings. Cell phones are used in hospitals without restrictions regardless of their unknown microbial load. However, the indiscriminate use of mobile devices, especially at health facilities, can act as a vehicle for transmitting pathogenic bacteria and other microorganisms. These potential pathogens become exogenous sources of infection for the patients and are also a potential health hazard for self and as well as family members. These are a growing problem in many health care institutions. Innovations in mobile communication have led to better patient care in diabetes, asthma, and increased in vaccine uptake via SMS. Notwithstanding, the use of cell phones can be a great potential source for nosocomial infections. Many studies reported heavy microbial contamination of cell phones among healthcare workers and communities. However, limited studies have been reported in our region on bacterial contamination on cell phones among healthcare workers. This study assessed microbial contamination of cell phones of health care workers (HCWs) at the Mampong Municipal Government Hospital (MMGH), Ghana. A cross-sectional design was used to characterize bacterial microflora on cell phones of HCWs at the MMGH. A total of thirty-five (35) swab samples of cell phones of HCWs at the Laboratory, Dental Unit, Children’s Ward, Theater and Male ward were randomly collected for laboratory examinations. A suspension of the swab samples was each streak on blood and MacConkey agar and incubated at 37℃ for 48 hours. Bacterial isolates were identified using appropriate laboratory and biochemical tests. Kirby-Bauer disc diffusion method was used to determine the antimicrobial sensitivity tests of the isolates. Data analysis was performed using SPSS version 16. All mobile phones sampled were contaminated with one or more bacterial isolates. Cell phones from the Male ward, Dental Unit, Laboratory, Theatre and Children’s ward had at least three different bacterial isolates; 85.7%, 71.4%, 57.1% and 28.6% for both Theater and Children’s ward respectively. Bacterial contaminants identified were Staphylococcus epidermidis (37%), Staphylococcus aureus (26%), E. coli (20%), Bacillus spp. (11%) and Klebsiella spp. (6 %). Except for the Children ward, E. coli was isolated at all study sites and predominant (42.9%) at the Dental Unit while Klebsiella spp. (28.6%) was only isolated at the Children’s ward. Antibiotic sensitivity testing of Staphylococcus aureus indicated that they were highly sensitive to cephalexin (89%) tetracycline (80%), gentamycin (75%), lincomycin (70%), ciprofloxacin (67%) and highly resistant to ampicillin (75%). Some of these bacteria isolated are potential pathogens and their presence on cell phones of HCWs could be transmitted to patients and their families. Hence strict hand washing before and after every contact with patient and phone be enforced to reduce the risk of nosocomial infections.

Keywords: mobile phones, bacterial contamination, patients, MMGH

Procedia PDF Downloads 72
40 Sol-Gel Derived Yttria-Stabilized Zirconia Nanoparticles for Dental Applications: Synthesis and Characterization

Authors: Anastasia Beketova, Emmanouil-George C. Tzanakakis, Ioannis G. Tzoutzas, Eleana Kontonasaki

Abstract:

In restorative dentistry, yttria-stabilized zirconia (YSZ) nanoparticles can be applied as fillers to improve the mechanical properties of various resin-based materials. Using sol-gel based synthesis as simple and cost-effective method, nano-sized YSZ particles with high purity can be produced. The aim of this study was to synthesize YSZ nanoparticles by the Pechini sol-gel method at different temperatures and to investigate their composition, structure, and morphology. YSZ nanopowders were synthesized by the sol-gel method using zirconium oxychloride octahydrate (ZrOCl₂.8H₂O) and yttrium nitrate hexahydrate (Y(NO₃)₃.6H₂O) as precursors with the addition of acid chelating agents to control hydrolysis and gelation reactions. The obtained powders underwent TG_DTA analysis and were sintered at three different temperatures: 800, 1000, and 1200°C for 2 hours. Their composition and morphology were investigated by Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction Analysis (XRD), Scanning Electron Microscopy with associated with Energy Dispersive X-ray analyzer (SEM-EDX), Transmission Electron Microscopy (TEM) methods, and Dynamic Light Scattering (DLS). FTIR and XRD analysis showed the presence of pure tetragonal phase in the composition of nanopowders. By increasing the calcination temperature, the crystallinity of materials increased, reaching 47.2 nm for the YSZ1200 specimens. SEM analysis at high magnifications and DLS analysis showed submicron-sized particles with good dispersion and low agglomeration, which increased in size as the sintering temperature was elevated. From the TEM images of the YSZ1000 specimen, it can be seen that zirconia nanoparticles are uniform in size and shape and attain an average particle size of about 50 nm. The electron diffraction patterns clearly revealed ring patterns of polycrystalline tetragonal zirconia phase. Pure YSZ nanopowders have been successfully synthesized by the sol-gel method at different temperatures. Their size is small, and uniform, allowing their incorporation of dental luting resin cements to improve their mechanical properties and possibly enhance the bond strength of demanding dental ceramics such as zirconia to the tooth structure. This research is co-financed by Greece and the European Union (European Social Fund- ESF) through the Operational Programme 'Human Resources Development, Education and Lifelong Learning 2014- 2020' in the context of the project 'Development of zirconia adhesion cements with stabilized zirconia nanoparticles: physicochemical properties and bond strength under aging conditions' (MIS 5047876).

