Search results for: ultra-high-performance fiber reinforced concrete
3432 Analytical Investigation of Ductility of Reinforced Concrete Beams Strengthening with Polypropylene Fibers
Authors: Rifat Sezer, Abdulhamid Aryan
Abstract:
The purpose of this study is to research both the ductility of the reinforced concrete beams without fiber and the ductility of the reinforced concrete beams with fiber. For this purpose, the analytical load - displacement curves of the beams were formed and the areas under these curves were compared. According to the results of this comparison, it is concluded that the reinforced concrete beams with polypropylene fiber are more ductile. The dimension of the used beam-samples for analytical model in this study is 20x30 cm, their length is 200 cm and their scale is ½. The reinforced concrete reference-beams are produced as one item and the reinforced concrete beams with P-0.60 kg/m3 polypropylene fiber are produced as one item. The modeling of reinforced concrete beams was utilized with Abaqus software.Keywords: polypropylene, fiber-reinforced beams, strengthening of the beams, abaqus program
Procedia PDF Downloads 4963431 Non-Homogeneous Layered Fiber Reinforced Concrete
Authors: Vitalijs Lusis, Andrejs Krasnikovs
Abstract:
Fiber reinforced concrete is important material for load bearing structural elements. Usually fibers are homogeneously distributed in a concrete body having arbitrary spatial orientations. At the same time, in many situations, fiber concrete with oriented fibers is more optimal. Is obvious, that is possible to create constructions with oriented short fibers in them, in different ways. Present research is devoted to one of such approaches- fiber reinforced concrete prisms having dimensions 100 mm×100 mm×400 mm with layers of non-homogeneously distributed fibers inside them were fabricated. Simultaneously prisms with homogeneously dispersed fibers were produced for reference as well. Prisms were tested under four point bending conditions. During the tests vertical deflection at the center of every prism and crack opening were measured (using linear displacements transducers in real timescale). Prediction results were discussed.Keywords: fiber reinforced concrete, 4-point bending, steel fiber, construction engineering
Procedia PDF Downloads 3673430 Performance of Fiber Reinforced Self-Compacting Concrete Containing Different Pozzolanic Materials
Authors: Ahmed Fathi Mohamed, Nasir Shafiq, Muhd Fadhil Nuruddin, Ali Elheber Ahmed
Abstract:
Steel fiber adds to Self-Compacting Concrete (SCC) to enhance it is properties and achieves the requirement. This research work focus on the using of different percentage of steel fiber in SCC mixture contains fly ash and microwave incinerator rice husk ash (MIRHA) as supplementary material. Fibers affect several characteristics of SCC in the fresh and the hardened state. To optimize fiber-reinforced self-compacting concrete (FSCC), The possible fiber content of a given mix composition is an essential input parameter. The aim of the research is to study the properties of fiber reinforced self–compacting (FRSCC) and to develop the expert system/computer program of mix proportion for calculating the steel fiber content and pozzolanic replacement that can be applied to investigate the compressive strength of FSCC mix.Keywords: self-compacting concrete, silica fume, steel fiber, fresh taste
Procedia PDF Downloads 5753429 Flexural Behavior of Heat-Damaged Concrete Beams Reinforced with Fiber Reinforced Polymer (FRP) Bars
Authors: Mohammad R. Irshidat, Rami H. Haddad, Hanadi Al-Mahmoud
Abstract:
Reinforced concrete (RC) is the most common used material for construction in the world. In the past decades, fiber reinforced polymer (FRP) bars had been widely used to substitute the steel bars due to their high resistance to corrosion, high tensile capacity, and low weight in comparison with steel. Experimental studies on the behavior of FRP bar reinforced concrete beams had been carried out worldwide for a few decades. While the research on such structural members under elevated temperatures is still very limited. In this research, the flexural behavior of heat-damaged concrete beams reinforced with FRP bars is studied. Two types of FRP rebar namely, carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP), are used. The beams are subjected to four levels of temperature before tested to monitor their flexural behavior. The results are compared with other concrete beams reinforced with regular steel bars. The results show that the beams reinforced with CFRP bars and GFRP bars had higher flexural capacity than the beams reinforced with steel bars even if heated up to 400°C and 300°C, respectively. After that the beams reinforced with steel bars had the superiority.Keywords: concrete beams, FRP rebar, flexural behavior, heat-damaged
Procedia PDF Downloads 4433428 Experimental Study on the Creep Characteristics of FRC Base for Composite Pavement System
Authors: Woo-Tai Jung, Sung-Yong Choi, Young-Hwan Park
Abstract:
The composite pavement system considered in this paper is composed of a functional surface layer, a fiber reinforced asphalt middle layer and a fiber reinforced lean concrete base layer. The mix design of the fiber reinforced lean concrete corresponds to the mix composition of conventional lean concrete but reinforced by fibers. The quasi-absence of research on the durability or long-term performances (fatigue, creep, etc.) of such mix design stresses the necessity to evaluate experimentally the long-term characteristics of this layer composition. This study tests the creep characteristics as one of the long-term characteristics of the fiber reinforced lean concrete layer for composite pavement using a new creep device. The test results reveal that the lean concrete mixed with fiber reinforcement and fly ash develops smaller creep than the conventional lean concrete. The results of the application of the CEB-FIP prediction equation indicate that a modified creep prediction equation should be developed to fit with the new mix design of the layer.Keywords: creep, lean concrete, pavement, fiber reinforced concrete, base
Procedia PDF Downloads 5223427 Effect of Concrete Strength on the Bond Between Carbon Fiber Reinforced Polymer and Concrete in Hot Weather
Authors: Usama Mohamed Ahamed
Abstract:
This research deals with the bond behavior of carbon FRP composite wraps adhered/bonded to the surface of the concrete. Four concrete mixes were designed to achieve a concrete compressive strength of 18, 22.5,25 and 30 MP after 28 days of curing. The focus of the study is on bond degradation when the hybrid structure is exposed to hot weather conditions. Specimens were exposed to 50 0C temperature duration 6 months and other specimens were sustained in laboratory temperature ( 20-24) 0C. Upon removing the specimens from their conditioning environment, tension tests were performed in the machine using a specially manufactured concrete cube holder. A lightweight mortar layer is used to protect the bonded carbon FRP layer on the concrete surface. The results show that the higher the concrete's compressive, the higher the bond strength. The high temperature decreases the bond strength between concrete and carbon fiber-reinforced polymer. The use of a protection layer is essential for concrete exposed to hot weather.Keywords: concrete, bond, hot weather and carbon fiber, carbon fiber reinforced polymers
Procedia PDF Downloads 1083426 Ultrasonic Pulse Velocity Investigation of Polypropylene and Steel Fiber Reinforced Concrete
Authors: Erjola Reufi, Jozefita Marku, Thomas Bier
Abstract:
Ultrasonic pulse velocity (UPV) method has been shown for some time to provide a reliable means of estimating properties and offers a unique opportunity for direct, quick and safe control of building damaged by earthquake, fatigue, conflagration and catastrophic scenarios. On this investigation hybrid reinforced concrete has been investigated by UPV method. Hooked end steel fiber of length 50 and 30 mm was added to concrete in different proportion 0, 0.25, 0.5, and 1 % by the volume of concrete. On the other hand, polypropylene fiber of length 12, 6, 3 mm was added to concrete of 0.1, 0.2, and 0.4 % by the volume of concrete. Fifteen different mixture has been prepared to investigate the relation between compressive strength and UPV values and also to investigate on the effect of volume and type of fiber on UPV values.Keywords: compressive strength, polypropylene fiber, steel fiber, ultrasonic pulse velocity, volume, type of fiber
Procedia PDF Downloads 4043425 Hybridization of Steel and Polypropylene Fibers in Concrete: A Comprehensive Study with Various Mix Ratios
Authors: Qaiser uz Zaman Khan
Abstract:
This research article provides a comprehensive study of combining steel fiber and polypropylene fibers in concrete at different mix ratios. This blending of various fibers has led to the development of hybrid fiber-reinforced concrete (HFRC), which offers notable improvements in mechanical properties and increased resistance to cracking. Steel fibers are known for their high tensile strength and excellent crack control abilities, while polypropylene fibers offer increased toughness and impact resistance. The synergistic use of these two fiber types in concrete has yielded promising outcomes, effectively enhancing its overall performance. This article explores the key aspects of hybridization, including fiber types, proportions, mixing methods, and the resulting properties of the concrete. Additionally, challenges, potential applications, and future research directions in the field are discussed.Keywords: FRC, fiber-reinforced concrete, split tensile testing, HFRC, mechanical properties, steel fibers, reinforced concrete, polypropylene fibers
Procedia PDF Downloads 923424 Study on High Performance Fiber Reinforced Concrete (HPFRC) Beams on Subjected to Cyclic Loading
Authors: A. Siva, K. Bala Subramanian, Kinson Prabu
Abstract:
Concrete is widely used construction materials all over the world. Now a day’s fibers are used in this construction due to its advantages like increase in stiffness, energy absorption, ductility and load carrying capacity. The fiber used in the concrete to increases the structural integrity of the member. It is one of the emerging techniques used in the construction industry. In this paper, the effective utilization of high-performance fiber reinforced concrete (HPFRC) beams has been experimental investigated. The experimental investigation has been conducted on different steel fibers (Hooked, Crimpled, and Hybrid) under cyclic loading. The behaviour of HPFRC beams is compared with the conventional beams. Totally four numbers of specimens were cast with different content of fiber concrete and compared conventional concrete. The fibers are added to the concrete by base volume replacement of concrete. The silica fume and superplasticizers were used to modify the properties of concrete. Single point loading was carried out for all the specimens, and the beam specimens were subjected to cyclic loading. The load-deflection behaviour of fibers is compared with the conventional concrete. The ultimate load carrying capacity, energy absorption and ductility of hybrid fiber reinforced concrete is higher than the conventional concrete by 5% to 10%.Keywords: cyclic loading, ductility, high performance fiber reinforced concrete, structural integrity
