Search results for: superlyophobic surfaces
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1087

Search results for: superlyophobic surfaces

157 Increment of Panel Flutter Margin Using Adaptive Stiffeners

Authors: S. Raja, K. M. Parammasivam, V. Aghilesh

Abstract:

Fluid-structure interaction is a crucial consideration in the design of many engineering systems such as flight vehicles and bridges. Aircraft lifting surfaces and turbine blades can fail due to oscillations caused by fluid-structure interaction. Hence, it is focussed to study the fluid-structure interaction in the present research. First, the effect of free vibration over the panel is studied. It is well known that the deformation of a panel and flow induced forces affects one another. The selected panel has a span 300mm, chord 300mm and thickness 2 mm. The project is to study, the effect of cross-sectional area and the stiffener location is carried out for the same panel. The stiffener spacing is varied along both the chordwise and span-wise direction. Then for that optimal location the ideal stiffener length is identified. The effect of stiffener cross-section shapes (T, I, Hat, Z) over flutter velocity has been conducted. The flutter velocities of the selected panel with two rectangular stiffeners of cantilever configuration are estimated using MSC NASTRAN software package. As the flow passes over the panel, deformation takes place which further changes the flow structure over it. With increasing velocity, the deformation goes on increasing, but the stiffness of the system tries to dampen the excitation and maintain equilibrium. But beyond a critical velocity, the system damping suddenly becomes ineffective, so it loses its equilibrium. This estimated in NASTRAN using PK method. The first 10 modal frequencies of a simple panel and stiffened panel are estimated numerically and are validated with open literature. A grid independence study is also carried out and the modal frequency values remain the same for element lengths less than 20 mm. The current investigation concludes that the span-wise stiffener placement is more effective than the chord-wise placement. The maximum flutter velocity achieved for chord-wise placement is 204 m/s while for a span-wise arrangement it is augmented to 963 m/s for the stiffeners location of ¼ and ¾ of the chord from the panel edge (50% of chord from either side of the mid-chord line). The flutter velocity is directly proportional to the stiffener cross-sectional area. A significant increment in flutter velocity from 218m/s to 1024m/s is observed for the stiffener lengths varying from 50% to 60% of the span. The maximum flutter velocity above Mach 3 is achieved. It is also observed that for a stiffened panel, the full effect of stiffener can be achieved only when the stiffener end is clamped. Stiffeners with Z cross section incremented the flutter velocity from 142m/s (Panel with no stiffener) to 328 m/s, which is 2.3 times that of simple panel.

Keywords: stiffener placement, stiffener cross-sectional area, stiffener length, stiffener cross sectional area shape

Procedia PDF Downloads 268
156 Calibration of 2D and 3D Optical Measuring Instruments in Industrial Environments at Submillimeter Range

Authors: Alberto Mínguez-Martínez, Jesús de Vicente y Oliva

Abstract:

Modern manufacturing processes have led to the miniaturization of systems and, as a result, parts at the micro-and nanoscale are produced. This trend seems to become increasingly important in the near future. Besides, as a requirement of Industry 4.0, the digitalization of the models of production and processes makes it very important to ensure that the dimensions of newly manufactured parts meet the specifications of the models. Therefore, it is possible to reduce the scrap and the cost of non-conformities, ensuring the stability of the production at the same time. To ensure the quality of manufactured parts, it becomes necessary to carry out traceable measurements at scales lower than one millimeter. Providing adequate traceability to the SI unit of length (the meter) to 2D and 3D measurements at this scale is a problem that does not have a unique solution in industrial environments. Researchers in the field of dimensional metrology all around the world are working on this issue. A solution for industrial environments, even if it is not complete, will enable working with some traceability. At this point, we believe that the study of the surfaces could provide us with a first approximation to a solution. Among the different options proposed in the literature, the areal topography methods may be the most relevant because they could be compared to those measurements performed using Coordinate Measuring Machines (CMM’s). These measuring methods give (x, y, z) coordinates for each point, expressing it in two different ways, either expressing the z coordinate as a function of x, denoting it as z(x), for each Y-axis coordinate, or as a function of the x and y coordinates, denoting it as z (x, y). Between others, optical measuring instruments, mainly microscopes, are extensively used to carry out measurements at scales lower than one millimeter because it is a non-destructive measuring method. In this paper, the authors propose a calibration procedure for the scales of optical measuring instruments, particularizing for a confocal microscope, using material standards easy to find and calibrate in metrology and quality laboratories in industrial environments. Confocal microscopes are measuring instruments capable of filtering the out-of-focus reflected light so that when it reaches the detector, it is possible to take pictures of the part of the surface that is focused. Varying and taking pictures at different Z levels of the focus, a specialized software interpolates between the different planes, and it could reconstruct the surface geometry into a 3D model. As it is easy to deduce, it is necessary to give traceability to each axis. As a complementary result, the roughness Ra parameter will be traced to the reference. Although the solution is designed for a confocal microscope, it may be used for the calibration of other optical measuring instruments by applying minor changes.

Keywords: industrial environment, confocal microscope, optical measuring instrument, traceability

Procedia PDF Downloads 120
155 Interlayer-Mechanical Working: Effective Strategy to Mitigate Solidification Cracking in Wire-Arc Additive Manufacturing (WAAM) of Fe-based Shape Memory Alloy

Authors: Soumyajit Koley, Kuladeep Rajamudili, Supriyo Ganguly

Abstract:

In recent years, iron-based shape-memory alloys have been emerging as an inexpensive alternative to costly Ni-Ti alloy and thus considered suitable for many different applications in civil structures. Fe-17Mn-10Cr-5Si-4Ni-0.5V-0.5C alloy contains 37 wt.% of total solute elements. Such complex multi-component metallurgical system often leads to severe solute segregation and solidification cracking. Wire-arc additive manufacturing (WAAM) of Fe-17Mn-10Cr-5Si-4Ni-0.5V-0.5C alloy was attempted using a cold-wire fed plasma arc torch attached to a 6-axis robot. Self-standing walls were manufactured. However, multiple vertical cracks were observed after deposition of around 15 layers. Microstructural characterization revealed open surfaces of dendrites inside the crack, confirming these cracks as solidification cracks. Machine hammer peening (MHP) process was adopted on each layer to cold work the newly deposited alloy. Effect of MHP traverse speed were varied systematically to attain a window of operation where cracking was completely stopped. Microstructural and textural analysis were carried out further to correlate the peening process to microstructure.MHP helped in many ways. Firstly, a compressive residual stress was induced on each layer which countered the tensile residual stress evolved from solidification process; thus, reducing net tensile stress on the wall along its length. Secondly, significant local plastic deformation from MHP followed by the thermal cycle induced by deposition of next layer resulted into a recovered and recrystallized equiaxed microstructure instead of long columnar grains along the vertical direction. This microstructural change increased the total crack propagation length and thus, the overall toughness. Thirdly, the inter-layer peening significantly reduced the strong cubic {001} crystallographic texture formed along the build direction. Cubic {001} texture promotes easy separation of planes and easy crack propagation. Thus reduction of cubic texture alleviates the chance of cracking.

