Search results for: tyrosine kinase inhibitor
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 562

Search results for: tyrosine kinase inhibitor

562 Late Presentation of Pseudophakic Macula Edema from Oral Kinase Inhibitors: A Case and Literature Review

Authors: Christolyn Raj, Lewis Levitz

Abstract:

Introduction: Two cases of late presentation ( > five years ) of bilateral pseudophakic macula edema related to oral tyrosine kinase inhibitors are described. These cases are the first of their type in the published literature. A review of ocular inflammatory complications of tyrosine kinase inhibitors in the current literature is explored. Case Presentations(s): Case 1 is an 83-year-old female who has been stable on Ibrutinib (Imbruvica ®) for chronic lymphocytic leukemia (CLL). She presented with bilateral blurred vision from severe cystoid macula edema seven years following routine cataract surgery. She was treated with intravitreal steroids with complete resolution without relapse. Case 2 is a 76-year-old female who was on therapy for polycythemia vera with Ruxolitinib (Jakafi®). She presented with bilateral blurred vision from mild cystoid macula edema six years following routine cataract surgery. She responded well to topical steroids without relapse. In both cases, oral tyrosine kinase inhibitor agents were presumed to be the underlying cause and were ceased. Over the last five years, there have been increasing reports in the literature of the inflammatory effects of tyrosine kinase inhibitors on the retina, uvea and optic nerve. Conclusion: Late presentation of pseudophakic macula edema following routine cataract surgery is rare. Such presentations should prompt investigation of the chronic use of systemic medications, especially oral kinase inhibitors. Patients who must remain on these agents require ongoing ophthalmologic assessment in view of their long-term inflammatory side effects.

Keywords: macula edema, oral kinase inhibitors, retinal toxicity, pseudo-phakia

Procedia PDF Downloads 100
561 Synthesis of Some 1h-Benzimidazoles as Inhibitors of EGFR Tyrosine Kinase

Authors: İsmail Çeli̇k, Gülgün Ayhan-Kılcıgi̇l, Arzu Onay-Beşi̇kçi̇

Abstract:

In this study, some 2-(2-phenyl/substitutedphenyl)- lH-benzo[d]'imidazol-l-yl)-N'-(alkylthiosemicarbazide were designed and prepared. Firstly, 2-phenyl/ suhstitutedphenyl-lH-Benzo[d]imidazole was prepared via oxidative condensation of o-phenylenediamine, benzaldehyde and sodium metabisulfite. Treatment of the benzimidazole compound with ethyl chloroacetate in KOH/DMSO gave the ester compound ethyl 2-(2-substitutedphenyl)-1H-benzo[d]imidazol-l-yl)acetate. Hydrazine hydrate and the ester in ethanol were refluxed for 4 h to give 2-(2-phenyl/substitutedphenyl)-1H-benzo[d]imidazol-l-yl)acetohydrazide. Thiosemicarbazides were obtained by condensing acyl hydrazide with the alkylisothiocyanate in ethanol. Following the structure elucidation, benzimidazole compounds were tested for their EGFR kinase inhibitory activities by using ADP-GloTM Kinase Assay.

Keywords: benzimidazole, EGFR kinase inhibitor, synthesis, thiosemicarbazide

Procedia PDF Downloads 258
560 Regulation of RON-Receptor Tyrosine Kinase Functions by Epstein-Barr-Virus (EBV) Nuclear Antigen 3C

Authors: Roshika Tyagi, Shuvomoy Banerjee

Abstract:

Among various diseases, cancer has become a huge threat to human beings globally. In the context of viral infection, Epstein–Barr virus (EBV) infection is ubiquitous in nature world-wide as well as in India. Recepteur d’Origine Nantais (RON) receptor tyrosine kinase is overexpressed in Lymphoblastoid cell lines (LCLs) but undetectable in primary B-cells. Biologically, RON expression was found to be essential for EBV transformed LCLs proliferation. In our study, we investigated whether EBV latent antigen EBNA3C is playing a crucial role in regulating RON receptor tyrosine kinase function in EBV-induced malignancies. Interestingly, we observed that expression pattern of RON was modulated by EBNA3C in EBV transformed LCLs compared with EBV negative BJAB cell line by PCR and western blot analysis. Moreover, in the absence of EBNA3C, RON expression was found low in western blot and immunofluorescence analysis and cell proliferation rate was significantly reduced in LCLs by cell viability assays. Therefore, our study clearly indicating the potential role of EBNA3C expressed in EBV-infected B-cells for modulating the functions of oncogenic kinases that leads to EBV induced B-cell transformation.

Keywords: apoptosis, cell proliferation, Epstein–barr virus, receptor tyrosine kinase

Procedia PDF Downloads 229
559 Design and Synthesis of Some Oxadiazole Bearing Benzimidazole Derivatives as Potential Epidermal Growth Factor Receptor Inhibitors

Authors: Ismail Celik, Gulgun Ayhan Kilcigil, Berna Guven, Zumra Kara, Arzu Onay-Besikci

Abstract:

Epidermal Growth Factor Receptor is the cell-surface receptor of the ErbB (erythroblastic leukemia viral oncogene homologue receptors) family of tyrosine kinases. It plays a vital role in regulating the proliferation and differentiation of cells. However, a variety of mechanisms, such as EGFR expression, mutation, and ligand-dependent receptor dimerization, are associated with the development of various activated EGFR tumors. EGFR is highly expressed in most solid tumors, including breast, head and neck cancer, non-small cell lung cancer (NSCLC), renal, ovarian, and colon cancers. Thus, specific EGFR inhibition plays one of the key roles in cancer treatment. The compounds used in the treatment as tyrosine kinase inhibitors are known to contain the benzimidazole isosterium indole, pazopanib, and axitinibin indazole rings. In addition, benzimidazoles have been shown to exhibit protein kinase inhibitory activity in addition to their different biological activities.Based on these data, it was planned and synthesized of some oxadiazole bearing benzimidazole derivatives [N-cyclohexyl-5-((2-phenyl/substitutedphenyl-1H-benzo[d]imidazole-1-yl) methyl)-1,3,4-oxadiazole-2-amine]. EGFR kinase inhibitory efficiency of the synthesized compounds was determined by comparing them with a known kinase inhibitor erlotinib in vitro, and two of the compounds bearing phenyl (19a) and 3,4-dibenzyloxyphenyl (21a) ring exhibited significant activities.