Keywords: dental cements, nanoparticles, sol-gel, yttria-stabilized zirconia, YSZ

Procedia PDF Downloads 117
39 Changing from Crude (Rudimentary) to Modern Method of Cassava Processing in the Ngwo Village of Njikwa Sub Division of North West Region of Cameroon

Authors: Loveline Ambo Angwah

Abstract:

The processing of cassava from tubers or roots into food using crude and rudimentary method (hand peeling, grating, frying and to sun drying) is a very cumbersome and difficult process. The crude methods are time consuming and labour intensive. While on the other hand, modern processing method, that is using machines to perform the various processes as washing, peeling, grinding, oven drying, fermentation and frying is easier, less time consuming, and less labour intensive. Rudimentarily, cassava roots are processed into numerous products and utilized in various ways according to local customs and preferences. For the people of Ngwo village, cassava is transformed locally into flour or powder form called ‘cumcum’. It is also sucked into water to give a kind of food call ‘water fufu’ and fried to give ‘garri’. The leaves are consumed as vegetables. Added to these, its relative high yields; ability to stay underground after maturity for long periods give cassava considerable advantage as a commodity that is being used by poor rural folks in the community, to fight poverty. It plays a major role in efforts to alleviate the food crisis because of its efficient production of food energy, year-round availability, tolerance to extreme stress conditions, and suitability to present farming and food systems in Africa. Improvement of cassava processing and utilization techniques would greatly increase labor efficiency, incomes, and living standards of cassava farmers and the rural poor, as well as enhance the-shelf life of products, facilitate their transportation, increase marketing opportunities, and help improve human and livestock nutrition. This paper presents a general overview of crude ways in cassava processing and utilization methods now used by subsistence and small-scale farmers in Ngwo village of the North West region in Cameroon, and examine the opportunities of improving processing technologies. Cassava needs processing because the roots cannot be stored for long because they rot within 3-4 days of harvest. They are bulky with about 70% moisture content, and therefore transportation of the tubers to markets is difficult and expensive. The roots and leaves contain varying amounts of cyanide which is toxic to humans and animals, while the raw cassava roots and uncooked leaves are not palatable. Therefore, cassava must be processed into various forms in order to increase the shelf life of the products, facilitate transportation and marketing, reduce cyanide content and improve palatability.

Keywords: cassava roots, crude ways, food system, poverty

Procedia PDF Downloads 139
38 Toxicity Evaluation of Reduced Graphene Oxide on First Larval Stages of Artemia sp.

Authors: Roberta Pecoraro

Abstract:

The focus of this work was to investigate the potential toxic effect of titanium dioxide-reduced graphene oxide (TiO₂-rGO) nanocomposites on nauplii of microcrustacean Artemia sp. In order to assess the nanocomposite’s toxicity, a short-term test was performed by exposing nauplii to solutions containing TiO₂-rGO. To prepare titanium dioxide-reduced graphene oxide (TiO₂-rGO) nanocomposites, a green procedure based on solar photoreduction was proposed; it allows to obtain the photocatalysts by exploiting the photocatalytic properties of titania activated by the solar irradiation in order to avoid the high temperatures and pressures required for the standard hydrothermal synthesis. Powders of TiO₂-rGO supplied by the Department of Chemical Sciences (University of Catania) are indicated as TiO₂-rGO at 1% and TiO₂-rGO at 2%. Starting from a stock solution (1mg rGO-TiO₂/10 ml ASPM water) of each type, we tested four different concentrations (serial dilutions ranging from 10⁻¹ to 10⁻⁴ mg/ml). All the solutions have been sonicated for 12 min prior to use. Artificial seawater (called ASPM water) was prepared to guarantee the hatching of the cysts and to maintain nauplii; the durable cysts used in this study, marketed by JBL (JBL GmbH & Co. KG, Germany), were hydrated with ASPM water to obtain nauplii (instar II-III larvae). The hatching of the cysts was carried out in the laboratory by immersing them in ASPM water inside a 500 ml beaker and keeping them constantly oxygenated thanks to an aerator for the insufflation of microbubble air: after 24-48 hours, the cysts hatched, and the nauplii appeared. The nauplii in the second and third stages of development were collected one-to-one, using stereomicroscopes, and transferred into 96-well microplates where one nauplius per well was added. The wells quickly have been filled with 300 µl of each specific concentration of the solution used, and control samples were incubated only with ASPM water. Replication was performed for each concentration. Finally, the microplates were placed on an orbital shaker, and the tests were read after 24 and 48 hours from inoculating the solutions to assess the endpoint (immobility/death) for the larvae. Nauplii that appeared motionless were counted as dead, and the percentages of mortality were calculated for each treatment. The results showed a low percentage of immobilization both for TiO₂-rGO at 1% and TiO₂-rGO at 2% for all concentrations tested: for TiO₂-rGO at 1% was below 12% after 24h and below 15% after 48h; for TiO₂-rGO at 2% was below 8% after 24h and below 12% after 48h. According to other studies in the literature, the results have not shown mortality nor toxic effects on the development of larvae after exposure to rGO. Finally, it is important to highlight that the TiO₂-rGO catalysts were tested in the solar photodegradation of a toxic herbicide (2,4-Dichlorophenoxyacetic acid, 2,4-D), obtaining a high percentage of degradation; therefore, this alternative approach could be considered a good strategy to obtain performing photocatalysts.