Procedia PDF Downloads 2753423 Effect of Fiber Types and Elevated Temperatures on the Bond Characteristic of Fiber Reinforced Concretes
Authors: Erdoğan Özbay, Hakan T. Türker, Müzeyyen Balçıkanlı, Mohamed Lachemi
Abstract:
In this paper, the effects of fiber types and elevated temperatures on compressive strength, modulus of rapture and the bond characteristics of fiber reinforced concretes (FRC) are presented. By using the three different types of fibers (steel fiber-SF, polypropylene-PPF and polyvinyl alcohol-PVA), FRC specimens were produced and exposed to elevated temperatures up to 800 ºC for 1.5 hours. In addition, a plain concrete (without fiber) was produced and used as a control. Test results obtained showed that the steel fiber reinforced concrete (SFRC) had the highest compressive strength, modulus of rapture and bond stress values at room temperatures, the residual bond, flexural and compressive strengths of both FRC and plain concrete dropped sharply after exposure to high temperatures. The results also indicated that the reduction of bond, flexural and compressive strengths with increasing the exposed temperature was relatively less for SFRC than for plain, and FRC with PPF and PVA.Keywords: bond stress, compressive strength, elevated temperatures, fiber reinforced concrete, modulus of rapture
Procedia PDF Downloads 4223422 Nanostructure and Adhesion of Cement/Polymer Fiber Interfaces
Authors: Faezeh Shalchy
Abstract:
Concrete is the most used materials in the world. It is also one of the most versatile while complex materials which human have used for construction. However, concrete is weak in tension, over the past thirty years many studies were accomplished to improve the tensile properties of concrete (cement-based materials) using a variety of methods. One of the most successful attempts is to use polymeric fibers in the structure of concrete to obtain a composite with high tensile strength and ductility. Understanding the mechanical behavior of fiber reinforced concrete requires the knowledge of the fiber/matrix interfaces at the small scale. In this study, a combination of numerical simulations and experimental techniques have been used to study the nano structure of fiber/matrix interfaces. A new model for calcium-silicate-hydrate (C-S-H)/fiber interfaces is proposed based on Scanning Electron Microscopy (SEM) and Energy-dispersive X-ray spectroscopy (EDX) analysis. The adhesion energy between the C-S-H gel and 2 different polymeric fibers (polyvinyl alcohol and polypropylene) was numerically studied at the atomistic level since adhesion is one of the key factors in the design of fiber reinforced composites. The mechanisms of adhesion as a function of the nano structure of fiber/matrix interfaces are also studied and discussed.Keywords: fiber-reinforced concrete, adhesion, molecular modeling
Procedia PDF Downloads 3283421 An Investigation on Ultrasonic Pulse Velocity of Hybrid Fiber Reinforced Concretes
Authors: Soner Guler, Demet Yavuz, Refik Burak Taymuş, Fuat Korkut
Abstract:
Because of the easy applying and not costing too much, ultrasonic pulse velocity (UPV) is one of the most used non-destructive techniques to determine concrete characteristics along with impact-echo, Schmidt rebound hammer (SRH) and pulse-echo. This article investigates the relationship between UPV and compressive strength of hybrid fiber reinforced concretes. Water/cement ratio (w/c) was kept at 0.4 for all concrete mixes. Compressive strength of concrete was targeted at 35 MPa. UPV testing and compressive strength tests were carried out at the curing age of 28 days. The UPV of concrete containing steel fibers has been found to be higher than plain concrete for all the testing groups. It is decided that there is not a certain relationship between fiber addition and strength.Keywords: ultrasonic pulse velocity, hybrid fiber, compressive strength, fiber
Procedia PDF Downloads 3573420 Evaluation of Modulus of Elasticity by Non-Destructive Method of Hybrid Fiber Reinforced Concrete
Authors: Erjola Reufi, Thomas Beer
Abstract:
Plain, unreinforced concrete is a brittle material, with a low tensile strength, limited ductility and little resistance to cracking. In order to improve the inherent tensile strength of concrete there is a need of multi directional and closely spaced reinforcement, which can be provided in the form of randomly distributed fibers. Fiber reinforced concrete (FRC) is a composite material consisting of cement, sand, coarse aggregate, water and fibers. In this composite material, short discrete fibers are randomly distributed throughout the concrete mass. The behavioral efficiency of this composite material is far superior to that of plain concrete and many other construction materials of equal cost. The present experimental study considers the effect of steel fibers and polypropylene fiber on the modulus of elasticity of concrete. Hook end steel fibers of length 5 cm and 3 cm at volume fraction of 0.25%, 0.5% and 1.% were used. Also polypropylene fiber of length 12, 6, 3 mm at volume fraction 0.1, 0.25, and 0.4 % were used. Fifteen mixtures has been prepared to evaluate the effect of fiber on modulus of elasticity of concrete. Ultrasonic pulse velocity (UPV) and resonant frequency methods which are two non-destructive testing techniques have been used to measure the elastic properties of fiber reinforced concrete. This study found that ultrasonic wave propagation is the most reliable, easy and cost effective testing technique to use in the determination of the elastic properties of the FRC mix used in this study.Keywords: fiber reinforced concrete(FRC), polypropylene fiber, resonance, ultrasonic pulse velocity, steel fiber
