Search results for: thin film composite membrane
4777 Preparation of Porous Metal Membrane by Thermal Annealing for Thin Film Encapsulation
Authors: Jaibir Sharma, Lee JaeWung, Merugu Srinivas, Navab Singh
Abstract:
This paper presents thermal annealing dewetting technique for the preparation of porous metal membrane for thin film encapsulation application. Thermal annealing dewetting experimental results reveal that pore size in porous metal membrane depend upon i.e. 1. The substrate on which metal is deposited for formation of porous metal cap membrane, 2. Melting point of metal used for porous metal cap layer membrane formation, 3. Thickness of metal used for cap layer, 4. Temperature used for porous metal membrane formation. Silver (Ag) was used as a metal for preparation of porous metal membrane by annealing the film at different temperature. Pores in porous silver film were analyzed using Scanning Electron Microscope (SEM). In order to check the usefulness of porous metal film for thin film encapsulation application, the porous silver film prepared on amorphous silicon (a-Si) was release using XeF2. Finally, guide line and structures are suggested to use this porous membrane for thin film encapsulation (TFE) application.Keywords: dewetting, themal annealing, metal, melting point, porous
Procedia PDF Downloads 6564776 Gas Separation by Water-Swollen Membrane
Authors: Lenka Morávková, Zuzana Sedláková, Jiří Vejražka, Věra Jandová, Pavel Izák
Abstract:
The need to minimize the costs of biogas upgrading leads to a continuous search for new and more effective membrane materials. The improvement of biogas combustion efficiency is connected with polar gases removal from a feed stream. One of the possibilities is the use of water–swollen polyamide layer of thin film composite reverse osmosis membrane for simultaneous carbon dioxide and hydrogen sulphide removal. Transport properties and basic characteristics of a thin film composite membrane were compared in the term of appropriate water-swollen membrane choice for biogas upgrading. SEM analysis showed that the surface of the best performing composites changed significantly upon swelling by water. The surface changes were found to be a proof that the selective skin polyamide layer was swollen well. Further, the presence of a sufficient number of associative centers, namely amido groups, inside the upper layer of the hydrophilic thin composite membrane can play an important role in the polar gas separation from a non-polar gas. The next key factor is a high porosity of the membrane support.Keywords: biogas upgrading, carbon dioxide separation, hydrogen sulphide separation, water-swollen membrane
Procedia PDF Downloads 3404775 Polyimide Supported Membrane Made of 2D-Coordination-Crosslinked Polyimide for Rapid Molecular Separation in Multi-Solvent Environments
Authors: Netsanet Kebede Hundessa
Abstract:
Substrate modification of thin film composite (TFC) membranes with various crosslinkers is typically necessary for organic solvent nanofiltration (OSN) applications. This modification is aimed at enhancing membrane stability and solvent resistance, but it often results in a decline in permeance. This study introduces a distinct approach by developing a coordination-crosslinked polyimide substrate, which differs from the covalently-crosslinked substrates traditionally used. This developed substrate achieves enhanced solvent resistance, improved hydrophilicity, and optimized porous microstructure simultaneously. The study investigates the effects of an alkaline coagulation bath, subsequent ion exchange, and further solvent activation. The resulting TFC membrane successfully overcomes the typical permeability-selectivity trade-off of OSN membranes. It demonstrates significantly improved solvent permeance (1.5–2 times higher than previously reported data) with values of 65.2 LMH/bar for methanol, 33.1 LMH/bar for ethanol, and 59.1 LMH/bar for acetone while maintaining competitive solute rejection (>98% for Rose Bengal). This research is expected to provide a new direction for developing high-performance OSN composite membranes and other separation applications.Keywords: metal coordinatiom, thin film composite membrane, organic solvent nanofiltration, solvent activation
Procedia PDF Downloads 684774 Thin-Film Nanocomposite Membrane with Single-Walled Carbon Nanotubes Axial Positioning in Support Layer for Desalination of Water
Authors: Ahmed A. Alghamdi
Abstract:
Single-walled carbon nanotubes (SWCNTs) are an outstanding material for applications in thermoelectric power generation, nanoelectronics, electrochemical energy storage, photovoltaics, and light emission. They are ultra-lightweight and possess electrical as well as thermal conductivity, flexibility, and mechanical strength. SWCNT is applicable in water treatment, brine desalination, removal of heavy metal ions associated with pollutants, and oil-water separation. Carbon nanotube (CNT) is believed to tackle the trade-off issue between permeability, selectivity, and fouling issues in membrane filtration applications. Studying these CNT structures, as well as their interconnection in nanotechnology, assists in finding the precise position to be placed for water desalination. Reverse osmosis (RO) has been used globally for desalination, resulting in purified water. Thin film composite (TFC) membranes were utilized in the RO process for desalination. The sheet thickness increases the salt rejection and decreases the water flux when CNT is utilized as a support layer to this membrane. Thus, through a temperature-induced phase separation technique (TIPS), axially aligned SWCNT (AASWCNT) is fabricated, and its use enhances the salt rejection and water flux at short reaction times with a modified procedure. An evaluation was conducted and analogized with prior works in the literature, which exhibited that the prepared TFC membrane showed a better outcome.Keywords: single-walled carbon nanotubes, thin film composite, axially aligned swcnt, temperature induced phase separation technique, reverse osmosis