Keywords: Iron-based shape-memory alloy, wire-arc additive manufacturing, solidification cracking, inter-layer cold working, machine hammer peening

Procedia PDF Downloads 43
154 Reduce the Environmental Impacts of the Intensive Use of Glass in New Buildings in Khartoum, Sudan

Authors: Sawsan Domi

Abstract:

Khartoum is considering as one of the hottest cities all over the world, the mean monthly outdoor temperature remains above 30 ºC. Solar Radiation on Building Surfaces considered within the world highest values. Buildings in Khartoum is receiving huge amounts of watts/m2. Northern, eastern and western facades always receive a greater amount than the south ones. Therefore, these facades of the building must be better protected than the others. One of the most important design limits affecting indoor thermal comfort and energy conservation are building envelope design, self-efficiency in building materials and optical and thermo-physical properties of the building envelope. A small sun-facing glazing area is very important to provide thermal comfort in hot dry climates because of the intensive sunshine. This study aims to propose a work plan to help minimize the negative environmental effect of the climate on buildings taking the intensive use of glazing. In the last 15 years, there was a rapid growth in building sector in Khartoum followed by many of wrong strategies getting away of being environmental friendly. The intensive use of glazing on facades increased to commercial, industrial and design aspects, while the glass envelope led to quick increase in temperature by the reflection affects the sun on faces, cars and bodies. Logically, being transparent by using glass give a sense of open spaces, allowing natural lighting and sometimes natural ventilation keeping dust and insects away. In the other hand, it costs more and give more overheated. And this is unsuitable for a hot dry climate city like Khartoum. Many huge projects permitted every year from the Ministry of Planning in Khartoum state, with a design based on the intensive use of glazing on facades. There are no Laws or Regulations to control using materials in construction, the last building code -building code 2008- Khartoum state- only focused in using sustainable materials with no consider to any environmental aspects. Results of the study will help increase the awareness for architects, engineers and public about this environmentally problem. Objectives vary between Improve energy performance in buildings and Provide high levels of thermal comfort in the inner environment. As a future project, what are the changes that can happen in building permits codes and regulations. There could be recommendations for the governmental sector such as Obliging the responsible authorities to version environmental friendly laws in building construction fields and Support Renewable energy sector in buildings.

Keywords: building envelope, building regulations, glazed facades, solar radiation

Procedia PDF Downloads 180
153 Microstructure and Mechanical Properties of Nb: Si: (a-C) Thin Films Prepared Using Balanced Magnetron Sputtering System

Authors: Sara Khamseh, Elahe Sharifi

Abstract:

321 alloy steel is austenitic stainless steel with high oxidation resistance and is commonly used to fabricate heat exchangers and steam generators. However, the low hardness and weak tribological performance can cause dangerous failures during industrial operations. The well-designed protective coatings on 321 alloy steel surfaces with high hardness and good tribological performance can guarantee their safe applications. The surface protection of metal substrates using protective coatings showed high efficiency in prevailing these problems. Carbon-based multicomponent coatings, such as metal-added amorphous carbon coatings, are crucially necessary because of their remarkable mechanical and tribological performances. In the current study, (Nb: Si: a-C) multicomponent coatings (a-C: amorphous carbon) were coated on 321 alloys using a balanced magnetron (BM) sputtering system at room temperature. The effects of the Si/Nb ratio on microstructure, mechanical and tribological characteristics of (Nb: Si: a-C) composite coatings were investigated. The XRD and Raman analysis results showed that the coatings formed a composite structure of cubic diamond (C-D), NbC, and graphite-like carbon (GLC). The NbC phase's abundance decreased when the C-D phase's affluence increased with an increasing Si/Nb ratio. The coatings' indentation hardness and plasticity index (H³/E² ratio) increased with an increasing Si/Nb ratio. The better mechanical properties of the coatings with higher Si content can be attributed to the higher cubic diamond (C-D) content. The cubic diamond (C-D) is a challenging phase and can positively affect the mechanical performance of the coatings. It is well documented that in hard protective coatings, Si encourages amorphization. In addition, THE studies showed that Nb and Mo can act as a catalyst for nucleation and growth of hard cubic (C-D) and hexagonal (H-D) diamond phases in a-C coatings. In the current study, it seems that fully arranged nanocomposite coatings contain hard C-D and NbC phases that embedded in the amorphous carbon (GLC) phase is formed. This unique structure decreased grain boundary density and defects and resulted in high hardness and H³/E² ratio. Moreover, the COF and wear rate of the coatings decreased with increasing Si/Nb ratio. This can be attributed to the good mechanical properties of the coatings and the formation of graphite-like carbon (GLC) structure with lamellae arrangement in the coatings. The complex and self-lubricant coatings are successfully formed on the surface of 321 alloys. The results of the present study clarified that Si addition to (Nb: a-C) coatings improve the mechanical and tribological performance of the coatings on 321 alloy.

Keywords: COF, mechanical properties, microstructure, (Nb: Si: a-C) coatings, Wear rate

Procedia PDF Downloads 56
152 Control of Doxorubicin Release Rate from Magnetic PLGA Nanoparticles Using a Non-Permanent Magnetic Field

Authors: Inês N. Peça , A. Bicho, Rui Gardner, M. Margarida Cardoso

Abstract:

Inorganic/organic nanocomplexes offer tremendous scope for future biomedical applications, including imaging, disease diagnosis and drug delivery. The combination of Fe3O4 with biocompatible polymers to produce smart drug delivery systems for use in pharmaceutical formulation present a powerful tool to target anti-cancer drugs to specific tumor sites through the application of an external magnetic field. In the present study, we focused on the evaluation of the effect of the magnetic field application time on the rate of drug release from iron oxide polymeric nanoparticles. Doxorubicin, an anticancer drug, was selected as the model drug loaded into the nanoparticles. Nanoparticles composed of poly(d-lactide-co-glycolide (PLGA), a biocompatible polymer already approved by FDA, containing iron oxide nanoparticles (MNP) for magnetic targeting and doxorubicin (DOX) were synthesized by the o/w solvent extraction/evaporation method and characterized by scanning electron microscopy (SEM), by dynamic light scattering (DLS), by inductively coupled plasma-atomic emission spectrometry and by Fourier transformed infrared spectroscopy. The produced particles yielded smooth surfaces and spherical shapes exhibiting a size between 400 and 600 nm. The effect of the magnetic doxorubicin loaded PLGA nanoparticles produced on cell viability was investigated in mammalian CHO cell cultures. The results showed that unloaded magnetic PLGA nanoparticles were nontoxic while the magnetic particles without polymeric coating show a high level of toxicity. Concerning the therapeutic activity doxorubicin loaded magnetic particles cause a remarkable enhancement of the cell inhibition rates compared to their non-magnetic counterpart. In vitro drug release studies performed under a non-permanent magnetic field show that the application time and the on/off cycle duration have a great influence with respect to the final amount and to the rate of drug release. In order to determine the mechanism of drug release, the data obtained from the release curves were fitted to the semi-empirical equation of the the Korsmeyer-Peppas model that may be used to describe the Fickian and non-Fickian release behaviour. Doxorubicin release mechanism has shown to be governed mainly by Fickian diffusion. The results obtained show that the rate of drug release from the produced magnetic nanoparticles can be modulated through the magnetic field time application.

