Search results for: tectonic fracture
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 725

Search results for: tectonic fracture

695 Failure Analysis of Fuel Pressure Supply from an Aircraft Engine

Authors: M. Pilar Valles-gonzalez, Alejandro Gonzalez Meije, Ana Pastor Muro, Maria Garcia-Martinez, Beatriz Gonzalez Caballero

Abstract:

This paper studies a failure case of a fuel pressure supply tube from an aircraft engine. Multiple fracture cases of the fuel pressure control tube from aircraft engines have been reported. The studied set was composed of the mentioned tube, a welded connecting pipe, where the fracture has been produced, and a union nut. The fracture has been produced in one most critical zones of the tube, in a region next to the supporting body of the union nut to the connector. The tube material was X6CrNiTi18-10, an austenitic stainless steel. Chemical composition was determined using an X-Ray fluorescence spectrometer (XRF) and combustion equipment. Furthermore, the material has been mechanical, by hardness test, and microstructural characterized using a stereomicroscope and an optical microscope. The results confirmed that it is within specifications. To determine the macrofractographic features, a visual examination and a stereo microscope of the tube fracture surface have been carried out. The results revealed a tube plastic macrodeformation, surface damaged, and signs of a possible corrosion process. Fracture surface was also inspected by scanning electron microscopy (FE-SEM), equipped with a microanalysis system by X-ray dispersive energy (EDX), to determine the microfractographic features in order to find out the failure mechanism involved in the fracture. Fatigue striations, which are typical from a progressive fracture by a fatigue mechanism, have been observed. The origin of the fracture has been placed in defects located on the outer wall of the tube, leading to a final overload fracture.

Keywords: aircraft engine, fatigue, FE-SEM, fractography, fracture, fuel tube, microstructure, stainless steel

Procedia PDF Downloads 120
694 Insufficiency Fracture of Femoral Head in Patients Treated With Intramedullary Nailing for Proximal Femur Fracture

Authors: Jai Hyung Park, Eugene Kim, Jin Hun Park, Min Joon Oh

Abstract:

Introduction: Subchondral insufficiency fracture of the femoral head (SIF) is a rare complication; however, it has been recognized to cause femoral head collapse. Subchondral insufficiency fracture (SIF) is caused by normal or physiological stress without any trauma. It has been reported in osteoporotic patients after the fixation of the proximal femur with an Intramedullary nail. Case presentation: We reported 5 cases with SIF of the femoral head after proximal femur fracture fixation with Intra-medullary nail. All patients had osteoporosis as an underlying disease. Good reduction was achieved in all 5 patients. SIF was found from about 3 months to 4 years after the initial operation, and all the fractures were solidly united at the final diagnosis. We investigated retrospectively the feature of those cases and several factors that affected the occurrence of SIF. Discussion: There are a few discussions regarding the SIF of the femoral head. These discussions may include the predisposing risk factors, how to diagnose the SIF in osteoporotic patients, and the peri-operative factors to prevent SIF. Conclusion: Subchondral insufficiency fracture of the femoral head is a considerable complication after the internal fixation of the proximal femur. There are several factors that can be modified. If they could be controlled in the peri-operative period, SIF could be prevented or handled in advance. Other options related to arthroplasty can be considered in old osteoporotic patients.

Keywords: insufficiency fracture of femoral head, intra-medullary nail, osteoporosis, proximal femur fracture

Procedia PDF Downloads 97
693 A Technique for Planning the Application of Buttress Plate in the Medial Tibial Plateau Using the Preoperative CT Scan

Authors: P. Panwalkar, K. Veravalli, R. Gwynn, M. Tofighi, R. Clement, A. Mofidi

Abstract:

When operating on tibial plateau fracture especially medial tibial plateau, it has regularly been said “where do I put my thumb to reduce the fracture”. This refers to the ideal placement of the buttress device to hold the fracture till union. The aim of this study was to see if one can identify this sweet spot using a CT scan. Methods: Forty-five tibial plateau fractures with medial plateau involvement were identified and included in the study. The preoperative CT scans were analysed and the medial plateau involvement pattern was classified based on modified radiological classification by Yukata et-al of stress fracture of medial tibial plateau. The involvement of part of plateau was compared with position of buttress plate position which was classified as medial posteromedial or both. Presence and position of the buttress was compared with ability to achieve and hold the reduction of the fracture till union. Results: Thirteen fractures were type-1 fracture, 19 fractures were type-2 fracture and 13 fractures were type-3 fracture. Sixteen fractures were buttressed correctly according to the potential deformity and twenty-six fractures were not buttressed and three fractures were partly buttressed correctly. No fracture was over butressed! When the fracture was buttressed correctly the rate of the malunion was 0%. When fracture was partly buttressed 33% were anatomically united and 66% were united in the plane of buttress. When buttress was not used, 14 were malunited, one malunited in one of the two planes of deformity and eleven anatomically healed (of which 9 were non displaced!). Buttressing resulted in statistically significant lower mal-union rate (x2=7.8, p=0.0052). Conclusion: The classification based on involvement of medial condyle can identify the placement of buttress plate in the tibial plateau. The correct placement of the buttress plate results in predictably satisfactory union. There may be a correlation between injury shape of the tibial plateau and the fracture type.