Procedia PDF Downloads 3023419 Compressive Strength of Synthetic Fiber Reinforced Concretes
Authors: Soner Guler, Demet Yavuz, Fuat Korkut
Abstract:
Synthetic fibers are commonly used in many civil engineering applications because of its some superior characteristics such as non-corrosive and cheapness. This study presents the results of experimental study on compressive strength of synthetic fiber reinforced concretes. Two types of polyamide (PA) synthetic fiber with the length of 12 and 54 mm are used for this study. The fiber volume ratio is kept as 0.25%, 0.75%, and 0.75% in all mixes. The plain concrete compressive strength is 36.2 MPa. The test results clearly show that the increase in compressive strength for synthetic fiber reinforced concretes is significant. The greatest increase in compressive strength is 23% for PA synthetic fiber reinforced concretes with 0.75% fiber volume.Keywords: synthetic fibers, polyamide fibers, fiber volume, compressive strength
Procedia PDF Downloads 5283418 The Influence of Zeolitic Spent Refinery Admixture on the Rheological and Technological Properties of Steel Fiber Reinforced Self- Compacting Concrete
Authors: Žymantas Rudžionis, Paulius Grigaliūnas, Danutė Vaičiukynienė
Abstract:
By planning this experimental work to investigate the effect of zeolitic waste on rheological and technological properties of self-compacting fiber reinforced concrete, we had an intention to draw attention to the environmental factor. Large amount of zeolitic waste, as a secondary raw materials are not in use properly and large amount of it is collected without a clear view of it’s usage in future. The principal aim of this work is to assure, that zeolitic waste admixture takes positive effect to the self-compacting fiber reinforced concrete mixes stability, flowability and other properties by using the experimental research methods. In addition to that a research on cement and zeolitic waste mortars were implemented to clarify the effect of zeolitic waste on properties of cement paste and stone. Primary studies indicates that zeolitic waste characterizes clear puzzolanic behavior, do not deteriorate and in some cases ensure positive rheological and mechanical characteristics of self-compacting concrete mixes.Keywords: self compacting concrete, steel fiber reinforced concrete, zeolitic waste, rheological, properties of concrete, slump flow
Procedia PDF Downloads 3663417 The Influence of Basalt and Steel Fibers on the Flexural Behavior of RC Beams
Authors: Yasmin Z. Murad, Haneen M. Abdl-Jabbar
Abstract:
An experimental program is conducted in this research to investigate the influence of basalt fibers and steel fibers on the flexural behavior of RC beams. Reinforced concrete beams are constructed using steel fiber concrete and basalt fiber concrete. Steel and basalt fibers are included in a percentage of 15% and 2.5% of the total cement weight, respectively. Test results have shown that basalt fibers have increased the load carrying capacity of the beams up to 30% and the maximum deflection to almost 2.4 times that measured in the control specimen. It has also shown that steel fibers have increased the load carrying capacity of the beams up to 47% and the ultimate deflection is almost duplicated compared to the control beam. Steel and basalt fibers have increased the ductility of the reinforced concrete beams.Keywords: basalt fiber, steel fiber, reinforced concrete beams, flexural behavior
Procedia PDF Downloads 1543416 Reinforced Concrete, Problems and Solutions: A Literature Review
Authors: Omar Alhamad, Waleed Eid
Abstract:
Reinforced concrete is a concrete lined with steel so that the materials work together in the resistance forces. Reinforcement rods or mesh are used for tensile, shear, and sometimes intense pressure in a concrete structure. Reinforced concrete is subject to many natural problems or industrial errors. The result of these problems is that it reduces the efficiency of the reinforced concrete or its usefulness. Some of these problems are cracks, earthquakes, high temperatures or fires, as well as corrosion of reinforced iron inside reinforced concrete. There are also factors of ancient buildings or monuments that require some techniques to preserve them. This research presents some general information about reinforced concrete, the pros and cons of reinforced concrete, and then presents a series of literary studies of some of the late published researches on the subject of reinforced concrete and how to preserve it, propose solutions or treatments for the treatment of reinforced concrete problems, raise efficiency and quality for a longer period. These studies have provided advanced and modern methods and techniques in the field of reinforced concrete.Keywords: reinforced concrete, treatment, concrete, corrosion, seismic, cracks
Procedia PDF Downloads 1523415 Performance of Fiber-Reinforced Polymer as an Alternative Reinforcement
Authors: Salah E. El-Metwally, Marwan Abdo, Basem Abdel Wahed