Keywords: drug delivery, magnetic nanoparticles, PLGA nanoparticles, controlled release rate

Procedia PDF Downloads 235
151 Stress Corrosion Crackings Test of Candidate Materials in Support of the Development of the European Small Modular Supercritical Water Cooled Rector Concept

Authors: Radek Novotny, Michal Novak, Daniela Marusakova, Monika Sipova, Hugo Fuentes, Peter Borst

Abstract:

This research has been conducted within the European HORIZON 2020 project ECC-SMART. The main objective is to assess whether it is feasible to design and develop a small modular reactor (SMR) that would be cooled by supercritical water (SCW). One of the main objectives for material research concerns the corrosion of the candidate cladding materials. The experimental part has been conducted in support of the qualification procedure of the future SCW-SMR constructional materials. The last objective was to identify the gaps in current norms and guidelines. Apart from corrosion, resistance testing of candidate materials stresses corrosion cracking susceptibility tests have been performed in supercritical water. This paper describes part of these tests, in particular, those slow strain rate tensile loading applied for tangential ring shape specimens of two candidate materials, Alloy 800H and 310S stainless steel. These ring tensile tests are one the methods used for tensile testing of nuclear cladding. Here full circular heads with dimensions roughly equal to the inner diameter of the sample and the gage sections are placed in the parallel direction to the applied load. Slow strain rate tensile tests have been conducted in 380 or 500oC supercritical water applying two different elongation rates, 1x10-6 and 1x10-7 s-1. The effect of temperature and dissolved oxygen content on the SCC susceptibility of Alloy 800H and 310S stainless steel was investigated when two different temperatures and concentrations of dissolved oxygen were applied in supercritical water. The post-fracture analysis includes fractographic analysis of the fracture surfaces using SEM as well as cross-sectional analysis on the occurrence of secondary cracks. Assessment of the effect of environment and dissolved oxygen content was by comparing to the results of the reference tests performed in air and N2 gas overpressure. The effect of high temperature on creep and its role in the initiation of SCC was assessed as well. It has been concluded that the applied test method could be very useful for the investigation of stress corrosion cracking susceptibility of candidate cladding materials in supercritical water.

Keywords: stress corrosion cracking, ring tensile tests, super-critical water, alloy 800H, 310S stainless steel

Procedia PDF Downloads 59
150 Analysis of Metamaterial Permeability on the Performance of Loosely Coupled Coils

Authors: Icaro V. Soares, Guilherme L. F. Brandao, Ursula D. C. Resende, Glaucio L. Siqueira

Abstract:

Electrical energy can be wirelessly transmitted through resonant coupled coils that operate in the near-field region. Once in this region, the field has evanescent character, the efficiency of Resonant Wireless Power Transfer (RWPT) systems decreases proportionally with the inverse cube of distance between the transmitter and receiver coils. The commercially available RWPT systems are restricted to short and mid-range applications in which the distance between coils is lesser or equal to the coil size. An alternative to overcome this limitation is applying metamaterial structures to enhance the coupling between coils, thus reducing the field decay along the distance between them. Metamaterials can be conceived as composite materials with periodic or non-periodic structure whose unconventional electromagnetic behaviour is due to its unit cell disposition and chemical composition. This new kind of material has been used in frequency selective surfaces, invisibility cloaks, leaky-wave antennas, among other applications. However, for RWPT it is mainly applied as superlenses which are lenses that can overcome the optical limitation and are made of left-handed media, that is, a medium with negative magnetic permeability and electric permittivity. As RWPT systems usually operate at wavelengths of hundreds of meters, the metamaterial unit cell size is much smaller than the wavelength. In this case, electric and magnetic field are decoupled, therefore the double negative condition for superlenses are not required and the negative magnetic permeability is enough to produce an artificial magnetic medium. In this work, the influence of the magnetic permeability of a metamaterial slab inserted between two loosely coupled coils is studied in order to find the condition that leads to the maximum transmission efficiency. The metamaterial used is formed by a subwavelength unit cell that consist of a capacitor-loaded split ring with an inner spiral that is designed and optimized using the software Computer Simulation Technology. The unit cell permeability is experimentally characterized by the ratio of the transmission parameters between coils measured with and without the presence of the metamaterial slab. Early measurements results show that the transmission coefficient at the resonant frequency after the inclusion of the metamaterial is about three times higher than with just the two coils, which confirms the enhancement that this structure brings to RWPT systems.

Keywords: electromagnetic lens, loosely coupled coils, magnetic permeability, metamaterials, resonant wireless power transfer, subwavelength unit cells

Procedia PDF Downloads 124
149 The Impact of Undisturbed Flow Speed on the Correlation of Aerodynamic Coefficients as a Function of the Angle of Attack for the Gyroplane Body

Authors: Zbigniew Czyz, Krzysztof Skiba, Miroslaw Wendeker

Abstract:

This paper discusses the results of aerodynamic investigation of the Tajfun gyroplane body designed by a Polish company, Aviation Artur Trendak. This gyroplane has been studied as a 1:8 scale model. Scaling objects for aerodynamic investigation is an inherent procedure in any kind of designing. If scaling, the criteria of similarity need to be satisfied. The basic criteria of similarity are geometric, kinematic and dynamic. Despite the results of aerodynamic research are often reduced to aerodynamic coefficients, one should pay attention to how values of coefficients behave if certain criteria are to be satisfied. To satisfy the dynamic criterion, for example, the Reynolds number should be focused on. This is the correlation of inertial to viscous forces. With the multiplied flow speed by the specific dimension as a numerator (with a constant kinematic viscosity coefficient), flow speed in a wind tunnel research should be increased as many times as an object is decreased. The aerodynamic coefficients specified in this research depend on the real forces that act on an object, its specific dimension, medium speed and variations in its density. Rapid prototyping with a 3D printer was applied to create the research object. The research was performed with a T-1 low-speed wind tunnel (its diameter of the measurement volume is 1.5 m) and a six-element aerodynamic internal scales, WDP1, at the Institute of Aviation in Warsaw. This T-1 wind tunnel is low-speed continuous operation with open space measurement. The research covered a number of the selected speeds of undisturbed flow, i.e. V = 20, 30 and 40 m/s, corresponding to the Reynolds numbers (as referred to 1 m) Re = 1.31∙106, 1.96∙106, 2.62∙106 for the angles of attack ranging -15° ≤ α ≤ 20°. Our research resulted in basic aerodynamic characteristics and observing the impact of undisturbed flow speed on the correlation of aerodynamic coefficients as a function of the angle of attack of the gyroplane body. If the speed of undisturbed flow in the wind tunnel changes, the aerodynamic coefficients are significantly impacted. At speed from 20 m/s to 30 m/s, drag coefficient, Cx, changes by 2.4% up to 9.9%, whereas lift coefficient, Cz, changes by -25.5% up to 15.7% if the angle of attack of 0° excluded or by -25.5% up to 236.9% if the angle of attack of 0° included. Within the same speed range, the coefficient of a pitching moment, Cmy, changes by -21.1% up to 7.3% if the angles of attack -15° and -10° excluded or by -142.8% up to 618.4% if the angle of attack -15° and -10° included. These discrepancies in the coefficients of aerodynamic forces definitely need to consider while designing the aircraft. For example, if load of certain aircraft surfaces is calculated, additional correction factors definitely need to be applied. This study allows us to estimate the discrepancies in the aerodynamic forces while scaling the aircraft. This work has been financed by the Polish Ministry of Science and Higher Education.