Keywords: benzimidazole, EGFR kinase inhibitory, oxadiazole, synthesis

Procedia PDF Downloads 139
558 The Second Generation of Tyrosine Kinase Inhibitor Afatinib Controls Inflammation by Regulating NLRP3 Inflammasome Activation

Authors: Shujun Xie, Shirong Zhang, Shenglin Ma

Abstract:

Background: Chronic inflammation might lead to many malignancies, and inadequate resolution could play a crucial role in tumor invasion, progression, and metastases. A randomised, double-blind, placebo-controlled trial shows that IL-1β inhibition with canakinumab could reduce incident lung cancer and lung cancer mortality in patients with atherosclerosis. The process and secretion of proinflammatory cytokine IL-1β are controlled by the inflammasome. Here we showed the correlation of the innate immune system and afatinib, a tyrosine kinase inhibitor targeting epidermal growth factor receptor (EGFR) in non-small cell lung cancer. Methods: Murine Bone marrow derived macrophages (BMDMs), peritoneal macrophages (PMs) and THP-1 were used to check the effect of afatinib on the activation of NLRP3 inflammasome. The assembly of NLRP3 inflammasome was check by co-immunoprecipitation of NLRP3 and apoptosis-associated speck-like protein containing CARD (ASC), disuccinimidyl suberate (DSS)-cross link of ASC. Lipopolysaccharide (LPS)-induced sepsis and Alum-induced peritonitis were conducted to confirm that afatinib could inhibit the activation of NLRP3 in vivo. Peripheral blood mononuclear cells (PBMCs) from non-small cell lung cancer (NSCLC) patients before or after taking afatinib were used to check that afatinib inhibits inflammation in NSCLC therapy. Results: Our data showed that afatinib could inhibit the secretion of IL-1β in a dose-dependent manner in macrophage. Moreover, afatinib could inhibit the maturation of IL-1β and caspase-1 without affecting the precursors of IL-1β and caspase-1. Next, we found that afatinib could block the assembly of NLRP3 inflammasome and the ASC speck by blocking the interaction of the sensor protein NLRP3 and the adaptor protein ASC. We also found that afatinib was able to alleviate the LPS-induced sepsis in vivo. Conclusion: Our study found that afatinib could inhibit the activation of NLRP3 inflammasome in macrophage, providing new evidence that afatinib could target the innate immune system to control chronic inflammation. These investigations will provide significant experimental evidence in afatinib as therapeutic drug for non-small cell lung cancer or other tumors and NLRP3-related diseases and will explore new targets for afatinib.

Keywords: inflammasome, afatinib, inflammation, tyrosine kinase inhibitor

Procedia PDF Downloads 119
557 Discovery, Design and Synthesis of Some Novel Antitumor 1,2,4-Triazine Derivatives as C-Met Kinase Inhibitors

Authors: Ibrahim M. Labouta, Marwa H. El-Wakil, Hayam M. Ashour, Ahmed M. Hassan, Manal N. Saudi

Abstract:

The receptor tyrosine kinase c-Met is an attractive target for therapeutic treatment of cancers nowadays. Among the wide variety of heterocycles that have been explored for developing c-Met kinase inhibitors, the 1,2,4-triazines have been rarely investigated, although they are well known in the literature to possess antitumor activities. Herein we describe the design and synthesis of a novel series of 1,2,4-triazine derivatives possessing N-acylarylhydrazone moiety and another series combining the 1,2,4-triazine scaffold to the well-known anticancer drug 6-MP in order to explore their “double-drug” effect. The synthesized compounds were evaluated for their in vitro antitumor activity against three c-Met addicted cancer cell lines (A549, HT-29 and MKN-45). Most compounds showed moderate to excellent antiproliferative activity and four compounds showed potent inhibitory activity more than the reference drug Foretinib against one or more cancer cell lines. The obtained results revealed that the potent compounds are highly selective to A549 (lung adenocarcinoma) cancer cell line. The c-Met kinase inhibitory activity of the potent derivatives is still under investigation. The present study clearly demonstrates that the 1,2,4-triazine core ring exhibits promising antitumor activity with potential c-Met kinase inhibitory activity.

Keywords: 1, 2, 4-triazine, antitumor, c-Met inhibitor, double-drug

Procedia PDF Downloads 339
556 Mutational Analysis of JAK2V617F in Tunisian CML Patients with TKI-Resistance

Authors: R. Frikha, H. Kamoun

Abstract:

Background:Chronicmyeloidleukemia (CML), a hematologicaldisease, ischaracterized by t (9; 22) and relatedoncogene BCR-ABL formation. Although Tyrosine kinase inhibitors (TKIs) have revolutionized the treatment of CML, resistanceoccurs and possibly médiates by mutation in severalgenesindependently of the bcr-abl1 kinase mechanism. it has been reportedthat JAK2V617F/BCR-ABL double positivitymaybe a potential marker of resistance in CML. Aims: This studywasinvestigated the JAK2V617F mutation in TKI-resistant CML patients. Methods: A retrospectivestudywasconducted in the Hospital University of Sfax, south of Tunisia, including all CML TKI-resistant patients. A Sanger sequencingwasperformedusing a high-fidelity DNA polymerase. Results:Nineresistant CP-CML patients wereenrolled in thisstudy. The JAK2V617F mutation wasdetectedin 3 patients with TKI resistance. Conclusion:Despite the limit of ourstudy, ourfinding highlights the high frequency of JAK2V617F/BCR-ABL double positivity as an important marker of resistance. So; the combination of JAK and TKI inhibitorsmightbe effective and potentiallybeguided by molecular monitoring of minimal residual disease1.