Keywords: Nauplii, photocatalytic properties, reduced GO, short-term toxicity test, titanium dioxide

Procedia PDF Downloads 155
37 Efficiency of Different Types of Addition onto the Hydration Kinetics of Portland Cement

Authors: Marine Regnier, Pascal Bost, Matthieu Horgnies

Abstract:

Some of the problems to be solved for the concrete industry are linked to the use of low-reactivity cement, the hardening of concrete under cold-weather and the manufacture of pre-casted concrete without costly heating step. The development of these applications needs to accelerate the hydration kinetics, in order to decrease the setting time and to obtain significant compressive strengths as soon as possible. The mechanisms enhancing the hydration kinetics of alite or Portland cement (e.g. the creation of nucleation sites) were already studied in literature (e.g. by using distinct additions such as titanium dioxide nanoparticles, calcium carbonate fillers, water-soluble polymers, C-S-H, etc.). However, the goal of this study was to establish a clear ranking of the efficiency of several types of additions by using a robust and reproducible methodology based on isothermal calorimetry (performed at 20°C). The cement was a CEM I 52.5N PM-ES (Blaine fineness of 455 m²/kg). To ensure the reproducibility of the experiments and avoid any decrease of the reactivity before use, the cement was stored in waterproof and sealed bags to avoid any contact with moisture and carbon dioxide. The experiments were performed on Portland cement pastes by using a water-to-cement ratio of 0.45, and incorporating different compounds (industrially available or laboratory-synthesized) that were selected according to their main composition and their specific surface area (SSA, calculated using the Brunauer-Emmett-Teller (BET) model and nitrogen adsorption isotherms performed at 77K). The intrinsic effects of (i) dry powders (e.g. fumed silica, activated charcoal, nano-precipitates of calcium carbonate, afwillite germs, nanoparticles of iron and iron oxides , etc.), and (ii) aqueous solutions (e.g. containing calcium chloride, hydrated Portland cement or Master X-SEED 100, etc.) were investigated. The influence of the amount of addition, calculated relatively to the dry extract of each addition compared to cement (and by conserving the same water-to-cement ratio) was also studied. The results demonstrated that the X-SEED®, the hydrated calcium nitrate, the calcium chloride (and, at a minor level, a solution of hydrated Portland cement) were able to accelerate the hydration kinetics of Portland cement, even at low concentration (e.g. 1%wt. of dry extract compared to cement). By using higher rates of additions, the fumed silica, the precipitated calcium carbonate and the titanium dioxide can also accelerate the hydration. In the case of the nano-precipitates of calcium carbonate, a correlation was established between the SSA and the accelerating effect. On the contrary, the nanoparticles of iron or iron oxides, the activated charcoal and the dried crystallised hydrates did not show any accelerating effect. Future experiments will be scheduled to establish the ranking of these additions, in terms of accelerating effect, by using low-reactivity cements and other water to cement ratios.

Keywords: acceleration, hydration kinetics, isothermal calorimetry, Portland cement

Procedia PDF Downloads 232
36 Synthesis and Characterisations of Cordierite Bonded Porous SiC Ceramics by Sol Infiltration Technique

Authors: Sanchita Baitalik, Nijhuma Kayal, Omprakash Chakrabarti

Abstract:

Recently SiC ceramics have been a focus of interest in the field of porous materials due to their unique combination of properties and hence they are considered as an ideal candidate for catalyst supports, thermal insulators, high-temperature structural materials, hot gas particulate separation systems etc. in different industrial processes. Several processing methods are followed for fabrication of porous SiC at low temperatures but all these methods are associated with several disadvantages. Therefore processing of porous SiC ceramics at low temperatures is still challenging. Concerning that of incorporation of secondary bond phase additives by an infiltration technique should result in a homogenous distribution of bond phase in the final ceramics. Present work is aimed to synthesis cordierite (2MgO.2Al2O3.5SiO2) bonded porous SiC ceramics following incorporation of sol-gel bond phase precursor into powder compacts of SiC and heat treating the infiltrated body at 1400 °C. In this paper the primary aim was to study the effect of infiltration of a precursor sol of cordierite into a porous SiC powder compact prepared with pore former of different particle sizes on the porosity, pore size, microstructure and the mechanical properties of the porous SiC ceramics. Cordierite sol was prepared by mixing a solution of magnesium nitrate hexahydrate and aluminium nitrate nonahydrate in 2:4 molar ratio in ethanol another solution containing tetra-ethyl orthosilicate and ethanol in 1:3 molar ratio followed by stirring for several hours. Powders of SiC (α-SiC; d50 =22.5 μm) and 10 wt. % polymer microbead of two sizes 8 and 50µm as the pore former were mixed in a suitable liquid medium, dried and pressed in the form of bars (50×20×16 mm3) at 23 MPa pressure. The well-dried bars were heat treated at 1100° C for 4 h with a hold at 750 °C for 2 h to remove the pore former. Bars were evacuated for 2 hr upto 0.3 mm Hg pressure into a vacuum chamber and infiltrated with cordierite precursor sol. The infiltrated samples were dried and the infiltration process was repeated until the weight gain became constant. Finally the infiltrated samples were sintered at 1400 °C to prepare cordierite bonded porous SiC ceramics. Porous ceramics prepared with 8 and 50 µm sized microbead exhibited lower oxidation degrees of respectively 7.8 and 4.8 % than the sample (23 %) prepared with no microbead. Depending on the size of pore former, the porosity of the final ceramic varied in the range of 36 to 40 vol. % with a variation of flexural strength from 33.7 to 24.6 MPa. XRD analysis showed major crystalline phases of the ceramics as SiC, SiO2 and cordierite. Two forms of cordierite, α-(hexagonal) and µ-(cubic), were detected by the XRD analysis. The SiC particles were observed to be bonded both by cristobalite with fish scale morphology and cordierite with rod shape morphology and thereby formed a porous network. The material and mechanical properties of cordierite bonded porous SiC ceramics are good in agreement to carry out further studies like thermal shock, corrosion resistance etc.