Keywords: aerodynamics, criteria of similarity, gyroplane, research tunnel

Procedia PDF Downloads 368
148 Land Use Influence on the 2014 Catastrophic Flood in the Northeast of Peninsular Malaysia

Authors: Zulkifli Yusop

Abstract:

The severity of December 2014 flood on the east coast of Peninsular Malaysia has raised concern over the adequacy of existing land use practices and policies. This article assesses flood responses to selective logging, plantation establishment (oil palm and rubber) and their subsequent management regimes. The hydrological impacts were evaluated on two levels: on-site (mostly in the upstream) and off-site to reflect the cumulative impact at downstream. Results of experimental catchment studies suggest that on-site impact of flood could be kept to a minimum when selecting logging strictly adhere to the existing guidelines. However, increases in flood potential and sedimentation rate were observed with logging intensity and slope steepness. Forest conversion to plantation show the highest impacts. Except on the heavily compacted surfaces, the ground revegetation is usually rapid within two years upon the cessation of the logging operation. The hydrological impacts of plantation opening and replanting could be significantly reduced once the cover crop has fully established which normally takes between three to six months after sowing. However, as oil palms become taller and the canopy gets closer, the cover crop tends to die off due to light competition, and its protecting function gradually diminishes. The exposed soil is further compacted by harvesting machinery which subsequently leads to greater overland flow and erosion rates. As such, the hydrological properties of matured oil palm plantations are generally poorer than in young plantation. In hilly area, the undergrowth in rubber plantation is usually denser compared to under oil palm. The soil under rubber trees is also less compacted as latex collection is done manually. By considering the cumulative effects of land-use over space and time, selective logging seems to pose the least impact on flood potential, followed by planting rubber for latex, oil palm and Latex Timber Clone (LTC). The cumulative hydrological impact of LTC plantation is the most severe because of its shortest replanting rotation (12 to 15 years) compared to oil palm (25 years) and rubber for latex (35 years). Furthermore, the areas gazetted for LTC are mostly located on steeper slopes which are more susceptible to landslide and erosion. Forest has limited capability to store excess rainfall and is only effective in attenuating regular floods. Once the hydrologic storage is exceeded, the excess rainfall will appear as flood water. Therefore, for big floods, rainfall regime has a much bigger influence than land use.

Keywords: selective logging, plantation, extreme rainfall, debris flow

Procedia PDF Downloads 319
147 Accurate Calculation of the Penetration Depth of a Bullet Using ANSYS

Authors: Eunsu Jang, Kang Park

Abstract:

In developing an armored ground combat vehicle (AGCV), it is a very important step to analyze the vulnerability (or the survivability) of the AGCV against enemy’s attack. In the vulnerability analysis, the penetration equations are usually used to get the penetration depth and check whether a bullet can penetrate the armor of the AGCV, which causes the damage of internal components or crews. The penetration equations are derived from penetration experiments which require long time and great efforts. However, they usually hold only for the specific material of the target and the specific type of the bullet used in experiments. Thus, penetration simulation using ANSYS can be another option to calculate penetration depth. However, it is very important to model the targets and select the input parameters in order to get an accurate penetration depth. This paper performed a sensitivity analysis of input parameters of ANSYS on the accuracy of the calculated penetration depth. Two conflicting objectives need to be achieved in adopting ANSYS in penetration analysis: maximizing the accuracy of calculation and minimizing the calculation time. To maximize the calculation accuracy, the sensitivity analysis of the input parameters for ANSYS was performed and calculated the RMS error with the experimental data. The input parameters include mesh size, boundary condition, material properties, target diameter are tested and selected to minimize the error between the calculated result from simulation and the experiment data from the papers on the penetration equation. To minimize the calculation time, the parameter values obtained from accuracy analysis are adjusted to get optimized overall performance. As result of analysis, the followings were found: 1) As the mesh size gradually decreases from 0.9 mm to 0.5 mm, both the penetration depth and calculation time increase. 2) As diameters of the target decrease from 250mm to 60 mm, both the penetration depth and calculation time decrease. 3) As the yield stress which is one of the material property of the target decreases, the penetration depth increases. 4) The boundary condition with the fixed side surface of the target gives more penetration depth than that with the fixed side and rear surfaces. By using above finding, the input parameters can be tuned to minimize the error between simulation and experiments. By using simulation tool, ANSYS, with delicately tuned input parameters, penetration analysis can be done on computer without actual experiments. The data of penetration experiments are usually hard to get because of security reasons and only published papers provide them in the limited target material. The next step of this research is to generalize this approach to anticipate the penetration depth by interpolating the known penetration experiments. This result may not be accurate enough to be used to replace the penetration experiments, but those simulations can be used in the early stage of the design process of AGCV in modelling and simulation stage.

Keywords: ANSYS, input parameters, penetration depth, sensitivity analysis

Procedia PDF Downloads 362
146 Synthesis and Analytical Characterisation of Polymer-Silica Nanoparticles Composite for the Protection and Preservation of Stone Monuments

Authors: Sayed M. Ahmed, Sawsan S. Darwish, Nagib A. Elmarzugi, Mohammad A. Al-Dosari, Mahmoud A. Adam, Nadia A. Al-Mouallimi

Abstract:

Historical stone surfaces and architectural heritage may undergo unwanted changes due to the exposure to many physical and chemical deterioration factors, the innovative properties of the nano - materials can have advantageous application in the restoration and conservation of the cultural heritage with relation to the tailoring of new products for protection and consolidation of stone. The current work evaluates the effectiveness of inorganic compatible treatments; based on nanosized particles of silica (SiO2) dispersed in silicon based product, commonly used as a water-repellent/ consolidation for the construction materials affected by different kinds of decay. The nanocomposites obtained by dispersing the silica nanoparticles in polymeric matrices SILRES® BS OH 100 (solventless mixtures of ethyl silicates), in order to obtain a new nanocomposite, with hydrophobic and consolidation properties, to improve the physical and mechanical properties of the stone material. The nanocomposites obtained and pure SILRES® BS OH 100 were applied by brush Experimental stone blocks. The efficacy of the treatments has been evaluated after consolidation and artificial Thermal aging, through capillary water absorption measurements, Ultraviolet-light exposure to evaluate photo-induced and the hydrophobic effects of the treated surface, Scanning electron microscopy (SEM) examination is performed to evaluate penetration depth, re-aggregating effects of the deposited phase and the surface morphology before and after artificialaging. Sterio microscopy investigation is performed to evaluate the resistant to the effects of the erosion, acids and salts. Improving of stone mechanical properties were evaluated by compressive strength tests, colorimetric measurements were used to evaluate the optical appearance. All the results get together with the apparent effect that, silica/polymer nanocomposite is efficient material for the consolidation of artistic and architectural sandstone monuments, completely compatible, enhanced the durability of sandstone toward thermal and UV aging. In addition, the obtained nanocomposite improved the stone mechanical properties and the resistant to the effects of the erosion, acids and salts compared to the samples treated with pure SILRES® BS OH 100 without silica nanoparticles.

Keywords: colorimetric measurements, compressive strength, nanocomposites, porous stone consolidation, silica nanoparticles, sandstone

Procedia PDF Downloads 228
145 Boiler Ash as a Reducer of Formaldehyde Emission in Medium-Density Fiberboard

Authors: Alexsandro Bayestorff da Cunha, Dpebora Caline de Mello, Camila Alves Corrêa

Abstract:

In the production of fiberboards, an adhesive based on urea-formaldehyde resin is used, which has the advantages of low cost, homogeneity of distribution, solubility in water, high reactivity in an acid medium, and high adhesion to wood. On the other hand, as a disadvantage, there is low resistance to humidity and the release of formaldehyde. The objective of the study was to determine the viability of adding industrial boiler ash to the urea formaldehyde-based adhesive for the production of medium-density fiberboard. The raw material used was composed of Pinus spp fibers, urea-formaldehyde resin, paraffin emulsion, ammonium sulfate, and boiler ash. The experimental plan, consisting of 8 treatments, was completely randomized with a factorial arrangement, with 0%, 1%, 3%, and 5% ash added to the adhesive, with and without the application of a catalyst. In each treatment, 4 panels were produced with density of 750 kg.m⁻³, dimensions of 40 x 40 x 1,5 cm, 12% urea formaldehyde resin, 1% paraffin emulsion and hot pressing at a temperature of 180ºC, the pressure of 40 kgf/cm⁻² for a time of 10 minutes. The different compositions of the adhesive were characterized in terms of viscosity, pH, gel time and solids, and the panels by physical and mechanical properties, in addition to evaluation using the IMAL DPX300 X-ray densitometer and formaldehyde emission by the perforator method. The results showed a significant reduction of all adhesive properties with the use of the catalyst, regardless of the treatment; while the percentage increase of ashes provided an increase in the average values of viscosity, gel time, and solids and a reduction in pH for the panels with a catalyst; for panels without catalyst, the behavior was the opposite, with the exception of solids. For the physical properties, the results of the variables of density, compaction ratio, and thickness were equivalent and in accordance with the standard, while the moisture content was significantly reduced with the use of the catalyst but without the influence of the percentage of ash. The density profile for all treatments was characteristic of medium-density fiberboard, with more compacted and dense surfaces when compared to the central layer. For thickness, the swelling was not influenced by the catalyst and the use of ash, presenting average values within the normalized parameters. For mechanical properties, the influence of ashes on the adhesive was negatively observed in the modulus of rupture from 1% and in the traction test from 3%; however, only this last property, in the percentages of 3% and 5%, were below the minimum limit of the norm. The use of catalyst and ashes with percentages of 3% and 5% reduced the formaldehyde emission of the panels; however, only the panels that used adhesive with catalyst presented emissions below 8mg of formaldehyde / 100g of the panel. In this way, it can be said that boiler ash can be added to the adhesive with a catalyst without impairing the technological properties by up to 1%.