Procedia PDF Downloads 504773 Tin and Tin-Copper Composite Nanorod Anodes for Rechargeable Lithium Applications
Authors: B. D. Polat, Ö. Keleş
Abstract:
Physical vapor deposition under conditions of an obliquely incident flux results in a film formation with an inclined columnar structure. These columns will be oriented toward the vapor source because of the self-shadowing effect, and they are homogenously distributed on the substrate surface because of the limited surface diffusion ability of ad-atoms when there is no additional substrate heating. In this work, the oblique angle electron beam evaporation technique is used to fabricate thin films containing inclined nanorods. The results demonstrate that depending on the thin film composition, the morphology of the nanorods changed as well. The galvanostatic analysis of these thin film anodes reveals that a composite CuSn nanorods having approximately 900mAhg-1 of initial discharge capacity, performs higher electrochemical performance compared to pure Sn nanorods containing anode material. The long cycle life and the advanced electrochemical properties of the nano-structured composite electrode might be attributed to its improved mechanical tolerance and enhanced electrical conductivity depending on the Cu presence in the nanorods.Keywords: Cu-Sn thin film, oblique angle deposition, lithium ion batteries, anode
Procedia PDF Downloads 3464772 Synthesis and Performance of Polyamide Forward Osmosis Membrane for Natural Organic Matter (NOM) Removal
Authors: M. N. Abu Seman, L. M. Kei, M. A. Yusoff
Abstract:
Forward Osmosis (FO) polyamide thin-film composite membranes have been prepared by inter facial polymerization using commercial UF polyethersulfone as membrane support. Different inter facial polymerization times (10s, 30s and 60s) in the organic solution containing trimesoyl chloride (TMC) at constant m-phenylenediamine (MPD) concentration (2% w/v) were studied. The synthesized polyamide membranes then tested for treatment of natural organic matter (NOM) and compared to commercial Cellulose TriAcetate (CTA) membrane. It was found that membrane prepared with higher reaction time (30 s and 60 s) exhibited better membrane performance (flux and humic acid removal) over commercial CTA membrane.Keywords: cellulose triacetate, forward osmosis, humic acid, polyamide
Procedia PDF Downloads 4894771 Synthesis of Uio-66 Metal Organic Framework Impregnated Thin-Film Nanocomposite Membrane for the Desalination via Pressure Assisted Osmosis
Authors: Rajesha Kumar Alambi, Mansour Ahmed, Garudachari Bhadrachari, Safiyah Al-Muqahwi, Mansour Al-Rughaib, Jibu P. Thomas
Abstract:
Membrane-based pressure assisted osmosis (PAO) for seawater desalination has the potential to overcome the challenges of forward osmosis technology. PAO technology is gaining interest among the research community to ensure the sustainability of freshwater with a significant reduction in energy. The requirements of PAO membranes differ from the FO membrane; as it needs a slightly higher porous with sufficient mechanical strength to overcome the applied hydraulic pressure. The porous metal-organic framework (MOF) as a filler for the membrane synthesis has demonstrated a great potential to generate new channels for water transport, high selectivity, and reduced fouling propensity. Accordingly, this study is aimed at fabricating the UiO-66 MOF-based thin film nanocomposite membranes with specific characteristics for water desalination by PAO. A PAO test unit manufactured by Trevi System, USA, was used to determine the performance of the synthesized membranes. Further, the synthesized membranes were characterized in terms of morphological features, hydrophilicity, surface roughness, and mechanical properties. The 0.05 UiO-66 loaded membrane produced highest flux of 38L/m2h and with low reverse salt leakage of 2.1g/m²h for the DI water as feed solution and 2.0 M NaCl as draw solutions at the inlet feed pressure of 0.6 MPa. The new membranes showed a good tolerance toward the applied hydraulic pressure attributed to the fabric support used during the membrane synthesis.Keywords: metal organic framework, composite membrane, desalination, salt rejection, flux
Procedia PDF Downloads 1344770 Design and Fabrication of ZSO Nanocomposite Thin Film Based NO2 Gas Sensor
Authors: Bal Chandra Yadav, Rakesh K. Sonker, Anjali Sharma, Punit Tyagi, Vinay Gupta, Monika Tomar
Abstract:
In the present study, ZnO doped SnO2 thin films of various compositions were deposited on the surface of a corning substrate by dropping the two sols containing the precursors for composite (ZSO) with subsequent heat treatment. The sensor materials used for selective detection of nitrogen dioxide (NO2) were designed from the correlation between the sensor composition and gas response. The available NO2 sensors are operative at very high temperature (150-800 °C) with low sensing response (2-100) even in higher concentrations. Efforts are continuing towards the development of NO2 gas sensor aiming with an enhanced response along with a reduction in operating temperature by incorporating some catalysts or dopants. Thus in this work, a novel sensor structure based on ZSO nanocomposite has been fabricated using chemical route for the detection of NO2 gas. The structural, surface morphological and optical properties of prepared films have been studied by using X-ray diffraction (XRD), Atomic force microscopy (AFM), Transmission electron microscope (TEM) and UV-visible spectroscopy respectively. The effect of thickness variation from 230 nm to 644 nm of ZSO composite thin film has been studied and the ZSO thin film of thickness ~ 460 nm was found to exhibit the maximum gas sensing response ~ 2.1×103 towards 20 ppm NO2 gas at an operating temperature of 90 °C. The average response and recovery times of the sensor were observed to be 3.51 and 6.91 min respectively. Selectivity of the sensor was checked with the cross-exposure of vapour CO, acetone, IPA, CH4, NH3 and CO2 gases. It was found that besides the higher sensing response towards NO2 gas, the prepared ZSO thin film was also highly selective towards NO2 gas.Keywords: ZSO nanocomposite thin film, ZnO tetrapod structure, NO2 gas sensor, sol-gel method
Procedia PDF Downloads 3384769 Application of the Global Optimization Techniques to the Optical Thin Film Design
Authors: D. Li
Abstract:
Optical thin films are used in a wide variety of optical components and there are many software tools programmed for advancing multilayer thin film design. The available software packages for designing the thin film structure may not provide optimum designs. Normally, almost all current software programs obtain their final designs either from optimizing a starting guess or by technique, which may or may not involve a pseudorandom process, that give different answers every time, depending upon the initial conditions. With the increasing power of personal computers, functional methods in optimization and synthesis of optical multilayer systems have been developed such as DGL Optimization, Simulated Annealing, Genetic Algorithms, Needle Optimization, Inductive Optimization and Flip-Flop Optimization. Among these, DGL Optimization has proved its efficiency in optical thin film designs. The application of the DGL optimization technique to the design of optical coating is presented. A DGL optimization technique is provided, and its main features are discussed. Guidelines on the application of the DGL optimization technique to various types of design problems are given. The innovative global optimization strategies used in a software tool, OnlyFilm, to optimize multilayer thin film designs through different filter designs are outlined. OnlyFilm is a powerful, versatile, and user-friendly thin film software on the market, which combines optimization and synthesis design capabilities with powerful analytical tools for optical thin film designers. It is also the only thin film design software that offers a true global optimization function.Keywords: optical coatings, optimization, design software, thin film design
Procedia PDF Downloads 3154768 Investigation about Structural and Optical Properties of Bulk and Thin Film of 1H-CaAlSi by Density Functional Method
Authors: M. Babaeipour, M. Vejdanihemmat
Abstract:
Optical properties of bulk and thin film of 1H-CaAlSi for two directions (1,0,0) and (0,0,1) were studied. The calculations are carried out by Density Functional Theory (DFT) method using full potential. GGA approximation was used to calculate exchange-correlation energy. The calculations are performed by WIEN2k package. The results showed that the absorption edge is shifted backward 0.82eV in the thin film than the bulk for both directions. The static values of the real part of dielectric function for four cases were obtained. The static values of the refractive index for four cases are calculated too. The reflectivity graphs have shown an intensive difference between the reflectivity of the thin film and the bulk in the ultraviolet region.Keywords: 1H-CaAlSi, absorption, bulk, optical, thin film
Procedia PDF Downloads 5174767 To Investigate the Effects of Potassium Ion Doping and Oxygen Vacancies in Thin-Film Transistors of Gallium Oxide-Indium Oxide on Their Electrical
Authors: Peihao Huang, Chun Zhao
Abstract:
Thin-film transistors(TFTs) have the advantages of low power consumption, short reaction time, and have high research value in the field of semiconductors, based on this reason, people have focused on gallium oxide-indium oxide thin-film transistors, a relatively common thin-film transistor, elaborated and analyzed his production process, "aqueous solution method", explained the purpose of each step of operation, and finally explored the influence of potassium ions doped in the channel layer on the electrical properties of the device, as well as the effect of oxygen vacancies on its switching ratio and memory, and summarized the conclusions.Keywords: aqueous solution, oxygen vacancies, switch ratio, thin-film transistor(TFT)
Procedia PDF Downloads 1134766 Development of a Nano-Alumina-Zirconia Composite Catalyst as an Active Thin Film in Biodiesel Production