Keywords: chronic myeloid leukemia, tyrosine kinase inhibitors, resistance, JAK2V617F, BCR-ABL

Procedia PDF Downloads 68
555 Study of Demographic, Hematological Profile and Risk Stratification in Chronic Myeloid Leukemia Patients

Authors: Rajandeep Kaur, Rajeev Gupta

Abstract:

Background: Chronic myeloid leukemia (CML) is the most common leukaemia in India. The annual incidence of chronic myeloid leukemia in India was originally reported to be 0.8 to 2.2 per 1,00,000 population. CML is a clonal disorder that is usually easily diagnosed because the leukemic cells of more than 95% of patients have a distinctive cytogenetic abnormality, the Philadelphia chromosome (Ph1). The approval of tyrosine kinase inhibitors (TKIs), which target BCR-ABL1 kinase activity, has significantly reduced the mortality rate associated with chronic myeloid leukemia (CML) and revolutionized treatment. Material and Methods: 80 diagnosed cases of CML were taken. Investigations were done. Bone marrow and molecular studies were also done and with EUTOS, patients were stratified into low and high-risk groups and then treatment with Imatinib was given to all patients and the molecular response was evaluated at 6 months and 12 months follow up with BCR-ABL by RT-PCR quantitative assay. Results: In the study population, out of 80 patients in the study population, 40 were females and 40 were males, with M: F is 1:1. Out of total 80 patients’ maximum patients (54) were in 31-60 years age group. Our study showed a most common symptom of presentation is abdominal discomfort followed by fever. Out of the total 80 patients, 25 (31.3%) patients had high EUTOS scores and 55 (68.8%) patients had low EUTOS scores. On 6 months follow up 36.3% of patients had Complete Molecular Response, 16.3% of patients had Major Molecular Response and 47.5% of patients had No Molecular Response but on 12 months follow up 71.3% of patients had Complete Molecular Response, 16.25% of patients had Major Molecular Response and 12.5% patients had No Molecular Response. Conclusion: In this study, we found a significant correlation between EUTOS score and Molecular response at 6 months and 12 months follow up after Imatinib therapy.

Keywords: chronic myeloid leukemia, European treatment and outcome study score, hematological response, molecular response, tyrosine kinase inhibitor

Procedia PDF Downloads 101
554 Computational Insights Into Allosteric Regulation of Lyn Protein Kinase: Structural Dynamics and Impacts of Cancer-Related Mutations

Authors: Mina Rabipour, Elena Pallaske, Floyd Hassenrück, Rocio Rebollido-Rios

Abstract:

Protein tyrosine kinases, including Lyn kinase of the Src family kinases (SFK), regulate cell proliferation, survival, and differentiation. Lyn kinase has been implicated in various cancers, positioning it as a promising therapeutic target. However, the conserved ATP-binding pocket across SFKs makes developing selective inhibitors challenging. This study aims to address this limitation by exploring the potential for allosteric modulation of Lyn kinase, focusing on how its structural dynamics and specific oncogenic mutations impact its conformation and function. To achieve this, we combined homology modeling, molecular dynamics simulations, and data science techniques to conduct microsecond-length simulations. Our approach allowed a detailed investigation into the interplay between Lyn’s catalytic and regulatory domains, identifying key conformational states involved in allosteric regulation. Additionally, we evaluated the structural effects of Dasatinib, a competitive inhibitor, and ATP binding on Lyn active conformation. Notably, our simulations show that cancer-related mutations, specifically I364L/N and E290D/K, shift Lyn toward an inactive conformation, contrasting with the active state of the wild-type protein. This may suggest how these mutations contribute to aberrant signaling in cancer cells. We conducted a dynamical network analysis to assess residue-residue interactions and the impact of mutations on the Lyn intramolecular network. This revealed significant disruptions due to mutations, especially in regions distant from the ATP-binding site. These disruptions suggest potential allosteric sites as therapeutic targets, offering an alternative strategy for Lyn inhibition with higher specificity and fewer off-target effects compared to ATP-competitive inhibitors. Our findings provide insights into Lyn kinase regulation and highlight allosteric sites as avenues for selective drug development. Targeting these sites may modulate Lyn activity in cancer cells, reducing toxicity and improving outcomes. Furthermore, our computational strategy offers a scalable approach for analyzing other SFK members or kinases with similar properties, facilitating the discovery of selective allosteric modulators and contributing to precise cancer therapies.

Keywords: lyn tyrosine kinase, mutation analysis, conformational changes, dynamic network analysis, allosteric modulation, targeted inhibition

Procedia PDF Downloads 17
553 Application of Computational Chemistry for Searching Anticancer Derivatives of 2-Phenazinamines as Bcr-Abl Tyrosine Kinase Inhibitors

Authors: Gajanan M. Sonwane

Abstract:

The computational studies on 2-phenazinamines with their protein targets have been carried out to design compounds with potential anticancer activity. This strategy of designing compounds possessing selectivity over specific tyrosine kinase has been achieved through G-QSAR and molecular docking studies. The objective of this research has been to design newer 2-phenazinamine derivatives as Bcr-Abl tyrosine kinase inhibitors by G-QSAR, molecular docking studies followed by wet-lab studies along with evaluation of their anticancer potential. Computational chemistry was done by using VLife MDS 4.3 and Autodock 4.2 followed by wet-lab experiments for synthesizing 2-phenazinamine derivatives. The chemical structures of ligands in 2D were drawn by employing Chemdraw 2D Ultra 8.0 and were converted into 3D. These were optimized by using a semi-empirical method called MOPAC. The protein structure was retrieved from RCSC protein data bank as a PDB file. The binding interactions of protein and ligands were done by using PYMOL. The molecular properties of the designed compounds were predicted in silico by using Osiris property explorer. The parent compound 2-phenazinamine was synthesized by reduction of 2, 4-dinitro-N-phenyl-benzenamine in the presence of tin chloride followed by cyclization in the presence of nitrobenzene and magnesium sulfate. The derivatization at the amino function of 2-phenazinamine was performed by treating parent compound with various aldehydes in the presence of dicyclohexylcarbodiimide (DCC) and urea to afford 2-(2-chlorophenyl)-3-(phenazine-2-yl) thiazolidine-4-one. Synthesized 39 novel derivatives of 2-phenazinamine and performed antioxidant activity, anti antiproliferative on the bulb of onion and anticancer activity on cell line showing significant competition with marked blockbuster drug imatinib.

Keywords: computer-aided drug design, tyrosin kinases, anticancer, docking

Procedia PDF Downloads 140
552 Effects of Aromatase Inhibitor (Fadrozole) Induced Sex-Reversal in Chicken (Gimmizah strain) on Morphology

Authors: Hatem Shreha

Abstract:

Aromatase inhibitors administered before sexual differentiation of the gonads can induce sex reversal in female chickens (phenotypic male). To analyze the process of sex reversal, we have followed for several months the changes induced by Fadrozole, a nonsteroidal aromatase inhibitor on the morphology of female sex-reversed and female sex-reversed supplemented with L-tyrosine which was previously shown to stimulate the release of Gn Rh. Fadrozole (1mg/egg) was injected into eggs on day four of incubation, phenotypic males and phenotypic males treated with L-tyrosine and males hatched from eggs injected Fadrozole were sacrificed by slaughtering at 16 weeks old and the remaining chicks were sacrificed at 28 weeks old. Both sexes from control chickens were sacrificed at the same age (16 &28 weeks). Hatchability, behavior, body weight, shank length, comb weight, testes weight, blood cells count and wattle weight of sex reversal were tested at 16 and 28 weeks. The results showed that body weight, comb weight, wattles weight and shank length of sex-reversed females were significantly different from control female. Behavior of phenotypic males and phenotypic males fed on L- tyrosine showed aggressive sexual behavior like that of control males and absence of laying behavior. In conclusion our results confirm that Fedrazole injection in eggs before sex differentiation produce a male behavior and morphological index of male in female chicken.