Keywords: cordierite, infiltration technique, porous ceramics, sol-gel

Procedia PDF Downloads 240
35 Howard Mold Count of Tomato Pulp Commercialized in the State of São Paulo, Brazil

Authors: M. B. Atui, A. M. Silva, M. A. M. Marciano, M. I. Fioravanti, V. A. Franco, L. B. Chasin, A. R. Ferreira, M. D. Nogueira

Abstract:

Fungi attack large amount of fruits and those who have suffered an injury on the surface are more susceptible to the growth, as they have pectinolytic enzymes that destroy the edible portion forming an amorphous and soft dough. The spores can reach the plant by the wind, rain and insects and fruit may have on its surface, besides the contaminants from the fruit trees, land and water, forming a flora composed mainly of yeasts and molds. Other contamination can occur for the equipment used to harvest, for the use of boxes and contaminated water to the fruit washing, for storage in dirty places. The hyphae in tomato products indicate the use of raw materials contaminated or unsuitable hygiene conditions during processing. Although fungi are inactivated in heat processing step, its hyphae remain in the final product and search for detection and quantification is an indicator of the quality of raw material. Howard Method count of fungi mycelia in industrialized pulps evaluates the amount of decayed fruits existing in raw material. The Brazilian legislation governing processed and packaged products set the limit of 40% of positive fields in tomato pulps. The aim of this study was to evaluate the quality of the tomato pulp sold in greater São Paulo, through a monitoring during the four seasons of the year. All over 2010, 110 samples have been examined; 21 were taking in spring, 31 in summer, 31 in fall and 27 in winter, all from different lots and trademarks. Samples have been picked up in several stores located in the city of São Paulo. Howard method was used, recommended by the AOAC, 19th ed, 2011 16:19:02 technique - method 965.41. Hundred percent of the samples contained fungi mycelia. The count average of fungi mycelia per season was 23%, 28%, 8,2% and 9,9% in spring, summer, fall and winter, respectively. Regarding the spring samples of the 21 samples analyzed, 14.3% were off-limits proposed by the legislation. As for the samples of the fall and winter, all were in accordance with the legislation and the average of mycelial filament count has not exceeded 20%, which can be explained by the low temperatures during this time of the year. The acquired samples in the summer and spring showed high percentage of fungal mycelium in the final product, related to the high temperatures in these seasons. Considering that the limit of 40% of positive fields is accepted for the Brazilian Legislation (RDC nº 14/2014), 3 spring samples (14%) and 6 summer samples (19%) will be over this limit and subject to law penalties. According to gathered data, 82% of manufacturers of this product manage to keep acceptable levels of fungi mycelia in their product. In conclusion, only 9.2% samples were for the limits established by Resolution RDC. 14/2014, showing that the limit of 40% is feasible and can be used by these segment industries. The result of the filament count mycelial by Howard method is an important tool in the microscopic analysis since it measures the quality of raw material used in the production of tomato products.

Keywords: fungi, howard, method, tomato, pulps

Procedia PDF Downloads 352
34 Assessment of Food Safety Culture in Select Restaurants and a Produce Market in Doha, Qatar

Authors: Ipek Goktepe, Israa Elnemr, Hammad Asim, Hao Feng, Mosbah Kushad, Hee Park, Sheikha Alzeyara, Mohammad Alhajri

Abstract:

Food safety management in Qatar is under the shared oversight of multiple agencies in two government ministries (Ministry of Public Health and Ministry of Municipality and Environment). Despite the increasing number and diversity of the food service establishments, no systematic food surveillance system is in place in the country, which creates a gap in terms of determining the food safety attitudes and practices applied in the food service operations. Therefore, this study seeks to partially address this gap through determination of food safety knowledge among food handlers, specifically with respect to food preparation and handling practices, and sanitation methods applied in food service providers (FSPs) and a major market in Doha, Qatar. The study covered a sample of 53 FSPs randomly selected out of 200 FSPs. Face-to-face interviews with managers at participating FSPs were conducted using a 40-questions survey. Additionally, 120 produce handlers who are in direct contact with fresh produce at the major produce market in Doha were surveyed using a questionnaire containing 21 questions. A written informed consent was obtained from each survey participant. The survey data were analyzed using the chi-square test and correlation test. The significance was evaluated at p ˂ 0.05. The results from the FSPs surveys indicated that the average age of FSPs was 11 years, with the oldest and newest being established in 1982 and 2015, respectively. Most managers (66%) had college degree and 68% of them were trained on the food safety management system known as HACCP. These surveys revealed that FSP managers’ training and education level were highly correlated with the probability of their employees receiving food safety training while managers with lower education level had no formal training on food safety for themselves nor for their employees. Casual sit-in and fine dine-in restaurants consistently kept records (100%), followed by fast food (36%), and catering establishments (14%). The produce handlers’ survey results showed that none of the workers had any training on safe produce handling practices. The majority of the workers were in the age range of 31-40 years (37%) and only 38% of them had high-school degree. Over 64% of produce handlers claimed to wash their hands 4-5 times per day but field observations pointed limited handwashing as there was soap in the settings. This observation suggests potential food safety risks since a significant correlation (p ˂ 0.01) between the educational level and the hand-washing practices was determined. This assessment on food safety culture through determination of food and produce handlers' level of knowledge and practices, the first of its kind in Qatar, demonstrated that training and education are important factors which directly impact the food safety culture in FSPs and produce markets. These findings should help in identifying the need for on-site training of food handlers for effective food safety practices in food establishments in Qatar.