Abstract:
Fiber-reinforced polymer (FRP) bars have been proposed as an alternative to conventional steel bars; hence, the use of these non-corrosive and nonmetallic reinforcing bars has increased in various concrete projects. This concrete material is lightweight, has a long lifespan, and needs minor maintenance; however, its non-ductile nature and weak bond with the surrounding concrete create a significant challenge. The behavior of concrete elements reinforced with FRP bars has been the subject of several experimental investigations, even with their high cost. This study aims to numerically assess the viability of using FRP bars, as longitudinal reinforcement, in comparison with traditional steel bars, and also as prestressing tendons instead of the traditional prestressing steel. The nonlinear finite element analysis has been utilized to carry out the current study. Numerical models have been developed to examine the behavior of concrete beams reinforced with FRP bars or tendons against similar models reinforced with either conventional steel or prestressing steel. These numerical models were verified by experimental test results available in the literature. The obtained results revealed that concrete beams reinforced with FRP bars, as passive reinforcement, exhibited less ductility and less stiffness than similar beams reinforced with steel bars. On the other hand, when FRP tendons are employed in prestressing concrete beams, the results show that the performance of these beams is similar to those beams prestressed by conventional active reinforcement but with a difference caused by the two tendon materials’ moduli of elasticity.Keywords: reinforced concrete, prestressed concrete, nonlinear finite element analysis, fiber-reinforced polymer, ductility
Procedia PDF Downloads 143414 Analysis of the Influence of Fiber Volume and Fiber Orientation on Post-Cracking Behavior of Steel Fiber Reinforced Concrete
Authors: Marilia M. Camargo, Luisa A. Gachet-Barbosa, Rosa C. C. Lintz
Abstract:
The addition of fibers into concrete matrix can enhance some properties of the composite, such as tensile, flexural and impact strengths, toughness, deformation capacity and post-cracking ductility. Many factors affect the mechanical behavior of fiber reinforced concrete, such as concrete matrix (concrete strength, additions, aggregate diameter, etc.), characteristics of the fiber (geometry, type, aspect ratio, volume, orientation, distribution, strength, stiffness, etc.), specimen (size, geometry, method of preparation and loading rate). This research investigates the effects of fiber volume and orientation on the post-cracking behavior of steel fiber reinforced concrete (SFRC). Hooked-end steel fibers with aspect ratios of 45 were added into concrete with volume of 0,32%, 0,64%, 0,94%. The post-cracking behaviour was assessed by double punch test of cubic specimens and the actual volume and orientation of the fibers were determined by non-destructive tests by means of electromagnetic induction. The results showed that the actual volume of fibers in each sample differs in a small amount from the dosed volume of fibers and that the deformation and toughness of the concrete increase with the increase in the actual volume of fibers. In determining the orientation of the fibers, it was found that they tend to distribute more in the X and Y axes due to the influence of the walls of the mold. In addition, it was concluded that the orientation of the fibers is important in the post-cracking behaviour of FRC when analyzed together with the actual volume of fibers, since the greater the volume of fibers, the greater the number of fibers oriented orthogonally to the application of loadings and, consequently, there is a better mechanical behavior of the composite. These results provide a better understanding of the influence of volume and fiber orientation on the post-cracking behavior of the FRC.Keywords: fiber reinforced concrete, steel fibers, volume of fibers, orientation of fibers, post-cracking behaviour
Procedia PDF Downloads 1803413 Utilization of Nipa Palm Fibers (Nypa fruticans) and Asian Green Mussels Shells (Perna viridis) as an Additive Material in Making a Fiber-Reinforced Concrete
Authors: Billy Angel B. Bayot, Hubert Clyde Z. Guillermo, Daniela Eve Margaret S. Olano, Lian Angeli Kaye E. Suarez
Abstract:
A utilization of Nipa palm fibers (Nypa fruticans) and Asian green mussel shells (Perna viridis) as additive materials in making fiber-reinforced concrete was carried out. The researchers collected Asian green mussel shells and Nipa palm fibers as additive materials in the production of fiber-reinforced concrete and were used to make 3 Setups containing 20g, 15g, and 10g of Nipa palm fiber varying to 10g, 20g, 30g of Asian green mussel shell powder and a traditional concrete with respect to curing period 7, 14, and 28 days. The concrete blocks were delivered to the UP Institute of Building Materials and Structures Laboratory (CoMSLab) following each curing test in order to evaluate their compressive strength. Researchers employed a Two-Way Analysis of Variance (ANOVA) and determined that curing days, concrete mixture, and the combined curing days with concrete have an effect on the compressive strength of concrete. ANOVA results indicating significant differences had been subjected to post hoc analysis using Tukey's HSD. These results then yielded the comparison of each curing time and different concrete mixtures with traditional concrete, which comes to the conclusion that a longer curing period leads to a higher compressive strength and Setup 3 (30g Asian green mussel shell with 10g Nipa palm fiber) has the larger mean compressive strength, making it the best proportion among the fiber-reinforced concrete mixtures and the only proportion that has significant effect to traditional one. As a result, the study concludes that certain curing times and concrete mix proportions of Asian green mussel shell and Nipa palm fiber are critical determinants in determining concrete compressive strength.Keywords: Asian green mussel shells (Perna viridis), Nipa palm fibers (Nypa fruticans), additives, fiber-reinforced concrete