Keywords: sex reversal, fadrozole, phenotypic male, L- tyrosine

Procedia PDF Downloads 611
551 Effects of Aromatase Inhibitor on Morphology and Body Shape in Sex-Reversal Chicken: Gimmizah Strain

Authors: Hatem Ashur Masoud Shreha

Abstract:

Aromatase inhibitors administered before sexual differentiation of the gonads in chicken embryo can induce sex reversal in female layer chickens (phenotypic male). To analyze the process of sex reversal, we have followed for several months the changes induced by Fadrozole, a nonsteroidal aromatase inhibitor on morphology of female sex-reversed and female sex-reversed supplemented with L-tyrosine which was previously shown to stimulate release of Gn Rh. Fadrozole (1mg/egg) was injected into eggs on day four of incubation before sex differentiation. phenotypic males and phenotypic males treated with L-tyrosine and males hatched from eggs injected Fadrozole were sacrificed by slaughtering at 16 weeks old and the remaining chicks were sacrificed at 28 weeks old. Both sexes from control chickens were sacrificed at the same age (16 &28 weeks). Hatchability, behavior, body weight, shank length, comb weight, testes weight, blood cells count and wattle weight of sex reversal were tested at 16 and 28 weeks. The results showed that body weight, comb weight, wattles weight and shank length of sex-reversed females were significantly different from control female. Behavior of phenotypic males and phenotypic males fed on L-tyrosine showed aggressive sexual behavior like that of control males and absence of laying behavior. In conclusion our results confirm that Fadrazole injection in eggs before sex differentiation produce a male behavior and morphological index of male in female chicken.

Keywords: sex-reversal, fadrozole, phenotypic male, L-tyrosine

Procedia PDF Downloads 452
550 Design and Synthesis of Some Pyrimidine Derivatives as Bruton’s Tyrosine Kinase Inhibitors for Hematologic Malignancies

Authors: Ibrahim M. Labouta, Gina N. Tageldin, Salwa M. Fahmy, Hayam M. Ashour, Mounir A. Khalil, Tamer M. Ibrahim, Nefertiti A. El-Nikhely

Abstract:

Bruton’s tyrosine kinase (BTK) is a critical effector molecule in B cell antigen receptor (BCR) signaling transduction. It regulates B cell proliferation, development and survival. Since BTK is widely expressed in many B cell leukaemias and lymphomas, targeting BTK by small molecules inhibitors became an attractive idea as new treatment modalities for B cell mediated hematologic malignancies. Ibrutinib is the 1st generation BTK inhibitor, approved by FDA for treatment of relapsed mantle cell lymphoma (MCL) and chronic lymphocytic leukemia (CLL). It binds irreversibly to the unique cysteine (Cys481) within the ATP-binding pocket of BTK. Besides ibrutinib, many irreversible covalent BTK inhibitors comprising pyrimidine nucleus such as spebrutinib (phase IIb) showed high selectivity and potency when compared to it. In this study, the designed compounds were based on 5-cyano-2-methylsulfanyl pyrimidine core and decorated with electrophilic warheads which are essential for the optimal activity for targeted covalent inhibition (TCI). However, modifications at pyrimidine C4 or C6 were made by introduction of substituted amines which are provided to behave differently. The synthesized derivatives were evaluated for their anticancer activity in leukemia cell lines (e.g. THP-1). Results showed that, some derivatives exhibited antiproliferative activity with IC50 ranged from 5-50 μM, The in vitro enzymatic inhibitory assay for these compounds against BTK is still under investigation. Nevertheless, we could conclude from the initial biological screening that, the synthesized 4 or 6-subsitituted aminopyrimidines represent promising and novel antileukemic agents. Meanwhile, further studies are still needed to attribute this activity through targeting BTK enzyme and inhibition of BCR signaling pathway.

Keywords: BTK inhibitors, hematologic malignancies, structure based drug design (SBDD), targeted covalent inhibitors (TCI)

Procedia PDF Downloads 148
549 Effect of Removing Hub Domain on Human CaMKII Isoforms Sensitivity to Calcium/Calmodulin

Authors: Ravid Inbar

Abstract:

CaMKII (calcium-calmodulin dependent protein kinase II) makes up 2% of the protein in our brain and has a critical role in memory formation and long-term potentiation of neurons. Despite this, research has yet to uncover the role of one of the domains on the activation of this kinase. The following proposes to express the protein without the hub domain in E. coli, leaving only the kinase and regulatory segment of the protein. Next, a series of kinase assays will be conducted to elucidate the role the hub domain plays on CaMKII sensitivity to calcium/calmodulin activation. The hub domain may be important for activation; however, it may also be a variety of domains working together to influence protein activation and not the hub alone. Characterization of a protein is critical to the future understanding of the protein's function, as well as for producing pharmacological targets in cases of patients with diseases.

Keywords: CaMKII, hub domain, kinase assays, kinase + reg seg

Procedia PDF Downloads 92
548 Anticancer Lantadene Derivatives: Synthesis, Cytotoxic and Docking Studies

Authors: A. Monika, Manu Sharma, Hong Boo Lee, Richa Dhingra, Neelima Dhingra

Abstract:

Nuclear factor-κappa B serve as a molecular lynchpin that links persistent infections and chronic inflammation to increased cancer risk. Inflammation has been recognized as a hallmark and cause of cancer. Natural products present a privileged source of inspiration for chemical probe and drug design. Herbal remedies were the first medicines used by humans due to the many pharmacologically active secondary metabolites produced by plants. Some of the metabolites like Lantadene (pentacyclic triterpenoids) from the weed Lantana camara has been known to inhibit cell division and showed anti-antitumor potential. The C-3 aromatic esters of lantadenes were synthesized, characterized and evaluated for cytotoxicity and inhibitory potential against Tumor necrosis factor alpha-induced activation of Nuclear factor-κappa B in lung cancer cell line A549. The 3-methoxybenzoyloxy substituted lead analogue inhibited kinase activity of the inhibitor of nuclear factor-kappa B kinase in a single-digit micromolar concentration. At the same time, the lead compound showed promising cytotoxicity against A549 lung cancer cells with IC50 ( half maximal inhibitory concentration) of 0.98l µM. Further, molecular docking of 3-methoxybenzoyloxy substituted analogue against Inhibitor of nuclear factor-kappa B kinase (Protein data bank ID: 3QA8) showed hydrogen bonding interaction involving oxygen atom of 3-methoxybenzoyloxy with the Arginine-31 and Glutamine-110. Encouraging results indicate the Lantadene’s potential to be developed as anticancer agents.