Keywords: knee, tibial plateau, trauma, CT scan, surgery

Procedia PDF Downloads 120
692 Fracture Toughness Properties and FTIR Analysis of Corn Fiber Green Composites

Authors: Ahmed Hashim, Aseel Abdullah

Abstract:

In this work, the fracture toughness of new green composite based on bio-PMMA resin reinforced with randomly short corn natural fiber of constant weight fraction by 10% wt was investigated. The corn fiber surface was modified by mercerization treatment with two different concentrations of sodium hydroxide (3, and 5% NaOH) for 1.5 and 3 hours respectively. The effect of mercerization treatment on the fracture behavior of the green composites was analyzed by FTIR spectra. NaOH concentration of 3% for 1.5 hrs. That was used for corn fiber green composite should the highest improvement in terms of plane strain fracture toughness KIC which increased by 62 % compared to untreated fiber composite material. On the other hand, increased both concentrations of alkali solution to 5% NaOH and time of soaking to 3 hrs. reduced the values of KIC lower than the value of the unfilled material.

Keywords: green composites, fracture toughness, corn natural fiber, bio-PMMA

Procedia PDF Downloads 395
691 Tectonic Setting of Hinterland and Foreland Basins According to Tectonic Vergence in Eastern Iran

Authors: Shahriyar Keshtgar, Mahmoud Reza Heyhat, Sasan Bagheri, Ebrahim Gholami, Seyed Naser Raiisosadat

Abstract:

Various tectonic interpretations have been presented by different researchers to explain the geological evolution of eastern Iran, but there are still many ambiguities and many disagreements about the geodynamic nature of the Paleogene mountain range of eastern Iran. The purpose of this research is to clarify and discuss the tectonic position of the foreland and hinterland regions of eastern Iran from the tectonic perspective of sedimentary basins. In the tectonic model of oceanic subduction crust under the Afghan block, the hinterland is located to the east and on the Afghan block, and the foreland is located on the passive margin of the Sistan open ocean in the west. After the collision of the two microcontinents, the foreland basin must be located somewhere on the passive margin of the Lut block. This basin can deposit thick Paleocene to Oligocene sediments on the Cretaceous and older sediments. Thrust faults here will move towards the west. If we accept the subduction model of the Sistan Ocean under the Lut Block, the hinterland is located to the west towards the Lut Block, and the foreland basin is located towards the Sistan Ocean in the east. After the collision of the two microcontinents, the foreland basin with Paleogene sediments should expand on the Sefidaba basin. Thrust faults here will move towards the east. If we consider the two-sided subduction model of the ocean crust under both Lut and Afghan continental blocks, the tectonic position of the foreland and hinterland basins will not change and will be similar to the one-sided subduction models. After the collision of two microcontinents, the foreland basin should develop in the central part of the eastern Iranian orogen. In the oroclinic buckling model, the foreland basin will continue not only in the east and west but continuously in the north as well. In this model, since there is practically no collision, the foreland basin is not developed, and the remnants of the Sistan Ocean ophiolites and their deep turbidite sediments appear in the axial part of the mountain range, where the Neh and Khash complexes are located. The structural data from this research in the northern border of the Sistan belt and the Lut block indicate the convergence of the tectonic vergence directions towards the interior of the Sistan belt (in the Ahangaran area towards the southwest, in the north of Birjand towards the south-southeast, in the Sechengi area to the southeast). According to this research, not only the general movement of thrust sheets do not follow the linear orogeny models, but the expected active foreland basins have not been formed in the mentioned places in eastern Iran. Therefore, these results do not follow previous tectonic models for eastern Iran (i.e., rifting of eastern Iran continental crust and subsequent linear collision of the Lut and Afghan blocks), but it seems that was caused by buckling model in the Late Eocene-Oligocene.

Keywords: foreland, hinterland, tectonic vergence, orocline buckling, eastern Iran

Procedia PDF Downloads 19
690 Nonlinear Flow Behavior and Validity of the Cubic Law in a Rough Fracture

Authors: Kunwar Mrityunjai Sharma, Trilok Nath Singh

Abstract:

The Navier-Stokes equation is used to study nonlinear fluid flow in rough 2D fractures. The major goal is to investigate the influence of inertial flow owing to fracture wall roughness on nonlinear flow behavior. Roughness profiles are developed using Barton's Joint Roughness Coefficient (JRC) and used as fracture walls to assess wall roughness. Four JRC profiles (5, 11, 15, and 19) are employed in the study, where a higher number indicates higher roughness. A parametric study has been performed using varying pressure gradients, and the corresponding Forchheimer number is calculated to observe the nonlinear behavior. The results indicate that the fracture roughness has a significant effect on the onset of nonlinearity. Additionally, the validity of the cubic law is evaluated and observed that it overestimates the flow in rough fractures and should be used with utmost care.