Procedia PDF Downloads 633412 Evaluation of Fire Resistance of High Strength Reinforced Concrete Columns with Spiral Wire Rope
Authors: Ki-Seok Kwon, Heung-Youl Kim
Abstract:
This research evaluated fire resistances of high-strengthened reinforced concrete (RC) column, spiral wire rope which applied with 60, and 100MPa. The fire resistance test of RC column with loading condition was conducted following the ISO 834 (3 hours). This experiment set mixing of fiber (PP fiber, Steel fiber) and types of horizontal reinforcement as a variable of reinforcement method. The fire resistance test measured the main steel bar’s max and mean temperatures also the shrinkage and shrinking ratio of columns(500 X 500 X 3,000mm) with loadings. As a result, the specimen of 60MPa attained three hours fire resistance with only spiral wire rope. Also, the specimen of 100MPa must be reinforced with fibers and spiral wire rope to attain three hours fire resistance.Keywords: reinforced concrete column, high strength concrete, wire rope, fire resistance test
Procedia PDF Downloads 3283411 Numerical Simulation of Flexural Strength of Steel Fiber Reinforced High Volume Fly Ash Concrete by Finite Element Analysis
Authors: Mahzabin Afroz, Indubhushan Patnaikuni, Srikanth Venkatesan
Abstract:
It is well-known that fly ash can be used in high volume as a partial replacement of cement to get beneficial effects on concrete. High volume fly ash (HVFA) concrete is currently emerging as a popular option to strengthen by fiber. Although studies have supported the use of fibers with fly ash, a unified model along with the incorporation into finite element software package to estimate the maximum flexural loads need to be developed. In this study, nonlinear finite element analysis of steel fiber reinforced high strength HVFA concrete beam under static loadings was conducted to investigate their failure modes in terms of ultimate load. First of all, the experimental investigation of mechanical properties of high strength HVFA concrete was done and validates with developed numerical model with the appropriate modeling of element size and mesh by ANSYS 16.2. To model the fiber within the concrete, three-dimensional random fiber distribution was simulated by spherical coordinate system. Three types of high strength HVFA concrete beams were analyzed reinforced with 0.5, 1 and 1.5% volume fractions of steel fibers with specific mechanical and physical properties. The result reveals that the use of nonlinear finite element analysis technique and three-dimensional random fiber orientation exhibited fairly good agreement with the experimental results of flexural strength, load deflection and crack propagation mechanism. By utilizing this improved model, it is possible to determine the flexural behavior of different types and proportions of steel fiber reinforced HVFA concrete beam under static load. So, this paper has the originality to predict the flexural properties of steel fiber reinforced high strength HVFA concrete by numerical simulations.Keywords: finite element analysis, high volume fly ash, steel fibers, spherical coordinate system
Procedia PDF Downloads 1383410 Mode II Fracture Toughness of Hybrid Fiber Reinforced Concrete
Authors: H. S. S Abou El-Mal, A. S. Sherbini, H. E. M. Sallam
Abstract:
Mode II fracture toughness (KIIc) of fiber reinforced concrete has been widely investigated under various patterns of testing geometries. The effect of fiber type, concrete matrix properties, and testing mechanisms were extensively studied. The area of hybrid fiber addition shows a lake of reported research data. In this paper an experimental investigation of hybrid fiber embedded in high strength concrete matrix is reported. Three different types of fibers; namely steel (S), glass (G), and polypropylene (PP) fibers were mixed together in four hybridization patterns, (S/G), (S/PP), (G/PP), (S/G/PP) with constant cumulative volume fraction (Vf) of 1.5%. The concrete matrix properties were kept the same for all hybrid fiber reinforced concrete patterns. In an attempt to estimate a fairly accepted value of fracture toughness KIIc, four testing geometries and loading types are employed in this investigation. Four point shear, Brazilian notched disc, double notched cube, and double edge notched specimens are investigated in a trial to avoid the limitations and sensitivity of each test regarding geometry, size effect, constraint condition, and the crack length to specimen width ratio a/w. The addition of all hybridization patterns of fiber reduced the compressive strength and increased mode II fracture toughness in pure mode II tests. Mode II fracture toughness of concrete KIIc decreased with the increment of a/w ratio for all concretes and test geometries. Mode II fracture toughness KIIc is found to be sensitive to the hybridization patterns of fiber. The (S/PP) hybridization pattern showed higher values than all other patterns, while the (S/G/PP) showed insignificant enhancement on mode II fracture toughness (KIIc). Four point shear (4PS) test set up reflects the most reliable values of mode II fracture toughness KIIc of concrete. Mode II fracture toughness KIIc of concrete couldn’t be assumed as a real material property.Keywords: fiber reinforced concrete, Hybrid fiber, Mode II fracture toughness, testing geometry