Keywords: anticancer, lantadenes, pentacyclic triterpenoids, weed

Procedia PDF Downloads 156
547 Identification of Potential Small Molecule Regulators of PERK Kinase

Authors: Ireneusz Majsterek, Dariusz Pytel, J. Alan Diehl

Abstract:

PKR-like ER kinase (PERK) is serine/threonie endoplasmic reticulum (ER) transmembrane kinase activated during ER-stress. PERK can activate signaling pathways known as unfolded protein response (UPR). Attenuation of translation is mediated by PERK via phosphorylation of eukaryotic initiation factor 2α (eIF2α), which is necessary for translation initiation. PERK activation also directly contributes to activation of Nrf2 which regulates expression of anti-oxidant enzymes. An increased phosphorylation of eIF2α has been reported in Alzheimer disease (AD) patient hippocampus, indicating that PERK is activated in this disease. Recent data have revealed activation of PERK signaling in non-Hodgkins lymphomas. Results also revealed that loss of PERK limits mammary tumor cell growth in vitro and in vivo. Consistent with these observations, activation of UPR in vitro increases levels of the amyloid precursor protein (APP), the peptide from which beta-amyloid plaques (AB) fragments are derived. Finally, proteolytic processing of APP, including the cleavages that produce AB, largely occurs in the ER, and localization coincident with PERK activity. Thus, we expect that PERK-dependent signaling is critical for progression of many types of diseases (human cancer, neurodegenerative disease and other). Therefore, modulation of PERK activity may be a useful therapeutic target in the treatment of different diseases that fail to respond to traditional chemotherapeutic strategies, including Alzheimer’s disease. Our goal will be to developed therapeutic modalities targeting PERK activity.

Keywords: PERK kinase, small molecule inhibitor, neurodegenerative disease, Alzheimer’s disease

Procedia PDF Downloads 483
546 Thiosemicarbazone Derived from 4-Aminoantipyrine as Corrosion Inhibitor

Authors: Ahmed A. Al-Amiery, Yasmin K. Al-Majedy, Abdul Amir H. Kadhum, Abu Bakar Mohamad

Abstract:

The efficiency of synthesized thiosemicarbazone namely 2-(1,5-dimethyl-4-(2-methylbenzylidene)amino)-2-phenyl-1H-pyrazol-3(2H)-ylidene) hydrazinecarbothioamide investigated as corrosion inhibitor of mild steel in 1N H2SO4 using electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization (PD) in addition of scanning electron microscopy (SEM). The results showed that this inhibitor behaved as a good corrosion inhibitor even at low concentration with a mean efficiency of 93%. Polarization technique and EIS were tested in different concentrations reveal that this compound is adsorbed on the mild steel, therefore blocking the active sites and the adsorption follows the Langmuir adsorption isotherm model. SEM shows that mild steel surface is nearly perfect for mild steel which was immersed in a solution of H2SO4 with corrosion inhibitor.

Keywords: corrosion inhibitor, thiosemicarbazide, electrochemical impedance, electrochemical impedance spectroscopy

Procedia PDF Downloads 521
545 Investigation of the Corrosion Inhibition Mechanism of Tagetes erecta Extract for Mild Steel in Nitric Acid: Gravimetric Studies

Authors: Selvam Noyel Victoria, Kavita Yadav, Manivannan Ramachandran

Abstract:

The extract of Tagetes erecta (marigold flower) was used as a green corrosion inhibitor for mild steel (MS) in nitric acid medium. The weight loss measurements were performed to understand the inhibition mechanism. The effect of temperature on the behaviour of mild steel corrosion without and with inhibitor was studied. The temperature studies revealed that the activation energy increased from 12 kJ/mol to 28.8 kJ/mol with the addition of 500 ppm inhibitor concentration. The thermodynamic analysis and the adsorption isotherm studies revealed that the molecules of inhibitor show physical adsorption on the surface of mild steel. Based on weight loss measurements, adsorption of the inhibitor on the surface of mild steel follows Langmuir isotherm.

Keywords: Tagetes erecta, corrosion, adsorption, inhibitor

Procedia PDF Downloads 248
544 Nanoparticle Based Green Inhibitor for Corrosion Protection of Zinc in Acidic Medium

Authors: Neha Parekh, Divya Ladha, Poonam Wadhwani, Nisha Shah

Abstract:

Nano scaled materials have attracted tremendous interest as corrosion inhibitor due to their high surface area on the metal surfaces. It is well known that the zinc oxide nanoparticles have higher reactivity towards aqueous acidic solution. This work presents a new method to incorporate zinc oxide nanoparticles with white sesame seeds extract (nano-green inhibitor) for corrosion protection of zinc in acidic medium. The morphology of the zinc oxide nanoparticles was investigated by TEM and DLS. The corrosion inhibition efficiency of the green inhibitor and nano-green inhibitor was determined by Gravimetric and electrochemical impedance spectroscopy (EIS) methods. Gravimetric measurements suggested that nano-green inhibitor is more effective than green inhibitor. Furthermore, with the increasing temperature, inhibition efficiency increases for both the inhibitors. In addition, it was established the Temkin adsorption isotherm fits well with the experimental data for both the inhibitors. The effect of temperature and Temkin adsorption isotherm revealed Chemisorption mechanism occurring in the system. The activation energy (Ea) and other thermodynamic parameters for inhibition process were calculated. The data of EIS showed that the charge transfer controls the corrosion process. The surface morphology of zinc metal (specimen) in absence and presence of green inhibitor and nano-green inhibitor were performed using Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) techniques. The outcomes indicated a formation of a protective layer over zinc metal (specimen).