Keywords: reconstituted wood panels, formaldehyde emission, technological properties of panels, perforator

Procedia PDF Downloads 41
144 Consumption and Diffusion Based Model of Tissue Organoid Development

Authors: Elena Petersen, Inna Kornienko, Svetlana Guryeva, Sergey Simakov

Abstract:

In vitro organoid cultivation requires the simultaneous provision of necessary vascularization and nutrients perfusion of cells during organoid development. However, many aspects of this problem are still unsolved. The functionality of vascular network intergrowth is limited during early stages of organoid development since a function of the vascular network initiated on final stages of in vitro organoid cultivation. Therefore, a microchannel network should be created in early stages of organoid cultivation in hydrogel matrix aimed to conduct and maintain minimally required the level of nutrients perfusion for all cells in the expanding organoid. The network configuration should be designed properly in order to exclude hypoxic and necrotic zones in expanding organoid at all stages of its cultivation. In vitro vascularization is currently the main issue within the field of tissue engineering. As perfusion and oxygen transport have direct effects on cell viability and differentiation, researchers are currently limited only to tissues of few millimeters in thickness. These limitations are imposed by mass transfer and are defined by the balance between the metabolic demand of the cellular components in the system and the size of the scaffold. Current approaches include growth factor delivery, channeled scaffolds, perfusion bioreactors, microfluidics, cell co-cultures, cell functionalization, modular assembly, and in vivo systems. These approaches may improve cell viability or generate capillary-like structures within a tissue construct. Thus, there is a fundamental disconnect between defining the metabolic needs of tissue through quantitative measurements of oxygen and nutrient diffusion and the potential ease of integration into host vasculature for future in vivo implantation. A model is proposed for growth prognosis of the organoid perfusion based on joint simulations of general nutrient diffusion, nutrient diffusion to the hydrogel matrix through the contact surfaces and microchannels walls, nutrient consumption by the cells of expanding organoid, including biomatrix contraction during tissue development, which is associated with changed consumption rate of growing organoid cells. The model allows computing effective microchannel network design giving minimally required the level of nutrients concentration in all parts of growing organoid. It can be used for preliminary planning of microchannel network design and simulations of nutrients supply rate depending on the stage of organoid development.

Keywords: 3D model, consumption model, diffusion, spheroid, tissue organoid

Procedia PDF Downloads 290
143 Non-Newtonian Fluid Flow Simulation for a Vertical Plate and a Square Cylinder Pair

Authors: Anamika Paul, Sudipto Sarkar

Abstract:

The flow behaviour of non-Newtonian fluid is quite complicated, although both the pseudoplastic (n < 1, n being the power index) and dilatant (n > 1) fluids under this category are used immensely in chemical and process industries. A limited research work is carried out for flow over a bluff body in non-Newtonian flow environment. In the present numerical simulation we control the vortices of a square cylinder by placing an upstream vertical splitter plate for pseudoplastic (n=0.8), Newtonian (n=1) and dilatant (n=1.2) fluids. The position of the upstream plate is also varied to calculate the critical distance between the plate and cylinder, below which the cylinder vortex shedding suppresses. Here the Reynolds number is considered as Re = 150 (Re = U∞a/ν, where U∞ is the free-stream velocity of the flow, a is the side of the cylinder and ν is the maximum value of kinematic viscosity of the fluid), which comes under laminar periodic vortex shedding regime. The vertical plate is having a dimension of 0.5a × 0.05a and it is placed at the cylinder centre-line. Gambit 2.2.30 is used to construct the flow domain and to impose the boundary conditions. In detail, we imposed velocity inlet (u = U∞), pressure outlet (Neumann condition), symmetry (free-slip boundary condition) at upper and lower domain. Wall boundary condition (u = v = 0) is considered both on the cylinder and the splitter plate surfaces. The unsteady 2-D Navier Stokes equations in fully conservative form are then discretized in second-order spatial and first-order temporal form. These discretized equations are then solved by Ansys Fluent 14.5 implementing SIMPLE algorithm written in finite volume method. Here, fine meshing is used surrounding the plate and cylinder. Away from the cylinder, the grids are slowly stretched out in all directions. To get an account of mesh quality, a total of 297 × 208 grid points are used for G/a = 3 (G being the gap between the plate and cylinder) in the streamwise and flow-normal directions respectively after a grid independent study. The computed mean flow quantities obtained from Newtonian flow are agreed well with the available literatures. The results are depicted with the help of instantaneous and time-averaged flow fields. Qualitative and quantitative noteworthy differences are obtained in the flow field with the changes in rheology of fluid. Also, aerodynamic forces and vortex shedding frequencies differ with the gap-ratio and power index of the fluid. We can conclude from the present simulation that fluent is capable to capture the vortex dynamics of unsteady laminar flow regime even in the non-Newtonian flow environment.

Keywords: CFD, critical gap-ratio, splitter plate, wake-wake interactions, dilatant, pseudoplastic

Procedia PDF Downloads 92
142 Assessment of Microclimate in Abu Dhabi Neighborhoods: On the Utilization of Native Landscape in Enhancing Thermal Comfort

Authors: Maryam Al Mheiri, Khaled Al Awadi

Abstract:

Urban population is continuously increasing worldwide and the speed at which cities urbanize creates major challenges, particularly in terms of creating sustainable urban environments. Rapid urbanization often leads to negative environmental impacts and changes in the urban microclimates. Moreover, when rapid urbanization is paired with limited landscape elements, the effects on human health due to the increased pollution, and thermal comfort due to Urban Heat Island effects are increased. Urban Heat Island (UHI) describes the increase of urban temperatures in urban areas in comparison to its rural surroundings, and, as we discuss in this paper, it impacts on pedestrian comfort, reducing the number of walking trips and public space use. It is thus very necessary to investigate the quality of outdoor built environments in order to improve the quality of life incites. The main objective of this paper is to address the morphology of Emirati neighborhoods, setting a quantitative baseline by which to assess and compare spatial characteristics and microclimate performance of existing typologies in Abu Dhabi. This morphological mapping and analysis will help to understand the built landscape of Emirati neighborhoods in this city, whose form has changed and evolved across different periods. This will eventually help to model the use of different design strategies, such as landscaping, to mitigate UHI effects and enhance outdoor urban comfort. Further, the impact of different native plants types and native species in reducing UHI effects and enhancing outdoor urban comfort, allowing for the assessment of the impact of increasing landscaped areas in these neighborhoods. This study uses ENVI-met, an analytical, three-dimensional, high-resolution microclimate modeling software. This micro-scale urban climate model will be used to evaluate existing conditions and generate scenarios in different residential areas, with different vegetation surfaces and landscaping, and examine their impact on surface temperatures during summer and autumn. In parallel to these simulations, field measurement will be included to calibrate the Envi-met model. This research therefore takes an experimental approach, using simulation software, and a case study strategy for the evaluation of a sample of residential neighborhoods. A comparison of the results of these scenarios constitute a first step towards making recommendations about what constitutes sustainable landscapes for Abu Dhabi neighborhoods.