Keywords: food safety, food safety culture, food service providers, food handlers

Procedia PDF Downloads 307
33 Developing a High Performance Cement Based Material: The Influence of Silica Fume and Organosilane

Authors: Andrea Cretu, Calin Cadar, Maria Miclaus, Lucian Barbu-Tudoran, Siegfried Stapf, Ioan Ardelean

Abstract:

Additives and mineral admixtures have become an integral part of cement-based materials. It is common practice to add silica fume to cement based mixes in order to produce high-performance concrete. There is still a lack of scientific understanding regarding the effects that silica fume has on the microstructure of hydrated cement paste. The aim of the current study is to develop high-performance materials with low permeability and high resistance to flexural stress using silica fume and an organosilane. Organosilane bonds with cement grains and silica fume, influencing both the workability and the final properties of the mix, especially the pore size distributions and pore connectivity. Silica fume is a known pozzolanic agent which reacts with the calcium hydroxide in hydrated cement paste, producing more C-S-H and improving the mechanical properties of the mix. It is believed that particles of silica fume act as capillary pore fillers and nucleation centers for C-S-H and other hydration products. In order to be able to design cement-based materials with added silica fume and organosilane, it is necessary first to understand the formation of the porous network during hydration and to observe the distribution of pores and their connectivity. Nuclear magnetic resonance (NMR) methods in low-fields are non-destructive and allow the study of cement-based materials from the standpoint of their porous structure. Other methods, such as XRD and SEM-EDS, help create a comprehensive picture of the samples, along with the classic mechanical tests (compressive and flexural strength measurements). The transverse relaxation time (T₂) was measured during the hydration of 16 samples prepared with two water/cement ratios (0.3 and 0.4) and different concentrations or organosilane (APTES, up to 2% by mass of cement) and silica fume (up to 6%). After their hydration, the pore size distribution was assessed using the same NMR approach on the samples filled with cyclohexane. The SEM-EDS and XRD measurements were applied on pieces and powders prepared from the samples that were used in mechanical testing, which were kept under water for 28 days. Adding silica fume does not influence the hydration dynamics of cement paste, while the addition of organosilane extends the dormancy stage up to 10 hours. The size distribution of the capillary pores is not influenced by the addition of silica fume or organosilane, while the connectivity of capillary pores is decreased only when there is organosilane in the mix. No filling effect is observed even at the highest concentration of silica fume. There is an apparent increase in flexural strength of samples prepared only with silica fume and a decrease for those prepared with organosilane, with a few exceptions. XRD reveals that the pozzolanic reactivity of silica fume can only be observed when there is no organosilane present and the SEM-EDS method reveals the pore distribution, as well as hydration products and the presence or absence of calcium hydroxide. The current work was funded by the Romanian National Authority for Scientific Research, CNCS – UEFISCDI, through project PN-III-P2-2.1-PED-2016-0719.

Keywords: cement hydration, concrete admixtures, NMR, organosilane, porosity, silica fume

Procedia PDF Downloads 139
32 Performance Improvement of Piston Engine in Aeronautics by Means of Additive Manufacturing Technologies

Authors: G. Andreutti, G. Saccone, D. Lucariello, C. Pirozzi, S. Franchitti, R. Borrelli, C. Toscano, P. Caso, G. Ferraro, C. Pascarella

Abstract:

The reduction of greenhouse gases and pollution emissions is a worldwide environmental issue. The amount of CO₂ released by an aircraft is associated with the amount of fuel burned, so the improvement of engine thermo-mechanical efficiency and specific fuel consumption is a significant technological driver for aviation. Moreover, with the prospect that avgas will be phased out, an engine able to use more available and cheaper fuels is an evident advantage. An advanced aeronautical Diesel engine, because of its high efficiency and ability to use widely available and low-cost jet and diesel fuels, is a promising solution to achieve a more fuel-efficient aircraft. On the other hand, a Diesel engine has generally a higher overall weight, if compared with a gasoline one of same power performances. Fixing the MTOW, Max Take-Off Weight, and the operational payload, this extra-weight reduces the aircraft fuel fraction, partially vinifying the associated benefits. Therefore, an effort in weight saving manufacturing technologies is likely desirable. In this work, in order to achieve the mentioned goals, innovative Electron Beam Melting – EBM, Additive Manufacturing – AM technologies were applied to a two-stroke, common rail, GF56 Diesel engine, developed by the CMD Company for aeronautic applications. For this purpose, a consortium of academic, research and industrial partners, including CMD Company, Italian Aerospace Research Centre – CIRA, University of Naples Federico II and the University of Salerno carried out a technological project, funded by the Italian Minister of Education and Research – MIUR. The project aimed to optimize the baseline engine in order to improve its performance and increase its airworthiness features. This project was focused on the definition, design, development, and application of enabling technologies for performance improvement of GF56. Weight saving of this engine was pursued through the application of EBM-AM technologies and in particular using Arcam AB A2X machine, available at CIRA. The 3D printer processes titanium alloy micro-powders and it was employed to realize new connecting rods of the GF56 engine with an additive-oriented design approach. After a preliminary investigation of EBM process parameters and a thermo-mechanical characterization of titanium alloy samples, additive manufactured, innovative connecting rods were fabricated. These engine elements were structurally verified, topologically optimized, 3D printed and suitably post-processed. Finally, the overall performance improvement, on a typical General Aviation aircraft, was estimated, substituting the conventional engine with the optimized GF56 propulsion system.