Keywords: corrosion, green inhibitor, nanoparticles, zinc

Procedia PDF Downloads 455
543 Camptothecin Promotes ROS-Mediated G2/M Phase Cell Cycle Arrest, Resulting from Autophagy-Mediated Cytoprotection

Authors: Rajapaksha Gedara Prasad Tharanga Jayasooriya, Matharage Gayani Dilshara, Yung Hyun Choi, Gi-Young Kim

Abstract:

Camptothecin (CPT) is a quinolone alkaloid which inhibits DNA topoisomerase I that induces cytotoxicity in a variety of cancer cell lines. We previously showed that CPT effectively inhibited invasion of prostate cancer cells and also combined treatment with subtoxic doses of CPT and TNF-related apoptosis-inducing ligand (TRAIL) potentially enhanced apoptosis in a caspase-dependent manner in hepatoma cancer cells. Here, we found that treatment with CPT caused an irreversible cell cycle arrest in the G2/M phase. CPT-induced cell cycle arrest was associated with a decrease in protein levels of cell division cycle 25C (Cdc25C) and increased the level of cyclin B and p21. The CPT-induced decrease in Cdc25C was blocked in the presence of proteasome inhibitor MG132, thus reversed the cell cycle arrest. In addition to that treatment of CPT-increased phosphorylation of Cdc25C was the resulted of activation of checkpoint kinase 2 (Chk2), which was associated with phosphorylation of ataxia telangiectasia-mutated. Interestingly CPT induced G2/M phase of the cell cycle arrest is reactive oxygen species (ROS) dependent where ROS inhibitors NAC and GSH reversed the CPT-induced cell cycle arrest. These results further confirm by using transient knockdown of nuclear factor-erythroid 2-related factor 2 (Nrf2) since it regulates the production of ROS. Our data reveal that treatment of siNrf2 increased the ROS level as well as further increased the CPT induce G2/M phase cell cycle arrest. Our data also indicate CPT-enhanced cell cycle arrest through the extracellular signal-regulated kinase (ERK) and the c-Jun N-terminal kinase (JNK) pathway. Inhibitors of ERK and JNK more decreased the Cdc25C expression and protein expression of p21 and cyclin B. These findings indicate that Chk2-mediated phosphorylation of Cdc25C plays a major role in G2/M arrest by CPT.

Keywords: camptothecin, cell cycle, checkpoint kinase 2, nuclear factor-erythroid 2-related factor 2, reactive oxygen species

Procedia PDF Downloads 441
542 Study of seum Tumor Necrosis Factor Alpha in Pediatric Patients with Hemophilia A

Authors: Sara Mohammad Atef Sabaika

Abstract:

Background: The development of factor VIII (FVIII) inhibitor and hemophilic arthropathy in patients with hemophilia A (PWHA) are a great challenge for hemophilia care. Both genetic and environmental factors led to complications in PWHA. The development of inhibitory antibodies is usually induced by the immune response. Tumor necrosis factor α (TNF-α), one of the cytokines, might contribute to its polymorphism. Aim: Study the association between tumor necrosis alpha level and genotypes in pediatric patients with hemophilia A and its relation to inhibitor development and joint status. Methods: A cross-sectional study was conducted among a sufficient number of PWHA attending the Pediatric Hematology and Oncology Unit, Pediatric department in Menoufia University hospital. The clinical parameters, FVIII, FVIII inhibitor, and serum TNF-α level were assessed. The genotyping of −380G > A TNF-α gene polymorphism was performed using real time polymerase chain reaction. Results: Among the 50 PWHA, 28 (56%) were identified as severe PWHA. The FVIII inhibitor was identified in 6/28 (21.5%) of severe PWHA. There was a significant correlation between serum TNF-α level and the development of inhibitor (p = 0:043). There was significant correlation between polymorphisms of −380G > A TNF-α gene and hemophilic arthropathy development (p = 0:645). Conclusion: The prevalence of FVIII inhibitor in severe PWHA in Menoufia was 21.5%. The frequency of replacement therapy is a risk factor for inhibitor development. Serum TNF-α level and its gene polymorphism might be used to predict inhibitor development and joint status in pediatric patients with hemophilia A.

Keywords: hemophilic arthropathy, TNF alpha., patients witb hemophilia A PWHA, inhibitor

Procedia PDF Downloads 95
541 Influence of Elicitors on Callus Growth and Active Ingredient in Echinacea purpurea

Authors: Mohamed Abdelfattah Meawad Hamza, H. A. Bosila, M. A. Zewil

Abstract:

This research aims to study the effect of different sources of elicitors for increase growth and active ingredients in callus of Echinacea purpurea plant. Callus that have been obtained from leaf explant, was used to conduct the following studies. A study of the impact of both the phenylalanine and tyrosine (50, 100,150 and 200 mg/l.) individually and casein hydrolysate (100, 200 and 300 mg/l.) supplemented to MS medium. Results show that Casein hydrolysate 100 mg/l. has achieved the better results in both callus fresh weight 1.881 g/explant after 8 weeks of the incubation period and callus growth rate 0.398 g/explant after 6 weeks of the incubation period, while gave add 200 mg/l. The best results in total carbohydrate 2.444 mg/ 100 mg dry weight. Phenylalanine 150 mg/l. has achieved the best results in callus dry weight 0.156 g/explant after 8 weeks of incubation period. Tyrosine 200 mg/l. recorded the best result for positive production of caffeic acid 0.460 mg/ 100 mg dry weight after 4 weeks incubation period.

Keywords: tissue culture, echinacea, tyrosine, casein

Procedia PDF Downloads 273
540 Proteomics Application in Disease Diagnosis and Reproduction İmprovement in Cow

Authors: Abdollah Sobhani, Hossein Vaseghi-Dodaran

Abstract:

Proteomics is defined as the study of the component of a cell, tissue and biological fluid. This technique has the potential to identify protein biomarkers of a disease states. In this study which was performed on bovine ovarian follicular cysts (BOFC), eight proteins are over expressed in BOFC that these proteins could be useful biomarkers for BOFC. The difference between serum proteome pattern cows affected by postpartum endometritis with healthy cows revealed that concentrations orosomucoid was decreased in endometritis. The comparison proteome of brucella abortus between laboratory adapted strains and clinical isolates could be useful to better understand this disease and vaccine development. Proteomics experiments identified new proteins and pathways that may be important in future hypothesis-driven studies of glucocorticoid-induced immunosuppression. Understanding the molecular mechanisms of effective parameters on male fertility is essential for obtaining high reproductive efficiency by decreasing cost and time. The investigations on proteome of high fertility spermatozoa indicated that expression of some proteins such as casein kinase 2 (CKII) prime poly peptide and tyrosine kinase in high fertility spermatozoa was higher compared to low fertility spermatozoa. Also, some evidence has indicated that variation in protein types and amounts in seminal fluid regulates fertility indexes in dairy bull. In conclusion, proteomics is a useful technique for discovering drugs, vaccine development, and diagnosis disease by biomarkers and improvement of reproduction efficiency.