Keywords: landscape, microclimate, native plants, sustainable neighborhoods, thermal comfort, urban heat island

Procedia PDF Downloads 282
141 In Vitro Evaluation of a Chitosan-Based Adhesive to Treat Bone Fractures

Authors: Francisco J. Cedano, Laura M. Pinzón, Camila I. Castro, Felipe Salcedo, Juan P. Casas, Juan C. Briceño

Abstract:

Complex fractures located in articular surfaces are challenging to treat and their reduction with conventional treatments could compromise the functionality of the affected limb. An adhesive material to treat those fractures is desirable for orthopedic surgeons. This adhesive must be biocompatible and have a high adhesion to bone surface in an aqueous environment. The proposed adhesive is based on chitosan, given its adhesive and biocompatibility properties. Chitosan is mixed with calcium carbonate and hydroxyapatite, which contribute to structural support and a gel like behavior, and glutaraldehyde is used as a cross-linking agent to keep the adhesive mechanical performance in aqueous environment. This work aims to evaluate the rheological, adhesion strength and biocompatibility properties of the proposed adhesive using in vitro tests. The gelification process of the adhesive was monitored by oscillatory rheometry in an ARG-2 TA Instruments rheometer, using a parallel plate geometry of 22 mm and a gap of 1 mm. Time sweep experiments were conducted at 1 Hz frequency, 1% strain and 37°C from 0 to 2400 s. Adhesion strength is measured using a butt joint test with bovine cancellous bone fragments as substrates. The test is conducted at 5 min, 20min and 24 hours after curing the adhesive under water at 37°C. Biocompatibility is evaluated by a cytotoxicity test in a fibroblast cell culture using MTT assay and SEM. Rheological results concluded that the average gelification time of the adhesive is 820±107 s, also it reaches storage modulus magnitudes up to 106 Pa; The adhesive show solid-like behavior. Butt joint test showed 28.6 ± 9.2 kPa of tensile bond strength for the adhesive cured for 24 hours. Also there was no significant difference in adhesion strength between 20 minutes and 24 hours. MTT showed 70 ± 23 % of active cells at sixth day of culture, this percentage is estimated respect to a positive control (only cells with culture medium and bovine serum). High vacuum SEM observation permitted to localize and study the morphology of fibroblasts presented in the adhesive. All captured fibroblasts presented in SEM typical flatted structure with filopodia growth attached to adhesive surface. This project reports an adhesive based on chitosan that is biocompatible due to high active cells presented in MTT test and these results were correlated using SEM. Also, it has adhesion properties in conditions that model the clinical application, and the adhesion strength do not decrease between 5 minutes and 24 hours.

Keywords: bioadhesive, bone adhesive, calcium carbonate, chitosan, hydroxyapatite, glutaraldehyde

Procedia PDF Downloads 292
140 Numerical Investigation of the Effects of Surfactant Concentrations on the Dynamics of Liquid-Liquid Interfaces

Authors: Bamikole J. Adeyemi, Prashant Jadhawar, Lateef Akanji

Abstract:

Theoretically, there exist two mathematical interfaces (fluid-solid and fluid-fluid) when a liquid film is present on solid surfaces. These interfaces overlap if the mineral surface is oil-wet or mixed wet, and therefore, the effects of disjoining pressure are significant on both boundaries. Hence, dewetting is a necessary process that could detach oil from the mineral surface. However, if the thickness of the thin water film directly in contact with the surface is large enough, disjoining pressure can be thought to be zero at the liquid-liquid interface. Recent studies show that the integration of fluid-fluid interactions with fluid-rock interactions is an important step towards a holistic approach to understanding smart water effects. Experiments have shown that the brine solution can alter the micro forces at oil-water interfaces, and these ion-specific interactions lead to oil emulsion formation. The natural emulsifiers present in crude oil behave as polyelectrolytes when the oil interfaces with low salinity water. Wettability alteration caused by low salinity waterflooding during Enhanced Oil Recovery (EOR) process results from the activities of divalent ions. However, polyelectrolytes are said to lose their viscoelastic property with increasing cation concentrations. In this work, the influence of cation concentrations on the dynamics of viscoelastic liquid-liquid interfaces is numerically investigated. The resultant ion concentrations at the crude oil/brine interfaces were estimated using a surface complexation model. Subsequently, the ion concentration parameter is integrated into a mathematical model to describe its effects on the dynamics of a viscoelastic interfacial thin film. The film growth, stability, and rupture were measured after different time steps for three types of fluids (Newtonian, purely elastic and viscoelastic fluids). The interfacial films respond to exposure time in a similar manner with an increasing growth rate, which resulted in the formation of more droplets with time. Increased surfactant accumulation at the interface results in a higher film growth rate which leads to instability and subsequent formation of more satellite droplets. Purely elastic and viscoelastic properties limit film growth rate and consequent film stability compared to the Newtonian fluid. Therefore, low salinity and reduced concentration of the potential determining ions in injection water will lead to improved interfacial viscoelasticity.

Keywords: liquid-liquid interfaces, surfactant concentrations, potential determining ions, residual oil mobilization

Procedia PDF Downloads 117
139 The Inverse Problem in Energy Beam Processes Using Discrete Adjoint Optimization

Authors: Aitor Bilbao, Dragos Axinte, John Billingham

Abstract:

The inverse problem in Energy Beam (EB) Processes consists of defining the control parameters, in particular the 2D beam path (position and orientation of the beam as a function of time), to arrive at a prescribed solution (freeform surface). This inverse problem is well understood for conventional machining, because the cutting tool geometry is well defined and the material removal is a time independent process. In contrast, EB machining is achieved through the local interaction of a beam of particular characteristics (e.g. energy distribution), which leads to a surface-dependent removal rate. Furthermore, EB machining is a time-dependent process in which not only the beam varies with the dwell time, but any acceleration/deceleration of the machine/beam delivery system, when performing raster paths will influence the actual geometry of the surface to be generated. Two different EB processes, Abrasive Water Machining (AWJM) and Pulsed Laser Ablation (PLA), are studied. Even though they are considered as independent different technologies, both can be described as time-dependent processes. AWJM can be considered as a continuous process and the etched material depends on the feed speed of the jet at each instant during the process. On the other hand, PLA processes are usually defined as discrete systems and the total removed material is calculated by the summation of the different pulses shot during the process. The overlapping of these shots depends on the feed speed and the frequency between two consecutive shots. However, if the feed speed is sufficiently slow compared with the frequency, then consecutive shots are close enough and the behaviour can be similar to a continuous process. Using this approximation a generic continuous model can be described for both processes. The inverse problem is usually solved for this kind of process by simply controlling dwell time in proportion to the required depth of milling at each single pixel on the surface using a linear model of the process. However, this approach does not always lead to the good solution since linear models are only valid when shallow surfaces are etched. The solution of the inverse problem is improved by using a discrete adjoint optimization algorithm. Moreover, the calculation of the Jacobian matrix consumes less computation time than finite difference approaches. The influence of the dynamics of the machine on the actual movement of the jet is also important and should be taken into account. When the parameters of the controller are not known or cannot be changed, a simple approximation is used for the choice of the slope of a step profile. Several experimental tests are performed for both technologies to show the usefulness of this approach.