Keywords: aeronautic propulsion, additive manufacturing, performance improvement, weight saving, piston engine

Procedia PDF Downloads 114
31 Strategic Interventions to Address Health Workforce and Current Disease Trends, Nakuru, Kenya

Authors: Paul Moses Ndegwa, Teresia Kabucho, Lucy Wanjiru, Esther Wanjiru, Brian Githaiga, Jecinta Wambui

Abstract:

Health outcome has improved in the country since 2013 following the adoption of the new constitution in Kenya with devolved governance with administration and health planning functions transferred to county governments. 2018-2022 development agenda prioritized universal healthcare coverage, food security, and nutrition, however, the emergence of Covid-19 and the increase of non-communicable diseases pose a challenge and constrain in an already overwhelmed health system. A study was conducted July-November 2021 to establish key challenges in achieving universal healthcare coverage within the county and best practices for improved non-communicable disease control. 14 health workers ranging from nurses, doctors, public health officers, clinical officers, and pharmaceutical technologists were purposely engaged to provide critical information through questionnaires by a trained duo observing ethical procedures on confidentiality. Data analysis. Communicable diseases are major causes of morbidity and mortality. Non-communicable diseases contribute to approximately 39% of deaths. More than 45% of the population does not have access to safe drinking water. Study noted geographic inequality with respect to distribution and use of health resources including competing non-health priorities. 56% of health workers are nurses, 13% clinical officers, 7% doctors, 9%public health workers, 2% are pharmaceutical technologists. Poor-quality data limits the validity of disease-burdened estimates and research activities. Risk factors include unsafe water, sanitation, hand washing, unsafe sex, and malnutrition. Key challenge in achieving universal healthcare coverage is the rise in the relative contribution of non-communicable diseases. Improve targeted disease control with effective and equitable resource allocation. Develop high infectious disease control mechanisms. Improvement of quality data for decision making. Strengthen electronic data-capture systems. Increase investments in the health workforce to improve health service provision and achievement of universal health coverage. Create a favorable environment to retain health workers. Fill in staffing gaps resulting in shortages of doctors (7%). Develop a multi-sectional approach to health workforce planning and management. Need to invest in mechanisms that generate contextual evidence on current and future health workforce needs. Ensure retention of qualified, skilled, and motivated health workforce. Deliver integrated people-centered health services.

Keywords: multi-sectional approach, equity, people-centered, health workforce retention

Procedia PDF Downloads 72
30 Evaluating an Educational Intervention to Reduce Pesticide Exposure Among Farmers in Nigeria

Authors: Gift Udoh, Diane S. Rohlman, Benjamin Sindt

Abstract:

BACKGROUND: There is concern regarding the widespread use of pesticides and impacts on public health. Farmers in Nigeria frequently apply pesticides, including organophosphate pesticides which are known neurotoxicants. They receive little guidance on how much to apply or information about safe handling practices. Pesticide poisoning is one of the major hazards that farmers face in Nigeria. Farmers continue to use highly neurotoxic pesticides for agricultural activities. Because farmers receive little or no information on safe handling and how much to apply, they continue to develop severe and mild illnesses caused by high exposures to pesticides. The project aimed to reduce pesticide exposure among rural farmers in Nigeria by identifying hazards associated with pesticide use and developing and pilot testing training to reduce exposures to pesticides utilizing the hierarchy of controls system. METHODS: Information on pesticide knowledge, behaviors, barriers to safety, and prevention methods was collected from farmers in Nigeria through workplace observations, questionnaires, and interviews. Pre and post-surveys were used to measure farmer’s knowledge before and after the delivery of pesticide safety training. Training topics included the benefits and risks of using pesticides, routes of exposure and health effects, pesticide label activity, use and selection of PPE, ways to prevent exposure and information on local resources. The training was evaluated among farmers and changes in knowledge, attitudes and behaviors were collected prior to and following the training. RESULTS: The training was administered to 60 farmers, a mean age of 35, with a range of farming experience (<1 year to > 50 years). There was an overall increase in knowledge after the training. In addition, farmers perceived a greater immediate risk from exposure to pesticides and their perception of their personal risk increased. For example, farmers believed that pesticide risk is greater to children than to adults, recognized that just because a pesticide is put on the market doesn’t mean it is safe, and they were more confident that they could get advice about handling pesticides. Also, there was greater awareness about behaviors that can increase their exposure (mixing pesticides with bare hands, eating food in the field, not washing hands before eating after applying pesticides, walking in fields recently sprayed, splashing pesticides on their clothes, pesticide storage). CONCLUSION: These results build on existing evidence from a 2022 article highlighting the need for pesticide safety training in Nigeria which suggested that pesticide safety educational programs should focus on community-based, grassroots-style, and involve a family-oriented approach. Educating farmers on agricultural safety while letting them share their experiences with their peers is an effective way of creating awareness on the dangers associated with handling pesticides. Also, for rural communities, especially in Nigeria, pesticide safety pieces of training may not be able to reach some locations, so intentional scouting of rural farming communities and delivering pesticide safety training will improve knowledge of pesticide hazards. There is a need for pesticide information centers to be situated in rural farming communities or agro supply stores, which gives rural farmers information.