Authors: N. Marzban, J. K. Heydarzadeh M. Pourmohammadbagher, M. H. Hatami, A. Samia
Abstract:
A nano-alumina-zirconia composite catalyst was synthesized by a simple aqueous sol-gel method using AlCl3.6H2O and ZrCl4 as precursors. Thermal decomposition of the precursor and subsequent formation of γ-Al2O3 and t-Zr were investigated by thermal analysis. XRD analysis showed that γ-Al2O3 and t-ZrO2 phases were formed at 700 °C. FT-IR analysis also indicated that the phase transition to γ-Al2O3 occurred in corroboration with X-ray studies. TEM analysis of the calcined powder revealed that spherical particles were in the range of 8-12 nm. The nano-alumina-zirconia composite particles were mesoporous and uniformly distributed in their crystalline phase. In order to measure the catalytic activity, esterification reaction was carried out. Biodiesel, as a renewable fuel, was formed in a continuous packed column reactor. Free fatty acid (FFA) was esterified with ethanol in a heterogeneous catalytic reactor. It was found that the synthesized γ-Al2O3/ZrO2 composite had the potential to be used as a heterogeneous base catalyst for biodiesel production processes.Keywords: nano alumina-zirconia, composite catalyst, thin film, biodiesel
Procedia PDF Downloads 2314765 Treatment of Industrial Effluents by Using Polyethersulfone/Chitosan Membrane Derived from Fishery Waste
Authors: Suneeta Kumari, Abanti Sahoo
Abstract:
Industrial effluents treatment is a major problem in the world. All wastewater treatment methods have some problems in the environment. Due to this reason, today many natural biopolymers are being used in the waste water treatment because those are safe for our environment. In this study, synthesis and characterization of polyethersulfone/chitosan membranes (Thin film composite membrane) are carried out. Fish scales are used as raw materials. Different characterization techniques such as Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), scanning electron microscope (SEM) and Thermal gravimetric analysis (TGA) are analysed for the synthesized membrane. The performance of membranes such as flux, rejection, and pore size are also checked. The synthesized membrane is used for the treatment of steel industry waste water where Biochemical oxygen demand (BOD), Chemical Oxygen Demand (COD), pH, colour, Total dissolved solids (TDS), Total suspended solids (TSS), Electrical conductivity (EC) and Turbidity aspects are analysed.Keywords: fish scale, membrane synthesis, treatment of industrial effluents, chitosan
Procedia PDF Downloads 3204764 Structural, Optical and Electrical Thin-Film Characterization Using Graphite-Bioepoxy Composite Materials
Authors: Anika Zafiah M. Rus, Nur Munirah Abdullah, M. F. L. Abdullah
Abstract:
The fabrication and characterization of composite films of graphite- bioepoxy is described. Free-standing thin films of ~0.1 mm thick are prepared using a simple solution mixing with mass proportion of 7/3 (bioepoxy/graphite) and drop casting at room temperature. Fourier transform infra-red spectroscopy (FTIR) and Ultraviolet-visible (UV-vis) spectrophotometer are performed to evaluate the changes in chemical structure and adsorption spectra arising with the increasing of graphite weight loading (wt.%) into the biopolymer matrix. The morphologic study shows a homogeneously dispersed and strong particle bonding between the graphite and the bioepoxy, with conductivity of the film 103 S/m, confirming the efficiency of the processes.Keywords: absorbance peak, biopolymer, graphite- bioepoxy composites, particle bonding
Procedia PDF Downloads 5134763 Vertically Grown P–Type ZnO Nanorod on Ag Thin Film
Authors: Jihyun Park, Tae Il Lee, Jae-Min Myoung
Abstract:
A Silver (Ag) thin film is introduced as a template and doping source for vertically aligned p–type ZnO nanorods. ZnO nanorods were grown using a ammonium hydroxide based hydrothermal process. During the hydrothermal process, the Ag thin film was dissolved to generate Ag ions in the solution. The Ag ions can contribute to doping in the wurzite structure of ZnO and the (111) grain of Ag thin film can be the epitaxial temporal template for the (0001) plane of ZnO. Hence, Ag–doped p–type ZnO nanorods were successfully grown on the substrate, which can be an electrode or semiconductor for the device application. To demonstrate the potentials of this idea, p–n diode was fabricated and its electrical characteristics were demonstrated.Keywords: hydrothermal process, Ag–doped ZnO nanorods, p–type ZnO
Procedia PDF Downloads 4624762 Microstructural Study of Mechanically Alloyed Powders and the Thin Films of Cufe Alloys
Authors: Mechri hanane, Azzaz Mohammed
Abstract:
Polycrystalline CuFe thin film was prepared by thermal evaporation process (Physical vapor deposition), using the nanocrystalline CuFe powder obtained by mechanical alloying After 24 h of milling elemental powders. The microscopic study of nanocrystalline powder and the thin film of Cu70Fe30 binary alloy were examined using transmission electron microscopy (TEM) and scanning electron microscope (SEM). The cross-sectional TEM images showed that the obtained CuFe layer was polycrystalline film of about 20 nm thick and composed of grains of different size ranging from 4 nm to 18 nm.Keywords: nanomaterials, thin films, TEM, SEM
Procedia PDF Downloads 4084761 Segmental Dynamics of Poly(Alkyl Methacrylate) Chain in Ultra-Thin Spin-Cast Films