Keywords: abrasive waterjet machining, energy beam processes, inverse problem, pulsed laser ablation

Procedia PDF Downloads 256
138 Evaluation and Preservation of Post-War Concrete Architecture: The Case of Lithuania

Authors: Aušra Černauskienė

Abstract:

The heritage of modern architecture is closely related to the materiality and technology used to implement the buildings. Concrete is one of the most ubiquitous post-war building materials with enormous aesthetic and structural potential that architects have creatively used for everyday buildings and exceptional architectural objects that have survived. Concrete's material, structural, and architectural development over the post-war years has produced a remarkably rich and diverse typology of buildings, for implementation of which unique handicraft skills and industrialized novelties were used. Nonetheless, in the opinion of the public, concrete architecture is often treated as ugly and obsolete, and in Lithuania, it also has negative associations with the scarcity of the Soviet era. Moreover, aesthetic non-appreciation is not the only challenge that concrete architecture meets. It also no longer meets the needs of contemporary requirements: buildings are of poor energy class, have little potential for transformation, and have an obsolete surrounding environment. Thus, as a young heritage, concrete architecture is not yet sufficiently appreciated by society and heritage specialists, as it takes a short time to rethink what they mean from a historical perspective. However, concrete architecture is considered ambiguous but has its character and specificity that needs to be carefully studied in terms of cultural heritage to avoid the risk of poor renovation or even demolition, which has increasingly risen in recent decades in Lithuania. For example, several valuable pieces of post-war concrete architecture, such as the Banga restaurant and the Summer Stage in Palanga, were demolished without understanding their cultural value. Many unique concrete structures and raw concrete surfaces were painted or plastered, paying little attention to the appearance of authentic material. Furthermore, it raises a discussion on how to preserve buildings of different typologies: for example, innovative public buildings in their aesthetic, spatial solutions, and mass housing areas built using precast concrete panels. It is evident that the most traditional preservation strategy, conservation, is not the only option for preserving post-war concrete architecture, and more options should be considered. The first step in choosing the right strategy in each case is an appropriate assessment of the cultural significance. For this reason, an evaluation matrix for post-war concrete architecture is proposed. In one direction, an analysis of different typological groups of buildings is suggested, with the designation of ownership rights; in the other direction – the analysis of traditional value aspects such as aesthetic, technological, and relevant for modern architecture such as social, economic, and sustainability factors. By examining these parameters together, three relevant scenarios for preserving post-war concrete architecture were distinguished: conservation, renovation, and reuse, and they are revealed using examples of concrete architecture in Lithuania.

Keywords: modern heritage, value aspects, typology, conservation, upgrade, reuse

Procedia PDF Downloads 107
137 Inertial Spreading of Drop on Porous Surfaces

Authors: Shilpa Sahoo, Michel Louge, Anthony Reeves, Olivier Desjardins, Susan Daniel, Sadik Omowunmi

Abstract:

The microgravity on the International Space Station (ISS) was exploited to study the imbibition of water into a network of hydrophilic cylindrical capillaries on time and length scales long enough to observe details hitherto inaccessible under Earth gravity. When a drop touches a porous medium, it spreads as if laid on a composite surface. The surface first behaves as a hydrophobic material, as liquid must penetrate pores filled with air. When contact is established, some of the liquid is drawn into pores by a capillarity that is resisted by viscous forces growing with length of the imbibed region. This process always begins with an inertial regime that is complicated by possible contact pinning. To study imbibition on Earth, time and distance must be shrunk to mitigate gravity-induced distortion. These small scales make it impossible to observe the inertial and pinning processes in detail. Instead, in the International Space Station (ISS), astronaut Luca Parmitano slowly extruded water spheres until they touched any of nine capillary plates. The 12mm diameter droplets were large enough for high-speed GX1050C video cameras on top and side to visualize details near individual capillaries, and long enough to observe dynamics of the entire imbibition process. To investigate the role of contact pinning, a text matrix was produced which consisted nine kinds of porous capillary plates made of gold-coated brass treated with Self-Assembled Monolayers (SAM) that fixed advancing and receding contact angles to known values. In the ISS, long-term microgravity allowed unambiguous observations of the role of contact line pinning during the inertial phase of imbibition. The high-speed videos of spreading and imbibition on the porous plates were analyzed using computer vision software to calculate the radius of the droplet contact patch with the plate and height of the droplet vs time. These observations are compared with numerical simulations and with data that we obtained at the ESA ZARM free-fall tower in Bremen with a unique mechanism producing relatively large water spheres and similarity in the results were observed. The data obtained from the ISS can be used as a benchmark for further numerical simulations in the field.

Keywords: droplet imbibition, hydrophilic surface, inertial phase, porous medium

Procedia PDF Downloads 110
136 Making Beehives More 'Intelligent'- The Case of Capturing, Reducing, and Managing Bee Pest Infestation in Hives through Modification of Hive Entrance Holes and the Installation of Multiple In-Hive Bee Pest Traps

Authors: Prince Amartey

Abstract:

Bees are clever creatures, thus, capturing bees implies that the hives are intelligent in the sense that they have all of the required circumstances to attract and trap the bees. If the hive goes above and beyond to keep the bees in the hive and to keep the activities of in-hive pests to a minimal in order for the bees to develop to their maximum potential, the hive is becoming or is more 'intelligent'. Some bee pests, such as tiny beehive beetles, are endemic to Africa; however, the way we now extract honey by cutting off the combs and pressing for honey prevents the spread of these bees' insect enemies. However, when we explore entering the commercialization. When freshly collected combs are returned to the hives following the adoption of the frame and other systems, there is a need to consider putting in strategies to manage the accompanying pest concerns that arise with unprotected combs.The techniques for making hives more'intelligent' are thus more important presently, given that the African apicultural business does not wish to encourage the use of pesticides in the hives. This include changing the hive's entrance holes in order to improve the bees' own mechanism for defending the entry sites, as well as collecting pests by setting exterior and in-hive traps to prevent pest infiltration into hives by any means feasible. Material and Methods: The following five (5) mechanisms are proposed to make the hives more 'intelligent.' i. The usage of modified frames with five (5) beetle traps positioned horizontally on the vertical 'legs' to catch the beetle along the combs' surfaces-multiple bee ii. Baited bioelectric frame traps, which has both vertical sections of frame covered with a 3mm mesh that allows pest entry but not bees. The pest is attracted by strips of combs of honey, open brood, pollen on metal plates inserted horizontally on the vertical ‘legs’ of the frames. An electrical ‘mine’ system in place that electrocutes the pests as they step on the wires in the trap to enter the frame trap iii. The ten rounded hive entry holes are adapted as the bees are able to police the entrance to prevent entry of pest. The holes are arranged in two rows, with one on top of the other What Are the Main Contributions of Your Research?-Results Discussions and Conclusions The techniques implemented decrease pest ingress, while in-hive traps capture those that escape entry into the hives. Furthermore, the stand alteration traps larvae and stops their growth into adults. As beekeeping commercialization grows throughout Africa, these initiatives will minimize insect infestation in hives and necessarily enhance honey output.