Keywords: pesticide exposure, pesticide safety, nigeria, rural farming, pesticide education

Procedia PDF Downloads 141
29 LaeA/1-Velvet Interplay in Aspergillus and Trichoderma: Regulation of Secondary Metabolites and Cellulases

Authors: Razieh Karimi Aghcheh, Christian Kubicek, Joseph Strauss, Gerhard Braus

Abstract:

Filamentous fungi are of considerable economic and social significance for human health, nutrition and in white biotechnology. These organisms are dominant producers of a range of primary metabolites such as citric acid, microbial lipids (biodiesel) and higher unsaturated fatty acids (HUFAs). In particular, they produce also important but structurally complex secondary metabolites with enormous therapeutic applications in pharmaceutical industry, for example: cephalosporin, penicillin, taxol, zeranol and ergot alkaloids. Several fungal secondary metabolites, which are significantly relevant to human health do not only include antibiotics, but also e.g. lovastatin, a well-known antihypercholesterolemic agent produced by Aspergillus. terreus, or aflatoxin, a carcinogen produced by A. flavus. In addition to their roles for human health and agriculture, some fungi are industrially and commercially important: Species of the ascomycete genus Hypocrea spp. (teleomorph of Trichoderma) have been demonstrated as efficient producer of highly active cellulolytic enzymes. This trait makes them effective in disrupting and depolymerization of lignocellulosic materials and thus applicable tools in number of biotechnological areas as diverse as clothes-washing detergent, animal feed, and pulp and fuel productions. Fungal LaeA/LAE1 (Loss of aflR Expression A) homologs their gene products act at the interphase between secondary metabolisms, cellulase production and development. Lack of the corresponding genes results in significant physiological changes including loss of secondary metabolite and lignocellulose degrading enzymes production. At the molecular level, the encoded proteins are presumably methyltransferases or demethylases which act directly or indirectly at heterochromatin and interact with velvet domain proteins. Velvet proteins bind to DNA and affect expression of secondary metabolites (SMs) genes and cellulases. The dynamic interplay between LaeA/LAE1, velvet proteins and additional interaction partners is the key for an understanding of the coordination of metabolic and morphological functions of fungi and is required for a biotechnological control of the formation of desired bioactive products. Aspergilli and Trichoderma represent different biotechnologically significant species with significant differences in the LaeA/LAE1-Velvet protein machinery and their target proteins. We, therefore, performed a comparative study of the interaction partners of this machinery and the dynamics of the various protein-protein interactions using our robust proteomic and mass spectrometry techniques. This enhances our knowledge about the fungal coordination of secondary metabolism, cellulase production and development and thereby will certainly improve recombinant fungal strain construction for the production of industrial secondary metabolite or lignocellulose hydrolytic enzymes.

Keywords: cellulases, LaeA/1, proteomics, secondary metabolites

Procedia PDF Downloads 241
28 Technology Assessment of the Collection of Cast Seaweed and Use as Feedstock for Biogas Production- The Case of SolrøD, Denmark

Authors: Rikke Lybæk, Tyge Kjær

Abstract:

The Baltic Sea is suffering from nitrogen and phosphorus pollution, which causes eutrophication of the maritime environment and hence threatens the biodiversity of the Baltic Sea area. The intensified quantity of nutrients in the water has created challenges with the growth of seaweed being discarded on beaches around the sea. The cast seaweed has led to odor problems hampering the use of beach areas around the Bay of Køge in Denmark. This is the case in, e.g., Solrød Municipality, where recreational activities have been disrupted when cast seaweed pile up on the beach. Initiatives have, however, been introduced within the municipality to remove the cast seaweed from the beach and utilize it for renewable energy production at the nearby Solrød Biogas Plant, thus being co-digested with animal manure for power and heat production. This paper investigates which type of technology application’s have been applied in the effort to optimize the collection of cast seaweed, and will further reveal, how the seaweed has been pre-treated at the biogas plant to be utilized for energy production the most efficient, hereunder the challenges connected with the content of sand. Heavy metal contents in the seaweed and how it is managed will also be addressed, which is vital as the digestate is utilized as soil fertilizer on nearby farms. Finally, the paper will outline the energy production scheme connected to the use of seaweed as feedstock for biogas production, as well as the amount of nitrogen-rich fertilizer produced. The theoretical approach adopted in the paper relies on the thinking of Circular Bio-Economy, where biological materials are cascaded and re-circulated etc., to increase and extend their value and usability. The data for this research is collected as part of the EU Interreg project “Cluster On Anaerobic digestion, environmental Services, and nuTrients removAL” (COASTAL Biogas), 2014-2020. Data gathering consists of, e.g., interviews with relevant stakeholders connected to seaweed collection and operation of the biogas plant in Solrød Municipality. It further entails studies of progress and evaluation reports from the municipality, analysis of seaweed digestion results from scholars connected to the research, as well as studies of scientific literature to supplement the above. Besides this, observations and photo documentation have been applied in the field. This paper concludes, among others, that the seaweed harvester technology currently adopted is functional in the maritime environment close to the beachfront but inadequate in collecting seaweed directly on the beach. New technology hence needs to be developed to increase the efficiency of seaweed collection. It is further concluded that the amount of sand transported to Solrød Biogas Plant with the seaweed continues to pose challenges. The seaweed is pre-treated for sand in a receiving tank with a strong stirrer, washing off the sand, which ends at the bottom of the tank where collected. The seaweed is then chopped by a macerator and mixed with the other feedstock. The wear down of the receiving tank stirrer and the chopper are, however, significant, and new methods should be adopted.