Keywords: fracture flow, nonlinear flow, cubic law, Navier-stokes equation

Procedia PDF Downloads 88
689 Crack Initiation Assessment during Fracture of Heat Treated Duplex Stainless Steels

Authors: Faraj Ahmed E. Alhegagi, Anagia M. Khamkam Mohamed, Bassam F. Alhajaji

Abstract:

Duplex stainless steels (DSS) are widely employed in industry for apparatus working with sea water in petroleum, refineries and in chemical plants. Fracture of DSS takes place by cleavage of the ferrite phase and the austenite phase ductile tear off. Pop-in is an important feature takes place during fracture of DSS. The procedure of Pop-ins assessment plays an important role in fracture toughness studies. In present work, Zeron100 DSS specimens were heat treated at different temperatures, cooled and pulled to failure to assess the pop-ins criterion in crack initiation prediction. The outcome results were compared to the British Standard (BS 7448) and the ASTEM standard (E1290) for Crack-Tip Opening Displacement (CTOD) fracture toughness measurement. Pop-in took place during specimens loading specially for those specimens heat treated at higher temperatures. The standard BS7448 was followed to check specimen validity for fractured toughness assessment by direct determination of KIC. In most cases, specimens were invalid for KIC measurement. The two procedures were equivalent only when single pop-ins were assessed. A considerable contrast in fracture toughness value between was observed where multiple pop-ins were assessed.

Keywords: fracture toughness, stainless steels, pop ins, crack assessment

Procedia PDF Downloads 101
688 Comparative Study of Impact Strength and Fracture Morphological of Nano-CaCO3 and Nanoclay Reinforced HDPE Nanocomposites

Authors: Harun Sepet, Necmettin Tarakcioglu

Abstract:

The present study investigated the impact strength and fracture mechanism of nano-CaCO3 and nanoclay reinforced HDPE nanocomposites by using Charpy impact test. The nano-CaCO3 and nanoclay reinforced HDPE granules were prepared by the melt blending method using a compounder system, which consists of industrial banbury mixer, single screw extruder and granule cutting in industrial-scale. The nano-CaCO3 and nanoclay reinforced HDPE granules were molded using an injection-molding machine as plates, and then impact samples were cut by using punching die from the nanocomposite plates. As a result of impact experiments, nano-CaCO3 and nanoclay reinforced HDPE nanocomposites were determined to have lower impact energy level than neat HDPE. Also, the impact strength of HDPE further decreased by addition nanoclay compared to nano-CaCO3. The occurred fracture areas with the impact were detected by SEM examination. It is understood that fracture surface morphology changes when nano-CaCO3 and nanoclay ratio increases. The fracture surface changes were examined to determine the fracture mechanism of nano-CaCO3 and nanoclay reinforced HDPE nanocomposites.

Keywords: charpy, HDPE, industrial scale nano-CaCO3, nanoclay, nanocomposite

Procedia PDF Downloads 380
687 The Effect of Heating-Liquid Nitrogen Cooling on Fracture Toughness of Anisotropic Rock

Authors: A. Kavandi, K. Goshtasbi, M. R. Hadei, H. Nejati

Abstract:

In geothermal energy production, the method of liquid nitrogen (LN₂) fracturing in hot, dry rock is one of the most effective methods to increase the permeability of the reservoir. The geothermal reservoirs mainly consist of hard rocks such as granites and metamorphic rocks like gneiss with high temperatures. Gneiss, as a metamorphic rock, experiences a high level of inherent anisotropy. This type of anisotropy is considered as the nature of rocks, which affects the mechanical behavior of rocks. The aim of this study is to investigate the effects of heating-liquid nitrogen (LN₂) cooling treatment and rock anisotropy on the fracture toughness of gneiss. For this aim, a series of semi-circular bend (SCB) tests were carried out on specimens of gneiss with different anisotropy plane angles (0°, 30°, 60°, and 90°). In this study, gneiss specimens were exposed to heating–cooling treatment through gradual heating to 100°C followed by LN₂ cooling. Results indicate that the fracture toughness of treated samples is lower than that of untreated samples, and with increasing the anisotropy plane angle, the fracture toughness increases. The scanning electron microscope (SEM) technique is also implemented to evaluate the fracture process zone (FPZ) ahead of the crack tip.

Keywords: heating-cooling, anisotropic rock, fracture toughness, liquid nitrogen

Procedia PDF Downloads 35
686 The Role of Secondary Filler on the Fracture Toughness of HDPE/Clay Nanocomposites

Authors: R. Kamarudzaman, A. Kalam, N. A. Mohd Fadzil

Abstract:

Oil Palm Fruit Bunch Fiber (OPEFB) was used as secondary filler in HDPE/clay nanocomposites. The composites were prepared by melt compounding which contains High Density Polyethylene (HDPE), OPEFB fibers, Maleic Anhydride Graft Polyethylene (MAPE) and four different clay loading (3, 5, 7 and 10 PE nanoclay pellets per hundred of HDPE pellets). Four OPEFB sizes (180 µm, 250 µm, 300 µm and 355 µm) were added in the composites to investigate their effects on fracture toughness. Fracture toughness of the composites were determined according to ASTM D5045 and Single Edge Notch Bending (SENB) been employed during the test. The effects of alkali treatment were also investigated in this study. The results indicate that the fracture toughness slightly increased as clay loading increased. The highest value of fracture toughness was 0.47 and 1.06 MPa.m1/2 at 5 phr for both types of clay loading. The presence of filler as reinforcement with the matrix indicates the enhancement of composites compared to those without the filler.