Procedia PDF Downloads 3273409 Using CFRP Sheets and Anchors on Sand-Lightweight Perlite Concrete to Evaluate the Flexural Behaviour of T-Beams
Authors: Mohammed Zaki, Hayder Rasheed
Abstract:
This paper evaluates the flexural response of sand-lightweight Perlite concrete using full-scale reinforced concrete T beams strengthened and anchored with carbon fiber reinforced polymer (CFRP) materials. Four specimens were prepared with the same geometry, steel reinforcements, concrete properties, and span lengths. The anchored beams had a similar number of CFRP sheets but were secured utilizing different arrangements of CFRP fiber anchors. That will allow for effective and easily making comparisons to examine the flexural strengthening behavior of sand-lightweight Perlite concrete beams with anchors. The experimental outcomes were also compared with the numerical study and the comparisons were discussed. The test results showed an improvement in flexural behavior due to the use of CFRP sheets and anchors. Interestingly, the anchored beams recorded similar ultimate strength regardless of the number of CFRP fiber anchors used due to the failure by excessive wide cracks in the concrete.Keywords: perlite concrete, CFRP fiber anchors, lightweight concrete, full-scale T-beams
Procedia PDF Downloads 863408 Effect of Size, Geometry and Tensile Strength of Fibers on the Flexure of Hooked Steel Fiber Reinforced Concrete
Authors: Chuchai Sujivorakul
Abstract:
This research focused on the study of various parameters of fiber itself affecting on the flexure of hooked steel fiber reinforced concrete (HSFRC). The size of HSFRC beams was 150x150 mm in cross section and 550 mm in length, and the flexural test was carried out in accordance with EN-14651 standard. The test result was the relationship between centre-point load and crack-mount opening displacement (CMOD) at the centre notch. Controlled concrete had a compressive strength of 42 MPa. The investigated variables related to the hooked fiber itself were: (a) 3 levels of aspect ratio of fibers (65, 80 and 100); (b) 2 different fiber lengths (35 mm and 60 mm); (c) 2 different tensile strength of fibers (1100 MPa and 1500 MPa); and (d) 3 different fiber-end geometries (3D 4D and 5D fibers). The 3D hooked fibers have two plastic hinges at both ends, while the 4D and 5D hooked fibers are the newly developed steel fibers by Bekaert, and they have three and four plastic hinges at both ends, respectively. The hooked steel fibers were used in concrete with three different fiber contents, i.e., 20 30 and 40 kg/m³. From the study, it was found that all variables did not seem to affect the flexural strength at limit of proportionality (LOP) of HSFRC. However, they affected the residual flexural tensile strength (fR,j). It was observed that an increase in fiber lengths and the tensile strength the fibers would significantly increase in the fR,j of HSFRC, while the aspect ratio of the fiber would slightly effect the fR,j of HSFRC. Moreover, it was found that using 5D fibers would better enhance the fR,j and flexural behavior of HSFRC than 3D and 4D fibers, because they gave highest mechanical anchorage effect created by their hooked-end geometry.Keywords: hooked steel fibers, fiber reinforced concrete, EN-14651, flexural test
Procedia PDF Downloads 1713407 Pullout Strength of Textile Reinforcement in Concrete by Embedded Length and Concrete Strength
Authors: Jongho Park, Taekyun Kim, Jungbhin You, Sungnam Hong, Sun-Kyu Park
Abstract:
The deterioration of the reinforced concrete is continuously accelerated due to aging of the reinforced concrete, enlargement of the structure, increase if the self-weight due to the manhattanization and cracking due to external force. Also, due to the abnormal climate phenomenon, cracking of reinforced concrete structures is accelerated. Therefore, research on the Textile Reinforced Concrete (TRC) which replaced reinforcement with textile is under study. However, in previous studies, adhesion performance to single yarn was examined without parameters, which does not reflect the effect of fiber twisting and concrete strength. In the present paper, the effect of concrete strength and embedded length on 2400tex (gram per 1000 meters) and 640tex textile were investigated. The result confirm that the increasing compressive strength of the concrete did not affect the pullout strength. However, as the embedded length increased, the pullout strength tended to increase gradually, especially at 2400tex with more twists.Keywords: textile, TRC, pullout, strength, embedded length, concrete
Procedia PDF Downloads 4023406 First Cracking Moments of Hybrid Fiber Reinforced Polymer-Steel Reinforced Concrete Beams
Authors: Saruhan Kartal, Ilker Kalkan
Abstract:
The present paper reports the cracking moment estimates of a set of steel-reinforced, Fiber Reinforced Polymer (FRP)-reinforced and hybrid steel-FRP reinforced concrete beams, calculated from different analytical formulations in the codes, together with the experimental cracking load values. A total of three steel-reinforced, four FRP-reinforced, 12 hybrid FRP-steel over-reinforced and five hybrid FRP-steel under-reinforced concrete beam tests were analyzed within the scope of the study. Glass FRP (GFRP) and Basalt FRP (BFRP) bars were used in the beams as FRP bars. In under-reinforced hybrid beams, rupture of the FRP bars preceded crushing of concrete, while concrete crushing preceded FRP rupture in over-reinforced beams. In both types, steel yielding took place long before the FRP rupture and concrete crushing. The cracking moment mainly depends on two quantities, namely the moment of inertia of the section at the initiation of cracking and the flexural tensile strength of concrete, i.e. the modulus of rupture. In the present study, two different definitions of uncracked moment of inertia, i.e. the gross and the uncracked transformed moments of inertia, were adopted. Two analytical equations for the modulus of rupture (ACI 318M and Eurocode 2) were utilized in the calculations as well as the experimental tensile strength of concrete from prismatic specimen tests. The ACI 318M modulus of rupture expression produced cracking moment estimates closer to the experimental cracking moments of FRP-reinforced and hybrid FRP-steel reinforced concrete beams when used in combination with the uncracked transformed moment of inertia, yet the Eurocode 2 modulus of rupture expression gave more accurate cracking moment estimates in steel-reinforced concrete beams. All of the analytical definitions produced analytical values considerably different from the experimental cracking load values of the solely FRP-reinforced concrete beam specimens.Keywords: polymer reinforcement, four-point bending, hybrid use of reinforcement, cracking moment
Procedia PDF Downloads 1403405 Layered Fiberconcrete Element Building Technology and Strength
Authors: Vitalijs Lusis, Videvuds-Arijs Lapsa, Olga Kononova, Andrejs Krasnikovs
Abstract:
Steel fibres use in a concrete, such way obtaining Steel Fibre Reinforced Concrete (SFRC), is an important technological direction in building industry. Steel fibers are substituting the steel bars in conventional concrete in another situation is possible to combine them in the concrete structures. Traditionally fibers are homogeneously dispersed in a concrete. At the same time in many situations fiber concrete with homogeneously dispersed fibers is not optimal (majority of added fibers are not participating in a load bearing process). It is obvious, that is possible to create constructions with oriented fibers distribution in them, in different ways. Present research is devoted to one of them. Acknowledgment: This work has been supported by the European Social Fund within the project «Support for the implementation of doctoral studies at Riga Technical University» and project No. 2013/0025/1DP/1.1.1.2.0/13/APIA/VIAA/019 “New “Smart” Nanocomposite Materials for Roads, Bridges, Buildings and Transport Vehicle”.Keywords: fiber reinforced concrete, 4-point bending, steel fiber, SFRC
Procedia PDF Downloads 6293404 Fiber Based Pushover Analysis of Reinforced Concrete Frame
Authors: Shewangizaw Tesfaye Wolde
Abstract:
The current engineering community has developed a method called performance based seismic design in which we design structures based on predefined performance levels set by the parties. Since we design our structures economically for the maximum actions expected in the life of structures they go beyond their elastic limit, in need of nonlinear analysis. In this paper conventional pushover analysis (nonlinear static analysis) is used for the performance assessment of the case study Reinforced Concrete (RC) Frame building located in Addis Ababa City, Ethiopia where proposed peak ground acceleration value by RADIUS 1999 project and others is more than twice as of EBCS-8:1995 (RADIUS 1999 project) by taking critical planar frame. Fiber beam-column model is used to control material nonlinearity with tension stiffening effect. The reliability of the fiber model and validation of software outputs are checked under verification chapter. Therefore, the aim of this paper is to propose a way for structural performance assessment of existing reinforced concrete frame buildings as well as design check.Keywords: seismic, performance, fiber model, tension stiffening, reinforced concrete
Procedia PDF Downloads 773403 Polyolefin Fiber Reinforced Self-Compacting Concrete Replacing 20% Cement by Fly Ash
Authors: Suman Kumar Adhikary, Zymantus Rudzionis, Arvind Balakrishnan
Abstract:
This paper deals with the behavior of concrete’s workability in a fresh state and compressive and flexural strength in a hardened state with the addition of polyolefin macro fibers. Four different amounts (3kg/m3, 4.5kg/m3, 6kg/m3 and 9kg/m3) of polyolefin macro fibers mixed in concrete mixture to observe the workability and strength properties difference between the concrete specimens. 20% class C type fly ash added is the concrete as replacement of cement. The water-cement ratio(W/C) of those concrete mix was 0.35. Masterglenium SKY 700 superplasticizer was added to the concrete mixture for better results. Slump test was carried out for determining the flowability. On 7th, 14th and 28th day of curing process compression strength tests were done and on 28th day flexural strength test and CMOD test were carried to differentiate the strength properties and post-cracking behavior of concrete samples.Keywords: self-compacting concrete, polyolefin fibers, fiber reinforced concrete, CMOD test of concrete
Procedia PDF Downloads 180