Keywords: biogas, circular bio-economy, Denmark, maritime technology, cast seaweed, solrød municipality

Procedia PDF Downloads 241
27 Photocatalytic Properties of Pt/Er-KTaO3

Authors: Anna Krukowska, Tomasz Klimczuk, Adriana Zaleska-Medynska

Abstract:

Photoactive materials have attracted attention due to their potential application in the degradation of environmental pollutants to non-hazardous compounds in an eco-friendly route. Among semiconductor photocatalysts, tantalates such as potassium tantalate (KTaO3) is one of the excellent functional photomaterial. However, tantalates-based materials are less active under visible-light irradiation, the enhancement in photoactivity could be improved with the modification of opto-eletronic properties of KTaO3 by doping rare earth metal (Er) and further photodeposition of noble metal nanoparticles (Pt). Inclusion of rare earth element in orthorhombic structure of tantalate can generate one high-energy photon by absorbing two or more incident low-energy photons, which convert visible-light and infrared-light into the ultraviolet-light to satisfy the requirement of KTaO3 photocatalysts. On the other hand, depositions of noble metal nanoparticles on the surface of semiconductor strongly absorb visible-light due to their surface plasmon resonance, in which their conducting electrons undergo a collective oscillation induced by electric field of visible-light. Furthermore, the high dispersion of Pt nanoparticles, which will be obtained by photodeposition process is additional important factor to improve the photocatalytic activity. The present work is aimed to study the effect of photocatalytic process of the prepared Er-doped KTaO3 and further incorporation of Pt nanoparticles by photodeposition. Moreover, the research is also studied correlations between photocatalytic activity and physico-chemical properties of obtained Pt/Er-KTaO3 samples. The Er-doped KTaO3 microcomposites were synthesized by a hydrothermal method. Then photodeposition method was used for Pt loading over Er-KTaO3. The structural and optical properties of Pt/Er-KTaO3 photocatalytic were characterized using scanning electron microscope (SEM), X-ray diffraction (XRD), volumetric adsorption method (BET), UV-Vis absorption measurement, Raman spectroscopy and luminescence spectroscopy. The photocatalytic properties of Pt/Er-KTaO3 microcomposites were investigated by degradation of phenol in aqueous phase as model pollutant under visible and ultraviolet-light irradiation. Results of this work show that all the prepared photocatalysis exhibit low BET surface area, although doping of the bare KTaO3 with rare earth element (Er) presents a slight increase in this value. The crystalline structure of Pt/Er-KTaO3 powders exhibited nearly identical positions for the main peak at about 22,8o and the XRD pattern could be assigned to an orthorhombic distorted perovskite structure. The Raman spectra of obtained semiconductors confirmed demonstrating perovskite-like structure. The optical absorption spectra of Pt nanoparticles exhibited plasmon absorption band for main peaks at about 216 and 264 nm. The addition of Pt nanoparticles increased photoactivity compared to Er-KTaO3 and pure KTaO3. Summary optical properties of KTaO3 change with its doping Er-element and further photodeposition of Pt nanoparticles.

Keywords: heterogeneous photocatalytic, KTaO3 photocatalysts, Er3+ ion doping, Pt photodeposition

Procedia PDF Downloads 337
26 Antimicrobial and Aroma Finishing of Organic Cotton Knits Using Vetiver Oil Microcapsules for Health Care Textiles

Authors: K. J. Sannapapamma, H. Malligawad Lokanath, Sakeena Naikwadi

Abstract:

Eco-friendly textiles are gaining importance among the consumers and textile manufacturers in the healthcare sector due to increased environmental pollution which leads to several health and environmental hazards. Hence, the research was designed to cultivate and develop the organic cotton knit, to prepare and characterize the Vetiver oil microcapsules for textile finishing and to access the wash durability of finished knits. The cotton SAHANA variety grown under organic production systems was processed and spun into 30 single yarn dyed with four natural colorants (Arecanut slurry, Eucalyptus leaves, Pomegranate rind and Indigo) and eco dyed yarn was further used for development of single jersy knitted fabric. Vetiveria zizanioides is an aromatic grass which is being traditionally used in medicine and perfumery. Vetiver essential oil was used for preparation of microcapsules by interfacial polymerization technique subjected to Gas Chromatography Mass Spectrometry (GCMS), Fourier Transform Infrared Spectroscopy (FTIR), Thermo Gravimetric Analyzer (TGA) and Scanning Electron Microscope (SEM) for characterization of microcapsules. The knitted fabric was finished with vetiver oil microcapsules by exhaust and pad dry cure methods. The finished organic knit was assessed for laundering on antimicrobial efficiency and aroma intensity. GCMS spectral analysis showed that, diethyl phthalate (28%) was the major compound found in vetiver oil followed by isoaromadendrene epoxide (7.72%), beta-vetivenene (6.92%), solavetivone (5.58%), aromadenderene, azulene and khusimol. Bioassay explained that, the vetiver oil and diluted vetiver oil possessed greater zone of inhibition against S. aureus and E. coli than the coconut oil. FTRI spectra of vetiver oil and microcapsules possessed similar peaks viz., C-H, C=C & C꞊O stretching and additionally oil microcapsules possessed the peak of 3331.24 cm-1 at 91.14 transmittance was attributed to N-H stretches. TGA of oil microcapsules revealed that, there was a minimum weight loss (5.835%) recorded at 467.09°C compared to vetiver oil i.e., -3.026% at the temperature of 396.24°C. The shape of the microcapsules was regular and round, some were spherical in shape and few were rounded by small aggregates. Irrespective of methods of application, organic cotton knits finished with microcapsules by pad dry cure method showed maximum zone of inhibition compared to knits finished by exhaust method against S. aureus and E. coli. The antimicrobial activity of the finished samples was subjected to multiple washing which indicated that knits finished with pad dry cure method showed a zone of inhibition even after 20th wash and better aroma retention compared to knits finished with the exhaust method of application. Further, the group of respondents rated that the 5th washed samples had the greater aroma intensity in both the methods than the other samples. Thus, the vetiver microencapsulated organic cotton knits are free from hazardous chemicals and have multi-functional properties that can be suitable for medical and healthcare textiles.

Keywords: exhaust and pad dry cure finishing, interfacial polymerization, organic cotton knits, vetiver oil microcapsules

Procedia PDF Downloads 237