Keywords: oil palm empty fruit bunch, fiber, polyethylene, polymer nanocomposite, impact strength

Procedia PDF Downloads 536
685 Numerical and Experimental Investigation of Mixed-Mode Fracture of Cement Paste and Interface Under Three-Point Bending Test

Authors: S. Al Dandachli, F. Perales, Y. Monerie, F. Jamin, M. S. El Youssoufi, C. Pelissou

Abstract:

The goal of this research is to study the fracture process and mechanical behavior of concrete under I–II mixed-mode stress, which is essential for ensuring the safety of concrete structures. For this purpose, two-dimensional simulations of three-point bending tests under variable load and geometry on notched cement paste samples of composite samples (cement paste/siliceous aggregate) are modeled by employing Cohesive Zone Models (CZMs). As a result of experimental validation of these tests, the CZM model demonstrates its capacity to predict fracture propagation at the local scale.

Keywords: cement paste, interface, cohesive zone model, fracture, three-point flexural test bending

Procedia PDF Downloads 107
684 Maxillofacial Trauma: A Case of Diacapitular Condylar Fracture

Authors: Krishna Prasad Regmi, Jun-Bo Tu, Cheng-Qun Hou, Li-Feng Li

Abstract:

Maxillofacial trauma in a pediatric group of patients is particularly challenging, as these patients have significant differences from adults as far as the facial skeleton is concerned. Mandibular condylar fractures are common presentations to hospitals across the globe and remain the most important cause of temporomandibular joint (TMJ) ankylosis. The etiology and epidemiology of pediatric trauma involving the diacapitular condylar fractures (DFs) have been reported in a large series of patients. Nevertheless, little is known about treatment protocols for DFs in children. Accordingly, the treatment modalities for the management of pediatric fractures also differ. We suggest following the PDA and intracapsular ABC classification of condylar fracture to increase the overall postoperative satisfaction level that bypasses the change of subjective feelings of patients’ from preoperative to the postoperative condition. At the same time, use of 3-D technology and surgical navigation may also increase treatment accuracy.

Keywords: maxillofacial trauma, diacapitular fracture, condylar fracture, PDA classification

Procedia PDF Downloads 243
683 Prediction of Crack Propagation in Bonded Joints Using Fracture Mechanics

Authors: Reza Hedayati, Meysam Jahanbakhshi

Abstract:

In this work, Fracture Mechanics is used to predict crack propagation in the adhesive jointing aluminum and composite plates. Three types of loadings and two types of glass-epoxy composite sequences: [0/90]2s and [0/45/-45/90]s are considered for the composite plate. Therefore 2*3=6 cases are considered and their results are compared. The debonding initiation load, complete debonding load, crack face profile and load-displacement diagram have been compared for the six cases.

Keywords: fracture, adhesive joint, debonding, APDL, LEFM

Procedia PDF Downloads 386
682 A Study on Effect of Dynamic Loading Speed on the Fracture Toughness of Equivalent Stress Gradient (ESG) Specimen

Authors: Moon Byung Woo, Seok Chang-Sung, Koo Jae-Mean, Kim Sang-Young, Choi Jae Gu, Huh Nam-Su

Abstract:

Recently, the occurrence of the earthquake has increased sharply and many of the casualties have occurred worldwide, due to the influence of earthquakes. Especially, the Fukushima nuclear power plant accident which was caused by the earthquake in 2011 has significantly increased the fear of people and the demand for the safety of the nuclear power plant. Thus, in order to prevent the earthquake accident at nuclear power plant, it is important to evaluate the fracture toughness considering the seismic loading rate. To obtain fracture toughness for the safety evaluation of nuclear power plant, it is desirable to perform experiments with a real scale pipe which is expensive and hard to perform. Therefore, many researchers have proposed various test specimens to replicate the fracture toughness of a real scale pipe. Since such specimens have several problems, the equivalent stress gradient (ESG) specimen has been recently suggested. In this study, in order to consider the effects of the dynamic loading speed on fracture toughness, the experiment was conducted by applying five different kinds of test speeds using an ESG specimen. In addition, after we performed the fracture toughness test under dynamic loading with different speeds using an ESG specimen and a standard specimen, we compared them with the test results under static loading.

Keywords: dynamic loading speed, fracture toughness, load-ratio-method, equivalent stress gradient (ESG) specimen

Procedia PDF Downloads 277
681 Numerical Prediction of Effects of Location of Across-the-Width Laminations on Tensile Properties of Rectangular Wires

Authors: Kazeem K. Adewole

Abstract:

This paper presents the finite element analysis numerical investigation of the effects of the location of across-the-width lamination on the tensile properties of rectangular wires for civil engineering applications. FE analysis revealed that the presence of the mid-thickness across-the-width lamination changes the cup and cone fracture shape exhibited by the lamination-free wire to a V-shaped fracture shape with an opening at the bottom/pointed end of the V-shape at the location of the mid-thickness across-the-width lamination. FE analysis also revealed that the presence of the mid-width across-the-thickness lamination changes the cup and cone fracture shape of the lamination-free wire without an opening to a cup and cone fracture shape with an opening at the location of the mid-width across-the-thickness lamination. The FE fracture behaviour prediction approach presented in this work serves as a tool for failure analysis of wires with lamination at different orientations which cannot be conducted experimentally.