Keywords: proteomics, reproduction, biomarker, immunity

Procedia PDF Downloads 412
539 Regulation of SHP-2 Activity by Small Molecules for the Treatment of T Cell-Mediated Diseases

Authors: Qiang Xu, Xingxin Wu, Wenjie Guo, Xingqi Wang, Yang Sun, Renxiang Tan

Abstract:

The phosphatase SHP-2 is known to exert regulatory activities on cytokine receptor signaling and the dysregulation of SHP-2 has been implicated in the pathogenesis of a variety of diseases. Here we report several small molecule regulators of SHP-2 for the treatment of T cell-mediated diseases. The new cyclodepsipeptide trichomides A, isolated from the fermentation products of Trichothecium roseum, increased the phosphorylation of SHP-2 in activated T cells, and ameliorated contact dermatitis in mice. The trichomides A’s effects were significantly reversed by using the SHP-2-specific inhibitor PHPS1 or T cell-conditional SHP-2 knockout mice. Another compound is a cerebroside Fusaruside isolated from the endophytic fungus Fusarium sp. IFB-121. Fusaruside also triggered the tyrosine phosphorylation of SHP-2, which provided a possible mean of selectively targeting STAT1 for the treatment of Th1 cell-mediated inflammation and led to the discovery of the non-phosphatase-like function of SHP-2. Namely, the Fusaruside-activated pY-SHP-2 selectively sequestrated the cytosolic STAT1 to prevent its recruitment to IFN-R, which contributed to the improvement of experimental colitis in mice. Blocking the pY-SHP-2-STAT1 interaction, with SHP-2 inhibitor NSC-87877 or using T cells from conditional SHP-2 knockout mice, reversed the effects of fusaruside. Furthermore, the fusaruside’s effect is independent of the phosphatase activity of SHP-2, demonstrating a novel role for SHP-2 in regulating STAT1 signaling and Th1-type immune responses.

Keywords: SHP-2, small molecules, T cell, T cell-mediated diseases

Procedia PDF Downloads 313
538 A Comprehensive Analysis of LACK (Leishmania Homologue of Receptors for Activated C Kinase) in the Context of Visceral Leishmaniasis

Authors: Sukrat Sinha, Abhay Kumar, Shanthy Sundaram

Abstract:

The Leishmania homologue of activated C kinase (LACK) is known T cell epitope from soluble Leishmania antigens (SLA) that confers protection against Leishmania challenge. This antigen has been found to be highly conserved among Leishmania strains. LACK has been shown to be protective against L. donovani challenge. A comprehensive analysis of several LACK sequences was completed. The analysis shows a high level of conservation, lower variability and higher antigenicity in specific portions of the LACK protein. This information provides insights for the potential consideration of LACK as a putative candidate in the context of visceral Leishmaniasis vaccine target.

Keywords: bioinformatics, genome assembly, leishmania activated protein kinase c (lack), next-generation sequencing

Procedia PDF Downloads 338
537 Neuroprotective Effect of Vildagliptin against Cerebral Ischemia in Rats

Authors: Salma A. El-Marasy, Rehab F. Abdel-Rahman, Reham M. Abd-Elsalam

Abstract:

The burden of stroke is intensely increasing worldwide. Brain injury following transient or permanent focal cerebral ischemia develops ischemic stroke as a consequence of a complex series of pathophysiological events. The aim of this study is to evaluate the possible neuroprotective effect of a dipeptidyl peptidase-4 inhibitor, vildagliptin, independent on its insulinotropic properties in non-diabetic rats subjected to cerebral ischemia. Anaesthetized Wistar rats were subjected to either left middle cerebral artery occlusion (MCAO) or sham operation followed by reperfusion after 30 min of MCAO. The other three groups were orally administered vildagliptin at 3 dose levels (2.5, 5, 10 mg/kg) for 3 successive weeks before subjected to left focal cerebral ischemia/reperfusion and till the end of the study. Neurological deficit scores and motor activity were assessed 24h following reperfusion. 48h following reperfusion, rats were euthanized and their left brain hemispheres were harvested and used in the biochemical, histopathological, and immunohistochemical investigations. Vildagliptin pretreatment improved neurological score deficit, locomotor activity and motor coordination in MCAO rats. Moreover, vildagliptin reduced malondialdehyde (MDA), elevated reduced glutathione (GSH), phosphotylinosital 3 kinase (PI3K), phosphorylated of protein kinase B (p-AKT), and mechanistic target of rapamycin (mTOR) brain contents in addition to reducing protein expression of caspase-3. Also, vildagliptin showed a dose-dependent attenuation in neuronal cell loss and histopathological alterations in MCAO rats. This study proves that vildagliptin exerted the neuroprotective effect in a dose-dependent manner as shown in amelioration of neuronal cell loss and histopathological damage in MCAO rats, which may be mediated by attenuating neuronal and motor deficits, it’s anti-oxidant property, activation of PI3K/AKT/mTOR pathway and its anti-apoptotic effect.

Keywords: caspase-3, cerebral ischemia, dipeptidyl peptidase-4 inhibitor, oxidative stress, PI3K/AKT/mTOR pathway, rats, vildagliptin

Procedia PDF Downloads 156
536 Mechanism of Modeling the Level of Bcr-Abl Oncoprotein by Ubiquitin-Proteasome System in Chronic Myeloid Leukemia

Authors: Svitlana Antonenko, Gennady Telegeev

Abstract:

Introductive statement: The development of chronic myeloid leukemia (CML) is caused by Bcr-Abl oncoprotein. Modern treatments with tyrosine kinase inhibitors are greatly complicated by the mutational variability of the Bcr-Abl oncoprotein, which causes drug resistance. Therefore, there is an urgent need to develop new approaches to the treatment of the disease, which will allow modeling the level of Bcr-Abl oncoprotein in the cell. Promising in this direction is the identification of proteases that can selectively promote cellular proteolysis of oncoproteins. The aim of the study was to study the effect of the interaction of Bcr-Abl with deubiquitinase USP1 on the level of oncoprotein in CML cells. Methodology: K562 cells were selected for the experiment. Сells were incubated with ML323 inhibitor for 24 hours. Precipitation of endogenous proteins from K562 cell lysate was performed using anti-Bcr-Abl antibodies. Cell lysates and precipitation results were studied by Western blot. Subcellular localization of proteins was studied by immunofluorescence analysis followed by confocal microscopy. The results were analyzed quantitatively and statistically. Major findings: The Bcr-Abl/USP1 protein complex was detected in CML cells, and it was found that inhibition of USP1 deubiquitinating activity by the compound ML323 leads to disruption of this protein complex and a decrease in the level of Bcr-Abl oncoprotein in cells. The interaction of Bcr-Abl with USP1 may result in deubiquitination of the oncoprotein, which disrupts its proteasomal degradation and leads to the accumulation of CML in cells. Conclusion: We believe that the interaction of oncoprotein with USP1 may be one of the prerequisites that contribute to malignant cell transformation due to the deubiquitination of oncoprotein, which leads to its accumulation and disease progression. A correlation was found between the deubiquitinating activity of USP1 and the level of oncoprotein in CML cells. Thus, we identify deubiquitinase USP1 as a promising therapeutic target for the development of a new strategy for the treatment of CML by modulating the level of Bcr-Abl in the cell.

Keywords: chronic myeloid leukemia, Bcr-Abl, USP1, deubiquitination Bcr-Abl, K562 cell

Procedia PDF Downloads 69
535 Identifying the Host Substrates for the Mycobacterial Virulence Factor Protein Kinase G

Authors: Saha Saradindu, Das Payel, Somdeb BoseDasgupta

Abstract:

Tuberculosis caused by Mycobacteria tuberculosis is a dreadful disease and more so with the advent of extreme and total drug-resistant species. Mycobacterial pathogenesis is an ever-changing paradigm from phagosome maturation block to phagosomal escape into macrophage cytosol and finally acid tolerance and survival inside the lysosome. Mycobacteria are adept at subverting the host immune response by highjacking host cell signaling and secreting virulence factors. One such virulence factor is a ser/thr kinase; Protein kinase G (PknG), which is known to prevent phagosome maturation. The host substrates of PknG, allowing successful pathogenesis still remain an enigma. Hence we carried out a comparative phosphoproteomic screen and identified a number of substrates phosphorylated by PknG. We characterized some of these substrates in vivo and in vitro and observed that PknG mediated phosphorylation of these substrates leads to reduced TNFa production as well as decreased response to TNFa induced macrophage necroptosis, thus enabling mycobacterial survival and proliferation.

Keywords: mycobacteria, Protein kinase G, phosphoproteomics, necroptosis

Procedia PDF Downloads 147
534 Eco-Friendly Polymeric Corrosion Inhibitor for Sour Oilfield Environment

Authors: Alireza Rahimi, Abdolreza Farhadian, Arash Tajik, Elaheh Sadeh, Avni Berisha, Esmaeil Akbari Nezhad

Abstract:

Although natural polymers have been shown to have some inhibitory properties on sour corrosion, they are not considered very effective green corrosion inhibitors. Accordingly, effective corrosion inhibitors should be developed based on natural resources to mitigate sour corrosion in the oil and gas industry. Here, Arabic gum was employed as an eco-friendly precursor for the synthesis of innovative polyurethanes designed as highly efficient corrosion inhibitors for sour oilfield solutions. A comprehensive assessment, combining experimental and computational analyses, was conducted to evaluate the inhibitory performance of the inhibitor. Electrochemical measurements demonstrated that a concentration of 200 mM of the inhibitor offered substantial protection to mild steel against sour corrosion, yielding inhibition efficiencies of 98% and 95% at 25 ºC and 60 ºC, respectively. Additionally, the presence of the inhibitor led to a smoother steel surface, indicating the adsorption of polyurethane molecules onto the metal surface. X-ray photoelectron spectroscopy results further validated the chemical adsorption of the inhibitor on mild steel surfaces. Scanning Kelvin probe microscopy revealed a shift in the potential distribution of the steel surface towards negative values, indicating inhibitor adsorption and corrosion process inhibition. Molecular dynamic simulation indicated high adsorption energy values for the inhibitor, suggesting its spontaneous adsorption onto the Fe (110) surface. These findings underscore the potential of Arabic gum as a viable resource for the development of polyurethanes under mild conditions, serving as effective corrosion inhibitors for sour solutions.

Keywords: environmental effect, Arabic gum, corrosion inhibitor, sour corrosion, molecular dynamics simulation

Procedia PDF Downloads 62
533 Designed Purine Molecules and in-silico Evaluation of Aurora Kinase Inhibition in Breast Cancer

Authors: Pooja Kumari, Anandkumar Tengli

Abstract:

Aurora kinase enzyme, a protein on overexpression, leads to metastasis and is extremely important for women’s health in terms of prevention or treatment. While creating a targeted technique, the aim of the work is to design purine molecules that inhibit in aurora kinase enzyme and helps to suppress breast cancer. Purine molecules attached to an amino acid in DNA block protein synthesis or halt the replication and metastasis caused by the aurora kinase enzyme. Various protein related to the overexpression of aurora protein was docked with purine molecule using Biovia Drug Discovery, the perpetual software. Various parameters like X-ray crystallographic structure, presence of ligand, Ramachandran plot, resolution, etc., were taken into consideration for selecting the target protein. A higher negative binding scored molecule has been taken for simulation studies. According to the available research and computational analyses, purine compounds may be powerful enough to demonstrate a greater affinity for the aurora target. Despite being clinically effective now, purines were originally meant to fight breast cancer by inhibiting the aurora kinase enzyme. In in-silico studies, it is observed that purine compounds have a moderate to high potency compared to other molecules, and our research into the literature revealed that purine molecules have a lower risk of side effects. The research involves the design, synthesis, and identification of active purine molecules against breast cancer. Purines are structurally similar to the normal metabolites of adenine and guanine; hence interfere/compete with protein synthesis and suppress the abnormal proliferation of cells/tissues. As a result, purine target metastasis cells and stop the growth of kinase; purine derivatives bind with DNA and aurora protein which may stop the growth of protein or inhibits replication and stop metastasis of overexpressed aurora kinase enzyme.

Keywords: aurora kinases, in silico studies, medicinal chemistry, combination therapies, chronic cancer, clinical translation

Procedia PDF Downloads 86