Authors: Hiroyuki Aoki
Abstract:
Polymeric materials are often used in a form of thin film such as food wrap and surface coating. In such the applications, polymer films thinner than 100 nm have been often used. The thickness of such the ultra-thin film is less than the unperturbed size of a polymer chain; therefore, the polymer chain in an ultra-thin film is strongly constrained. However, the details on the constrained dynamics of polymer molecules in ultra-thin films are still unclear. In the current study, the segmental dynamics of single polymer chain was directly investigated by fluorescence microscopy. The individual chains of poly(alkyl methacrylate) labeled by a perylenediimide dye molecule were observed by a highly sensitive fluorescence microscope in a defocus condition. The translational and rotational diffusion of the center segment in a single polymer chain was directly analyzed. The segmental motion in a thin film with a thickness of 10 nm was found to be suppressed compared to that in a bulk state. The detailed analysis of the molecular motion revealed that the diffusion rate of the in-plane rotation was similar to the thin film and the bulk; on the other hand, the out-of-plane motion was restricted in a thin film. This result indicates that the spatial restriction in an ultra-thin film thinner than the unperturbed chain dimension alters the dynamics of individual molecules in a polymer system.Keywords: polymer materials, single molecule, molecular motion, fluorescence microscopy, super-resolution techniques
Procedia PDF Downloads 3164760 A Study on the Influence of Annealing Conditions on the Properties of ZnON Thin Films
Authors: Kiran Jose, Anjana J. G., Venu Anand, Aswathi R. Nair
Abstract:
This work investigates the change in structural, optical, and electrical properties of Zinc Oxynitride (ZnON) thin film when annealed in different atmospheres. ZnON film is prepared by reactively sputtering the Zinc target using argon, oxygen, and nitrogen. The deposited film is annealed for one hour at 3250C in the Vaccum condition and Nitrogen and oxygen atmospheres. XRD and Raman spectroscopy is used to study the structural properties of samples. The current conduction mechanism is examined by extracting voltage versus current characteristics on a logarithmic scale, and the optical response is quantified by analyzing persistent photoconductivity (PPC) behavior. This study proposes the optimum annealing atmosphere for ZnON thin film for a better transistor and photosensor application.Keywords: Zinc oxynitride, thin film, annealing, DC sputtering
Procedia PDF Downloads 924759 Synthesis and Characterization of Non-Aqueous Electrodeposited ZnSe Thin Film
Authors: S. R. Kumar, Shashikant Rajpal
Abstract:
A nanocrystalline thin film of ZnSe was successfully electrodeposited on copper substrate using a non-aqueous solution and subsequently annealed in air at 400°C. XRD analysis indicates the polycrystalline deposit of (111) plane in both the cases. The sharpness of the peak increases due to annealing of the film and average grain size increases to 20 nm to 27nm. SEM photograph indicate that grains are uniform and densely distributed over the surface. Due to annealing the average grain size increased by 20%. The EDS spectroscopy shows the ratio of Zn & Se is 1.1 in case of annealed film. AFM analysis indicates the average roughness of the film reduces from 181nm to 165nm due to annealing of the film. The bandgap also decreases from 2.71eV to 2.62eV.Keywords: electrodeposition, non-aqueous medium, SEM, XRD
Procedia PDF Downloads 4844758 Soap Film Enneper Minimal Surface Model
Authors: Yee Hooi Min, Mohdnasir Abdul Hadi
Abstract:
Tensioned membrane structure in the form of Enneper minimal surface can be considered as a sustainable development for the green environment and technology, it also can be used to support the effectiveness used of energy and the structure. Soap film in the form of Enneper minimal surface model has been studied. The combination of shape and internal forces for the purpose of stiffness and strength is an important feature of membrane surface. For this purpose, form-finding using soap film model has been carried out for Enneper minimal surface models with variables u=v=0.6 and u=v=1.0. Enneper soap film models with variables u=v=0.6 and u=v=1.0 provides an alternative choice for structural engineers to consider the tensioned membrane structure in the form of Enneper minimal surface applied in the building industry. It is expected to become an alternative building material to be considered by the designer.Keywords: Enneper, minimal surface, soap film, tensioned membrane structure
Procedia PDF Downloads 5524757 Theoretical Analysis of the Solid State and Optical Characteristics of Calcium Sulpide Thin Film
Authors: Emmanuel Ifeanyi Ugwu
Abstract:
Calcium Sulphide which is one of Chalcogenide group of thin films has been analyzed in this work using a theoretical approach in which a scalar wave was propagated through the material thin film medium deposited on a glass substrate with the assumption that the dielectric medium has homogenous reference dielectric constant term, and a perturbed dielectric function, representing the deposited thin film medium on the surface of the glass substrate as represented in this work. These were substituted into a defined scalar wave equation that was solved first of all by transforming it into Volterra equation of second type and solved using the method of separation of variable on scalar wave and subsequently, Green’s function technique was introduced to obtain a model equation of wave propagating through the thin film that was invariably used in computing the propagated field, for different input wavelengths representing UV, Visible and Near-infrared regions of field considering the influence of the dielectric constants of the thin film on the propagating field. The results obtained were used in turn to compute the band gaps, solid state and optical properties of the thin film.Keywords: scalar wave, dielectric constant, calcium sulphide, solid state, optical properties
Procedia PDF Downloads 1164756 Characteristics of Different Solar PV Modules under Partial Shading
Authors: Hla Hla Khaing, Yit Jian Liang, Nant Nyein Moe Htay, Jiang Fan
Abstract:
Partial shadowing is one of the problems that are always faced in terrestrial applications of solar photovoltaic (PV). The effects of partial shadow on the energy yield of conventional mono-crystalline and multi-crystalline PV modules have been researched for a long time. With deployment of new thin-film solar PV modules in the market, it is important to understand the performance of new PV modules operating under the partial shadow in the tropical zone. This paper addresses the impacts of different partial shadowing on the operating characteristics of four different types of solar PV modules that include multi-crystalline, amorphous thin-film, CdTe thin-film and CIGS thin-film PV modules.Keywords: partial shade, CdTe, CIGS, multi-crystalline (mc-Si), amorphous silicon (a-Si), bypass diode
Procedia PDF Downloads 4494755 Free-Standing Pd-Based Metallic Glass Membranes for MEMS Applications
Authors: Wei-Shan Wang, Klaus Vogel, Felix Gabler, Maik Wiemer, Thomas Gessner
Abstract:
Metallic glasses, which are free of grain boundaries, have superior properties including large elastic limits, high strength, and excellent wear and corrosion resistance. Therefore, bulk metallic glasses (BMG) and thin film metallic glasses (TFMG) have been widely developed and investigated. Among various kinds of metallic glasses, Pd-Cu-Si TFMG, which has lower elastic modulus and better resistance of oxidation and corrosions compared to Zr- and Fe-based TFMGs, can be a promising candidate for MEMS applications. However, the study of Pd-TFMG membrane is still limited. This paper presents free-standing Pd-based metallic glass membranes with large area fabricated on wafer level for the first time. Properties of Pd-Cu-Si thin film metallic glass (TFMG) with various deposition parameters are investigated first. When deposited at 25°C, compressive stress occurs in the Pd76Cu6Si18 thin film regardless of Ar pressure. When substrate temperature is increased to 275°C, the stress state changes from compressive to tensile. Thin film stresses are slightly decreased when Ar pressure is higher. To show the influence of temperature on Pd-TFMGs, thin films without and with post annealing below (275°C) and within (370°C) supercooled liquid region are investigated. Results of XRD and TEM analysis indicate that Pd-TFMGs remain amorphous structure with well-controlled parameters. After verification of amorphous structure of the Pd-TFMGs, free-standing Pd-Cu-Si membranes were fabricated by depositing Pd-Cu-Si thin films directly on 200nm-thick silicon nitride membranes, followed by post annealing and dry etching of silicon nitride layer. Post annealing before SiNx removal is used to further release internal stress of Pd-TFMGs. The edge length of the square membrane ranges from 5 to 8mm. The effect of post annealing on Pd-Cu-Si membranes are discussed as well. With annealing at 370°C for 5 min, Pd-MG membranes are fully distortion-free after removal of SiNx layer. Results show that, by introducing annealing process, the stress-relief, distortion-free Pd-TFMG membranes with large area can be a promising candidate for sensing applications such as pressure and gas sensors.Keywords: amorphous alloy, annealing, metallic glasses, TFMG membrane
Procedia PDF Downloads 3504754 Controlling the Degradation Rate of Biodegradable Mg Implant Using Magnetron-Sputtered (Zr-Nb) Thin Films
Authors: Somayeh Azizi, Mohammad Hossein Ehsani, Amir Zareidoost
Abstract:
In this research, a technique has been developed to reduce the corrosion rate of magnesium (Mg) metal by creating Zr-Nb thin film coatings. In this regard, thin-film coatings of niobium (Nb) zirconium (Zr) double alloy are applied on pure Mg specimens under different processes conditions, such as the change of the substrate temperature, substrate bias, and coating thickness using the magnetron sputtering method. Then, deposited coatings are analyzed in terms of surface features via field-emission scanning electron microscopy (FE-SEM), thin-layer X-ray diffraction (GI-XRD), energy-dispersive X-ray spectroscopy (EDS), atomic force microscopy (AFM), and corrosion tests. Also, nano-scratch tests were carried out to investigate the adhesion of the thin film. The results showed that the (Zr-Nb) thin films could control the degradation rate of Mg in the simulated body fluid (SBF). The nano-scratch studies depicted that the (Zr-Nb) thin films have a proper adhesion with the Mg substrate. Therefore, this technique could be used to enhance the corrosion resistance of bare Mg and could result in improving the performance of the biodegradable Mg implant for orthopedic applications.Keywords: (Zr-Nb) thin film, magnetron sputtering, biodegradable Mg, degradation rate