Keywords: across-the-width lamination, tensile properties, lamination location, wire

Procedia PDF Downloads 447
680 Mode II Fracture Toughness of Hybrid Fiber Reinforced Concrete

Authors: H. S. S Abou El-Mal, A. S. Sherbini, H. E. M. Sallam

Abstract:

Mode II fracture toughness (KIIc) of fiber reinforced concrete has been widely investigated under various patterns of testing geometries. The effect of fiber type, concrete matrix properties, and testing mechanisms were extensively studied. The area of hybrid fiber addition shows a lake of reported research data. In this paper an experimental investigation of hybrid fiber embedded in high strength concrete matrix is reported. Three different types of fibers; namely steel (S), glass (G), and polypropylene (PP) fibers were mixed together in four hybridization patterns, (S/G), (S/PP), (G/PP), (S/G/PP) with constant cumulative volume fraction (Vf) of 1.5%. The concrete matrix properties were kept the same for all hybrid fiber reinforced concrete patterns. In an attempt to estimate a fairly accepted value of fracture toughness KIIc, four testing geometries and loading types are employed in this investigation. Four point shear, Brazilian notched disc, double notched cube, and double edge notched specimens are investigated in a trial to avoid the limitations and sensitivity of each test regarding geometry, size effect, constraint condition, and the crack length to specimen width ratio a/w. The addition of all hybridization patterns of fiber reduced the compressive strength and increased mode II fracture toughness in pure mode II tests. Mode II fracture toughness of concrete KIIc decreased with the increment of a/w ratio for all concretes and test geometries. Mode II fracture toughness KIIc is found to be sensitive to the hybridization patterns of fiber. The (S/PP) hybridization pattern showed higher values than all other patterns, while the (S/G/PP) showed insignificant enhancement on mode II fracture toughness (KIIc). Four point shear (4PS) test set up reflects the most reliable values of mode II fracture toughness KIIc of concrete. Mode II fracture toughness KIIc of concrete couldn’t be assumed as a real material property.

Keywords: fiber reinforced concrete, Hybrid fiber, Mode II fracture toughness, testing geometry

Procedia PDF Downloads 302
679 Experimental and Numerical Analysis on Enhancing Mechanical Properties of CFRP Adhesive Joints Using Hybrid Nanofillers

Authors: Qiong Rao, Xiongqi Peng

Abstract:

In this work, multi-walled carbon nanotubes (MWCNTs) and graphene nanoplates (GNPs) were dispersed into epoxy adhesive to investigate their synergy effects on the shear properties, mode I and mode II fracture toughness of unidirectional composite bonded joints. Testing results showed that the incorporation of MWCNTs and GNPs significantly improved the shear strength, the mode I and mode II fracture toughness by 36.6%, 45% and 286%, respectively. In addition, the fracture surfaces of the bonding area as well as the toughening mechanism of nanofillers were analyzed. Finally, a nonlinear cohesive/friction coupled model for delamination analysis of adhesive layer under shear and normal compression loadings was proposed and implemented in ABAQUS/Explicit via user subroutine VUMAT.

Keywords: nanofillers, adhesive joints, fracture toughness, cohesive zone model

Procedia PDF Downloads 104
678 A Study on Earthquake Activities and Tectonic Setting in the Northeastern Part of Egypt

Authors: Sayed Abdallah Mohamed Dahy

Abstract:

Northeastern part of Egypt is considered one of the few regions of the world whereas evidence of historical activities has been documented during the last 48 centuries or more. Instrumental, historical and pre-historical seismicity data indicate that large destructive earthquakes have occurred quite frequently in the investigated area. The main aims in the present study were to redraw attention to the fact that the northeastern part of Egypt is seismically active and this result is associated with earthquake risk in the region. The interaction of the African, Arabian and Eurasian plates and Sinai subplate, is the main factor behind the earthquake activities of northeastern part of Egypt. All earthquakes occur at shallow depth and are concentrated at four seismic zones, these zones including the Gulfs of Suez and Aqaba, around the entrance of the Gulf of Suez and the fourth one is located at the south-west of great Cairo (Dahshour area). The seismicity map of the previous zones shows that the activity is coincide with the major tectonic trends of the Suez rift, Aqaba rift with their connection with the great rift system of the Red Sea and Gulf of Suez-Cairo-Alexandria trend.

Keywords: earthquake ectivities, Egypt, northeastern, tectonic setting

Procedia PDF Downloads 370
677 Effect of Hydroxyl Functionalization on the Mechanical and Fracture Behaviour of Monolayer Graphene

Authors: Akarsh Verma, Avinash Parashar

Abstract:

The aim of this article is to study the effects of hydroxyl functional group on the mechanical strength and fracture toughness of graphene. This functional group forms the backbone of intrinsic atomic structure of graphene oxide (GO). Molecular dynamics-based simulations were performed in conjunction with reactive force field (ReaxFF) parameters to capture the mode-I fracture toughness of hydroxyl functionalised graphene. Moreover, these simulations helped in concluding that spatial distribution and concentration of hydroxyl functional group significantly affects the fracture morphology of graphene nanosheet. In contrast to literature investigations, atomistic simulations predicted a transition in the failure morphology of hydroxyl functionalised graphene from brittle to ductile as a function of its spatial distribution on graphene sheet.

Keywords: graphene, graphene oxide, ReaxFF, molecular dynamics

Procedia PDF Downloads 148
676 Practical Method for Failure Prediction of Mg Alloy Sheets during Warm Forming Processes

Authors: Sang-Woo Kim, Young-Seon Lee

Abstract:

An important concern in metal forming, even at elevated temperatures, is whether a desired deformation can be accomplished without any failure of the material. A detailed understanding of the critical condition for crack initiation provides not only the workability limit of a material but also a guide-line for process design. This paper describes the utilization of ductile fracture criteria in conjunction with the finite element method (FEM) for predicting the onset of fracture in warm metal working processes of magnesium alloy sheets. Critical damage values for various ductile fracture criteria were determined from uniaxial tensile tests and were expressed as the function of strain rate and temperature. In order to find the best criterion for failure prediction, Erichsen cupping tests under isothermal conditions and FE simulations combined with ductile fracture criteria were carried out. Based on the plastic deformation histories obtained from the FE analyses of the Erichsen cupping tests and the critical damage value curves, the initiation time and location of fracture were predicted under a bi-axial tensile condition. The results were compared with experimental results and the best criterion was recommended. In addition, the proposed methodology was used to predict the onset of fracture in non-isothermal deep drawing processes using an irregular shaped blank, and the results were verified experimentally.

Keywords: magnesium, AZ31 alloy, ductile fracture, FEM, sheet forming, Erichsen cupping test

Procedia PDF Downloads 346
675 Bone Fracture Detection with X-Ray Images Using Mobilenet V3 Architecture

Authors: Ashlesha Khanapure, Harsh Kashyap, Abhinav Anand, Sanjana Habib, Anupama Bidargaddi

Abstract:

Technologies that are developing quickly are being developed daily in a variety of disciplines, particularly the medical field. For the purpose of detecting bone fractures in X-ray pictures of different body segments, our work compares the ResNet-50 and MobileNetV3 architectures. It evaluates accuracy and computing efficiency with X-rays of the elbow, hand, and shoulder from the MURA dataset. Through training and validation, the models are evaluated on normal and fractured images. While ResNet-50 showcases superior accuracy in fracture identification, MobileNetV3 showcases superior speed and resource optimization. Despite ResNet-50’s accuracy, MobileNetV3’s swifter inference makes it a viable choice for real-time clinical applications, emphasizing the importance of balancing computational efficiency and accuracy in medical imaging. We created a graphical user interface (GUI) for MobileNet V3 model bone fracture detection. This research underscores MobileNetV3’s potential to streamline bone fracture diagnoses, potentially revolutionizing orthopedic medical procedures and enhancing patient care.

Keywords: CNN, MobileNet V3, ResNet-50, healthcare, MURA, X-ray, fracture detection

Procedia PDF Downloads 24
674 Material Fracture Dynamic of Vertical Axis Wind Turbine Blade

Authors: Samir Lecheb, Ahmed Chellil, Hamza Mechakra, Brahim Safi, Houcine Kebir

Abstract:

In this paper we studied fracture and dynamic behavior of vertical axis wind turbine blade, the VAWT is a historical machine, it has many properties, structure, advantage, component to be able to produce the electricity. We modeled the blade design then imported to Abaqus software for analysis the modes shapes, frequencies, stress, strain, displacement and stress intensity factor SIF, after comparison we chose the idol material. Finally, the CTS test of glass epoxy reinforced polymer plates to obtain the material fracture toughness Kc.

Keywords: blade, crack, frequency, material, SIF

Procedia PDF Downloads 521
673 About the Interface Bonding Safety of Adhesively Bonded Concrete Joints Under Cracking: A Fracture Energetic Approach

Authors: Brandtner-Hafner Martin

Abstract:

Adhesives are increasingly being used in the construction sector. On the one hand, this concerns dowel reinforcements using chemical anchors. On the other hand, the sealing and repair of cracks in structural concrete components are still on the rise. In the field of bonding, the interface between the joined materials is the most critical area. Therefore, it is of immense importance to characterize and investigate this section sufficiently by fracture analysis. Since standardized mechanical test methods are not sufficiently capable of doing this, recourse is made to an innovative concept based on fracture energy. Therefore, a series of experimental tests were performed using the so-called GF-principle to study the interface bonding safety of adhesively bonded concrete joints. Several different structural adhesive systems based on epoxy, CA/A hybrid, PUR, MS polymer, dispersion, and acrylate were selected for bonding concrete substrates. The results show that stable crack propagation and prevention of uncontrolled failure in bonded concrete joints depend very much on the adhesive system used, and only fracture analytical evaluation methods can provide empirical information on this.

Keywords: interface bonding safety, adhesively bonded concrete joints, GF-principle, fracture analysis

Procedia PDF Downloads 278
672 Tectonic Inversion Manifestations in the Jebel Rouas-Ruissate (Northeastern Tunisia)

Authors: Aymen Arfaoui, Abdelkader Soumaya, Noureddine Ben Ayed

Abstract:

The Rouas-Ruissateis a part of TunisianAtlas system. Analyze of the collected field data allowed us to propose a new interpretation for the main structural features of thisregion. Tectonic inversions along NE-SW trending fault of Zaghouan and holokinetic movements are the main factors controlling the architecture and geometry of the Jebel Rouas-Ruissate. The presence of breccias, Slumps, and synsedimentaryfaults along NW-SE and N-S trending major faults show that they were active during the Mesozoicextensionalepisodes. During Cenozoic inversion period, this structurewas shaped as imbricatefansformed byNE-SW trending thrust faults. The angularunconformitybetweenupperEocene- Oligocene, and Cretaceousdeposits reveals a compressive Eocene tectonic phase (called Pyrenean phase)occurred duringPaleocene-lower Eocene.The Triassicsaltsacted as a decollementlevel in the NE-SW trendingfault propagation fold model of the Rouas-Ruissate.The inversion of fault-slip data along the main regional fault zones reveals a coexistence of strike-slip and reverse fault stress regimes with NW-SE maximum horizontal stress(SHmax) characterizing the Alpine compressive phase (Upper Tortonian).