Procedia PDF Downloads 1194753 Superhydrophobic Behavior of SnO₂-TiO₂ Composite Thin Films
Authors: Debarun Dhar Purkayastha, Talinungsang
Abstract:
SnO₂-TiO₂ nanocomposite thin films were prepared by the sol-gel method on borosilicate glass substrate. The films were annealed at a temperature of 300ᵒC, 400ᵒC, and 500ᵒC respectively for 2h in the air. The films obtained were further modified with stearic acid in order to decrease the surface energy. The X-ray diffraction patterns for the SnO₂-TiO₂ thin films after annealing at different temperatures can be indexed to the mixture of TiO₂ (rutile and anatase) and SnO₂ (tetragonal) phases. The average crystallite size calculated from Scherrer’s formula is found to be 6 nm. The SnO₂-TiO₂ thin films were hydrophilic which on modification with stearic acid exhibit superhydrophobic behavior. The increase in hydrophobicity of SnO₂ film with stearic acid modification is attributed to the change in surface energy of the film. The films exhibit superhydrophilic behavior under UV irradiation for 1h. Thus, it is observed that stearic acid modified surfaces are superhydrophobic but convert into superhydrophilic on being subjected to UV irradiation. SnO₂-TiO₂ thin films have potential for self-cleaning applications because of photoinduced hydrophilicity under UV irradiation.Keywords: nanocomposite, self-cleaning, superhydrophobic, surface energy
Procedia PDF Downloads 1794752 Impact Factor of Annealing on Electrical Properties of Zinc Selenide (ZnSe) Thin Films
Authors: Esubalew Yehualaw Melaku, Tizazu Abeza
Abstract:
ZnSe thin films in an aqueous solution of zinc acetate and hydrazine hydrate (HH) using the non-toxic complexing agent EDTA along with the films were annealed at 200, 300, and 400oC. This research aimed to investigate the effect of annealing on the structural, optical, and electrical properties of the films. X-ray diffraction (XRD) analysis was used to study the structure and crystallite size of the ZnSe thin film. The ZnSe thin films are annealed in an oven at various temperatures which are characterized by structural and optical properties. An increase in annealing temperature distorted the nanocrystillinity and made the ZnSe thin films amorphous. The variation of resistivity indicates the semiconducting nature of the thin film. The electrical resistivity of the films decreases with increasing annealing temperature. In this study, the Band gap of ZnSe decreases from 2.8eV to 2.65eV with the increase in temperature and decreases for as-deposited to 2.5eV. As a result of this research, ZnSe is used for certain applications; it has been widely utilized in various optoelectronic devices such as thin film solar cells, green-blue light emitting diodes, lasers, photo-luminescent, and electro-luminescent devices.Keywords: chemical bath deposition, ZnSe thin film, band gap, solar cells
Procedia PDF Downloads 1284751 Advances in Membrane Technologies for Wastewater Treatment
Authors: Deniz Sahin
Abstract:
This study provides a literature review of the special issue on wastewater treatment technologies, especially membrane technologies. Currently, wastewater is a serious and increasing worldwide problem with an adverse effect on the environment and living organisms. For this reason, many technologies have been developed to treat wastewater before discharging it to water bodies. We have been discussed membrane technologies to remove contaminants from wastewater such as heavy metals, dyes, pesticides, etc., which represent the main pollutants in wastewater. All the properties of these technologies including performance, economics, simplicity, and operability are also compared with other wastewater treatment technologies. The conventional water treatment technologies have the disadvantages of low separation efficiency, high energy consumption, and strict operating temperature. To overcome these difficulties, membrane technologies have been developed and used in wastewater treatment. Membrane technology uses a selectively permeable membrane to remove suspended and dissolved solids from water. This membrane is a very thin film of synthetic organic or inorganic materials, that can allow a very selective separation between a mixture and its components. Examples of membrane technologies include microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), reverse osmosis (RO), electrodialysis (ED), gas separation, etc. Most of these technologies have been used extensively for the treatment of heavy metal wastewater. For instance, wastewater that contains Cu²⁺, Cd²⁺, Pb²⁺, Zn²⁺ was treated by ultrafiltration technology. It was shown that complete removal of metal ions could be achieved.Keywords: industrial pollution, membrane technologies, metal ions, wastewater
Procedia PDF Downloads 1964750 Theoretical Analysis of the Optical and Solid State Properties of Thin Film
Authors: E. I. Ugwu
Abstract:
Theoretical analysis of the optical and Solid State properties of ZnS thin film using beam propagation technique in which a scalar wave is propagated through the material thin film deposited on a substrate with the assumption that the dielectric medium is section into a homogenous reference dielectric constant term, and a perturbed dielectric term, representing the deposited thin film medium is presented in this work. These two terms, constitute arbitrary complex dielectric function that describes dielectric perturbation imposed by the medium of for the system. This is substituted into a defined scalar wave equation in which the appropriate Green’s Function was defined on it and solved using series technique. The green’s value obtained from Green’s Function was used in Dyson’s and Lippmann Schwinger equations in conjunction with Born approximation method in computing the propagated field for different input regions of field wavelength during which the influence of the dielectric constants and mesh size of the thin film on the propagating field were depicted. The results obtained from the computed field were used in turn to generate the data that were used to compute the band gaps, solid state and optical properties of the thin film such as reflectance, Transmittance and reflectance with which the band gap obtained was found to be in close approximate to that of experimental value.Keywords: scalar wave, optical and solid state properties, thin film, dielectric medium, perturbation, Lippmann Schwinger equations, Green’s Function, propagation
Procedia PDF Downloads 4374749 Deposition of Diamond Like Carbon Thin Film by Pulse Laser Deposition for Surgical Instruments
Authors: M. Khalid Alamgir, Javed Ahsan Bhatti, M. Zafarullah Khan
Abstract:
Thin film of amorphous carbon (DLC) was deposited on 316 steel using Nd: YAG laser having energy 300mJ. Pure graphite was used as a target. The vacuum in the deposition chamber was generated in the range of 10-6 mbar by turbo molecular pump. Ratio of sp3 to sp2 content shows amorphous nature of the film. This was confirmed by Raman spectra having two peaks around 1300 cm-1 i.e. D-band to 1700 cm-1 i.e. G-band. If sp3 bonding ratio is high, the films behave like diamond-like whereas, with high sp2, films are graphite-like. The ratio of sp3 and sp2 contents in the film depends upon the deposition method, hydrogen contents and system parameters. The structural study of the film was carried out by XRD. The hardness of the films as measured by Vickers hardness tester and was found to be 28 GPa. The EDX result shows the presence of carbon contents on the surface in high rate and optical microscopy result shows the smoothness of the film on substrate. The film possesses good adhesion and can be used to coat surgical instruments.Keywords: DLC, thin film, Raman spectroscopy, XRD, EDX
Procedia PDF Downloads 5624748 Magnetron Sputtered Thin-Film Catalysts with Low Noble Metal Content for Proton Exchange Membrane Water Electrolysis
Authors: Peter Kus, Anna Ostroverkh, Yurii Yakovlev, Yevheniia Lobko, Roman Fiala, Ivan Khalakhan, Vladimir Matolin
Abstract:
Hydrogen economy is a concept of low-emission society which harvests most of its energy from renewable sources (e.g., wind and solar) and in case of overproduction, electrochemically turns the excess amount into hydrogen, which serves as an energy carrier. Proton exchange membrane water electrolyzers (PEMWE) are the backbone of this concept. By fast-response electricity to hydrogen conversion, the PEMWEs will not only stabilize the electrical grid but also provide high-purity hydrogen for variety of fuel cell powered devices, ranging from consumer electronics to vehicles. Wider commercialization of PEMWE technology is however hindered by high prices of noble metals which are necessary for catalyzing the redox reactions within the cell. Namely, platinum for hydrogen evolution reaction (HER), running on cathode, and iridium for oxygen evolution reaction (OER) on anode. Possible way of how to lower the loading of Pt and Ir is by using conductive high-surface nanostructures as catalyst supports in conjunction with thin-film catalyst deposition. The presented study discusses unconventional technique of membrane electron assembly (MEA) preparation. Noble metal catalysts (Pt and Ir) were magnetron sputtered in very low loadings onto the surface of porous sublayers (located on gas diffusion layer or directly on membrane), forming so to say localized three-phase boundary. Ultrasonically sprayed corrosion resistant TiC-based sublayer was used as a support material on anode, whereas magnetron sputtered nanostructured etched nitrogenated carbon (CNx) served the same role on cathode. By using this configuration, we were able to significantly decrease the amount of noble metals (to thickness of just tens of nanometers), while keeping the performance comparable to that of average state-of-the-art catalysts. Complex characterization of prepared supported catalysts includes in-cell performance and durability tests, electrochemical impedance spectroscopy (EIS) as well as scanning electron microscopy (SEM) imaging and X-ray photoelectron spectroscopy (XPS) analysis. Our research proves that magnetron sputtering is a suitable method for thin-film deposition of electrocatalysts. Tested set-up of thin-film supported anode and cathode catalysts with combined loading of just 120 ug.cm⁻² yields remarkable values of specific current. Described approach of thin-film low-loading catalyst deposition might be relevant when noble metal reduction is the topmost priority.Keywords: hydrogen economy, low-loading catalyst, magnetron sputtering, proton exchange membrane water electrolyzer
Procedia PDF Downloads 162