Keywords: tunisia, imbricate fans, triassic decollement level, fault propagation fold

Procedia PDF Downloads 120
671 Structural Safety of Biocomposites under Cracking: A Fracture Analytical Approach using the Gғ-Concept

Authors: Brandtner-Hafner Martin

Abstract:

Biocomposites have established themselves as a sustainable material class in the industry. Their advantages include lower density, lower price, and easier recycling compared to conventional materials. Now there are a variety of ways to measure their technical performance. One possibility is mechanical tests, which are widely used and standardized. However, these provide only very limited insights into damage capacity, which is particularly problematic under cracking conditions. To overcome such shortcomings, experimental tests were performed applying the fracture energetically GF-concept to study the structural safety of the interface under crack opening (mode-I loading). Two different types of biocomposites based on extruded henequen-fibers (NFRP) and wood-particles (WPC) in an HDPE matrix were evaluated. The results show that the fracture energy values obtained are higher than those given in the literature. This suggests that alternatives to previous linear elastic testing methods are needed to perform authentic safety evaluations of green plastics.

Keywords: biocomposites, structural safety, Gғ-concept, fracture analysis

Procedia PDF Downloads 128
670 Keying Effect During Fracture of Stainless Steel

Authors: Farej Ahmed Emhmmed

Abstract:

Fracture of duplex stainless steels (DSS) was investigated in air and in 3.5 wt % NaCl solution. Tow sets of fatigued specimens were heat treated at 475ºC for different times and pulled to failure either in air or after kept in 3.5% NaCl with polarization of -900 mV/ SCE. Fracture took place in general by ferrite cleavage and austenite ductile fracture in transgranular mode. Specimens measured stiffness (Ms) was affected by the aging time, with higher values measured for specimens aged for longer times. Microstructural features played a role in "blocking" the crack propagation process leading to lower the CTOD values specially for specimens aged for short times. Unbroken ligaments/ austenite were observed at the crack wake. These features may exerted a bridging stress, blocking effect, at the crack tip giving resistance to the crack propagation process i.e the crack mouth opening was reduced. Higher stress intensity factor Kıc values were observed with increased amounts of crack growth suggesting longer zone of unbroken ligaments in the crack wake. The bridging zone was typically several mm in length. Attempt to model the bridge stress was suggested to understand the role of ligaments/unbroken austenite in increasing the fracture toughness factor.

Keywords: stainless steels, fracture toughness, crack keying effect, ligaments

Procedia PDF Downloads 335
669 Impact Deformation and Fracture Behaviour of Cobalt-Based Haynes 188 Superalloy

Authors: Woei-Shyan Lee, Hao-Chien Kao

Abstract:

The impact deformation and fracture behaviour of cobalt-based Haynes 188 superalloy are investigated by means of a split Hopkinson pressure bar. Impact tests are performed at strain rates ranging from 1×103 s-1 to 5×103 s-1 and temperatures between 25°C and 800°C. The experimental results indicate that the flow response and fracture characteristics of cobalt-based Haynes 188 superalloy are significantly dependent on the strain rate and temperature. The flow stress, work hardening rate and strain rate sensitivity all increase with increasing strain rate or decreasing temperature. It is shown that the impact response of the Haynes 188 specimens is adequately described by the Zerilli-Armstrong fcc model. The fracture analysis results indicate that the Haynes 188 specimens fail predominantly as the result of intensive localised shearing. Furthermore, it is shown that the flow localisation effect leads to the formation of adiabatic shear bands. The fracture surfaces of the deformed Haynes 188 specimens are characterised by dimple- and / or cleavage-like structure with knobby features. The knobby features are thought to be the result of a rise in the local temperature to a value greater than the melting point.

Keywords: Haynes 188 alloy, impact, strain rate and temperature effect, adiabatic shearing

Procedia PDF Downloads 324
668 Sandstone Petrology of the Kolhan Basin, Eastern India: Implications for the Tectonic Evolution of a Half-Graben

Authors: Rohini Das, Subhasish Das, Smruti Rekha Sahoo, Shagupta Yesmin

Abstract:

The Paleoproterozoic Kolhan Group (Purana) ensemble constitutes the youngest lithostratigraphic 'outlier' in the Singhbhum Archaean craton. The Kolhan unconformably overlies both the Singhbhum granite and the Iron Ore Group (IOG). Representing a typical sandstone-shale ( +/- carbonates) sequence, the Kolhan is characterized by the development of thin and discontinuous patches of basal conglomerates draped by sandstone beds. The IOG-fault limits the western 'distal' margin of the Kolhan basin showing evidence of passive subsidence subsequent to the initial rifting stage. The basin evolved as a half-graben under the influence of an extensional stress regime. The assumption of a tectonic setting for the NE-SW trending Kolhan basin possibly relates to the basin opening to the E-W extensional stress system that prevailed during the development of the Newer Dolerite dyke. The Paleoproterozoic age of the Kolhan basin is based on the consideration of the conformable stress pattern responsible both for the basin opening and the development of the conjugate fracture system along which the Newer Dolerite dykes intruded the Singhbhum Archaean craton. The Kolhan sandstones show progressive change towards greater textural and mineralogical maturity in its upbuilding. The trend of variations in different mineralogical and textural attributes, however, exhibits inflections at different lithological levels. Petrological studies collectively indicate that the sandstones were dominantly derived from a weathered granitic crust under a humid climatic condition. Provenance-derived variations in sandstone compositions are therefore a key in unraveling regional tectonic histories. The basin axis controlled the progradation direction which was likely driven by climatically induced sediment influx, a eustatic fall, or both. In the case of the incongruent shift, increased sediment supply permitted the rivers to cross the basinal deep. Temporal association of the Kolhan with tectonic structures in the belt indicates that syn-tectonic thrust uplift, not isostatic uplift or climate, caused the influx of quartz. The sedimentation pattern in the Kolhan reflects a change from braided fluvial-ephemeral pattern to a fan-delta-lacustrine type. The channel geometries and the climate exerted a major control on the processes of sediment transfer. Repeated fault controlled uplift of the source followed by subsidence and forced regression, generated multiple sediment cyclicity that led to the fluvial-fan delta sedimentation pattern. Intermittent uplift of the faulted blocks exposed fresh bedrock to mechanical weathering that generated a large amount of detritus and resulted to forced regressions, repeatedly disrupting the cycles which may reflect a stratigraphic response of connected rift basins at the early stage of extension. The marked variations in the thickness of the fan delta succession and the stacking pattern in different measured profiles reflect the overriding tectonic controls on fan delta evolution. The accumulated fault displacement created higher accommodation and thicker delta sequences. Intermittent uplift of fault blocks exposed fresh bedrock to mechanical weathering, generated a large amount of detritus, and resulted in forced closure of the land-locked basin, repeatedly disrupting the fining upward pattern. The control of source rock lithology or climate was of secondary importance to tectonic effects. Such a retrograding fan delta could be a stratigraphic response of connected rift basins at the early stage of extension.

Keywords: Kolhan basin, petrology, sandstone, tectonics

Procedia PDF Downloads 474
667 Assessment of the Tectonic Effects on Soil Radon Activity along the Margin of the Arabian Plate Boundary in Northwestern Syria

Authors: Mohamed Al-Hilal

Abstract:

The main purpose of the present study is to assess the role of active tectonics in influencing the emanation level of soil radon across two tectonically active structures of the Northern Dead Sea Fault (NDSF) in northwestern Syria: namely, the Qastoon and Al-Harif fault segments. The radon measurements were basically directed by the results drawn from earlier studies of archaeoseismic and paleoseismic investigation in Al-Harif, besides integrated geophysical and morphotectonic survey at the Qastoon site. In view of that, a total of 80 soil gas radon points were measured in this work with a sampling depth of 75 cm, using the AlphaGUARD PQ 2000Pro radon detector. The background range of normal radon emission from local soil was determined in area located away from the influence of the tectonic disturbances. The obtained radon data were statistically analyzed, and the mean values have been standardized in terms of probability of magnitude, which enhances the comparison process and so facilitating the separation of normal radon variations from other anomalous or geotectonic related values. The overall results revealed remarkable occurrences of fault-associated radon anomalies with maximum peak values of ~6 to 7 times above the background, trending in accordance with the predicted traces of the fault ruptures at the Qastoon and Al-Harif, respectively.

Keywords: soil gas radon, active tectonic structure, northern dead sea fault, western Syria

Procedia PDF Downloads 148
666 Probabilistic Fracture Evaluation of Reactor Pressure Vessel Subjected to Pressurized Thermal Shock

Authors: Jianguo Chen, Fenggang Zang, Yu Yang, Liangang Zheng

Abstract:

Reactor Pressure Vessel (RPV) is an important security barrier in nuclear power plant. Crack like defects may be produced on RPV during the whole operation lifetime due to the harsh operation condition and irradiation embrittlement. During the severe loss of coolant accident, thermal shock happened as the injection of emergency cooling water into RPV, which results in re-pressurization of the vessel and very high tension stress on the vessel wall, this event called Pressurized Thermal Shock (PTS). Crack on the vessel wall may propagate even penetrate the vessel, so the safety of the RPV would undergo great challenge. Many assumptions in structure integrity evaluation make the result of deterministic fracture mechanics very conservative, which affect the operation lifetime of the plant. Actually, many parameters in the evaluation process, such as fracture toughness and nil-ductility transition temperature, have statistical distribution characteristics. So it is necessary to assess the structural integrity of RPV subjected to PTS event by means of Probabilistic Fracture Mechanics (PFM). Structure integrity evaluation methods of RPV subjected to PTS event are summarized firstly, then evaluation method based on probabilistic fracture mechanics are presented by considering the probabilistic characteristics of material and structure parameters. A comprehensive analysis example is carried out at last. The results show that the probability of crack penetrates through wall increases gradually with the growth of fast neutron irradiation flux. The results give advice for reactor life extension.

Keywords: fracture toughness, integrity evaluation, pressurized thermal shock, probabilistic fracture mechanics, reactor pressure vessel

Procedia PDF Downloads 223