Keywords: bee pests, modified frames, multiple beetle trap, Baited bioelectric frame traps

Procedia PDF Downloads 53
135 Heat Vulnerability Index (HVI) Mapping in Extreme Heat Days Coupled with Air Pollution Using Principal Component Analysis (PCA) Technique: A Case Study of Amiens, France

Authors: Aiman Mazhar Qureshi, Ahmed Rachid

Abstract:

Extreme heat events are emerging human environmental health concerns in dense urban areas due to anthropogenic activities. High spatial and temporal resolution heat maps are important for urban heat adaptation and mitigation, helping to indicate hotspots that are required for the attention of city planners. The Heat Vulnerability Index (HVI) is the important approach used by decision-makers and urban planners to identify heat-vulnerable communities and areas that require heat stress mitigation strategies. Amiens is a medium-sized French city, where the average temperature has been increasing since the year 2000 by +1°C. Extreme heat events are recorded in the month of July for the last three consecutive years, 2018, 2019 and 2020. Poor air quality, especially ground-level ozone, has been observed mainly during the same hot period. In this study, we evaluated the HVI in Amiens during extreme heat days recorded last three years (2018,2019,2020). The Principal Component Analysis (PCA) technique is used for fine-scale vulnerability mapping. The main data we considered for this study to develop the HVI model are (a) socio-economic and demographic data; (b) Air pollution; (c) Land use and cover; (d) Elderly heat-illness; (e) socially vulnerable; (f) Remote sensing data (Land surface temperature (LST), mean elevation, NDVI and NDWI). The output maps identified the hot zones through comprehensive GIS analysis. The resultant map shows that high HVI exists in three typical areas: (1) where the population density is quite high and the vegetation cover is small (2) the artificial surfaces (built-in areas) (3) industrial zones that release thermal energy and ground-level ozone while those with low HVI are located in natural landscapes such as rivers and grasslands. The study also illustrates the system theory with a causal diagram after data analysis where anthropogenic activities and air pollution appear in correspondence with extreme heat events in the city. Our suggested index can be a useful tool to guide urban planners and municipalities, decision-makers and public health professionals in targeting areas at high risk of extreme heat and air pollution for future interventions adaptation and mitigation measures.

Keywords: heat vulnerability index, heat mapping, heat health-illness, remote sensing, urban heat mitigation

Procedia PDF Downloads 118
134 Nanocellulose Reinforced Biocomposites Based on Wheat Plasticized Starch for Food Packaging

Authors: Belen Montero, Carmen Ramirez, Maite Rico, Rebeca Bouza, Irene Derungs

Abstract:

Starch is a promising polymer for producing biocomposite materials because it is renewable, completely biodegradable and easily available at a low cost. Thermoplastic starches (TPS) can be obtained after the disruption and plasticization of native starch with a plasticizer. In this work, the solvent casting method was used to obtain TPS films from wheat starch plasticized with glycerol and reinforced with nanocellulose (CNC). X-ray diffraction analysis was used to follow the evolution of the crystallinity. The native wheat starch granules have shown a profile corresponding to A-type crystal structures typical for cereal starches. When TPS films are analyzed a high amorphous halo centered on 19º is obtained, indicating the plasticization process is completed. SEM imaging was made in order to analyse the morphology. The image from the raw wheat starch granules shows a bimodal granule size distribution with some granules in large round disk-shape forms (A-type) and the others as smaller spherical particles (B-type). The image from the neat TPS surface shows a continuous surface. No starch aggregates or swollen granules can be seen so, the plasticization process is complete. In the surfaces of reinforced TPS films aggregates are seen as the CNC concentration in the matrix increases. The CNC influence on the mechanical properties of TPS films has been studied by dynamic mechanical analysis. A direct relation exists between the storage modulus values, E’, and the CNC content in reinforced TPS films: higher is the content of nanocellulose in the composite, higher is the value of E’. This reinforcement effect can be explained by the appearance of a strong and crystalline nanoparticle-TPS interphase. Thermal stability of films was analysed by TGA. It has not observed any influence on the behaviour related to the thermal degradation of films with the incorporation of the CNC. Finally, the resistance to the water absorption films was analysed following the standard UNE-EN ISO 1998:483. The percentage of water absorbed by the samples at each time was calculated. The addition of 5 wt % of CNC to the TPS matrix leads to a significant improvement in the moisture resistance of the starch based material decreasing their diffusivity. It has been associated to the formation of a nanocrystal network that prevents swelling of the starch and therefore water absorption and to the high crystallinity of cellulose compared to starch. As a conclusion, the wheat film reinforced with 5 wt % of cellulose nanocrystals seems to be a good alternative for short-life applications into the packaging industry, because of its greatest rigidity, thermal stability and moisture sorption resistance.

Keywords: biocomposites, nanocellulose, starch, wheat

Procedia PDF Downloads 186
133 Precursor Muscle Cell’s Phenotype under Compression in a Biomimetic Mechanical Niche

Authors: Fatemeh Abbasi, Arne Hofemeier, Timo Betz

Abstract:

Muscle growth and regeneration critically depend on satellite cells (SCs) which are muscle stem cells located between the basal lamina and myofibres. Upon damage, SCs become activated, enter the cell cycle, and give rise to myoblasts that form new myofibres, while a sub-population self-renew and re-populate the muscle stem cell niche. In aged muscle as well as in certain muscle diseases such as muscular dystrophy, some of the SCs lose their regenerative ability. Although it is demonstrated that the chemical composition of SCs quiescent niche is different from the activated niche, the mechanism initially activated in the SCs remains unknown. While extensive research efforts focused on potential chemical activation, no such factor has been identified to the author’s best knowledge. However, it is substantiated that niche mechanics affects SCs behaviors, such as stemness and engraftment. We hypothesize that mechanical stress in the healthy niche (homeostasis) is different from the regenerative niche and that this difference could serve as an early signal activating SCs upon fiber damage. To investigate this hypothesis, we develop a biomimetic system to reconstitute both, the mechanical and the chemical environment of the SC niche. Cells will be confined between two elastic polyacrylamide (PAA) hydrogels with controlled elastic moduli and functionalized surface chemistry. By controlling the distance between the PAA hydrogel surfaces, we vary the compression forces exerted by the substrates on the cells, while the lateral displacement of the upper hydrogel will create controlled shear forces. To establish such a system, a simplified system is presented. We engineered a sandwich-like configuration of two elastic PAA layer with stiffnesses between 1 and 10 kPa and confined a precursor myoblast cell line (C2C12) in between these layers. Our initial observations in this sandwich model indicate that C2C12 cells show different behaviors under mechanical compression if compared to a control one-layer gel without compression. Interestingly, this behavior is stiffness-dependent. While the shape of C2C12 cells in the sandwich consisting of two stiff (10 kPa) layers was much more elongated, showing almost a neuronal phenotype, the cell shape in a sandwich situation consisting of one stiff and one soft (1 kPa) layer was more spherical. Surprisingly, even in proliferation medium and at very low cell density, the sandwich situation stimulated cell differentiation with increased striation and myofibre formation. Such behavior is commonly found for confluent cells in differentiation medium. These results suggest that mechanical changes in stiffness and applied pressure might be a relevant stimulation for changes in muscle cell behavior.

Keywords: C2C12 cells, compression, force, satellite cells, skeletal muscle

Procedia PDF Downloads 95
132 Dependence of Densification, Hardness and Wear Behaviors of Ti6Al4V Powders on Sintering Temperature

Authors: Adewale O. Adegbenjo, Elsie Nsiah-Baafi, Mxolisi B. Shongwe, Mercy Ramakokovhu, Peter A. Olubambi

Abstract:

The sintering step in powder metallurgy (P/M) processes is very sensitive as it determines to a large extent the properties of the final component produced. Spark plasma sintering over the past decade has been extensively used in consolidating a wide range of materials including metallic alloy powders. This novel, non-conventional sintering method has proven to be advantageous offering full densification of materials, high heating rates, low sintering temperatures, and short sintering cycles over conventional sintering methods. Ti6Al4V has been adjudged the most widely used α+β alloy due to its impressive mechanical performance in service environments, especially in the aerospace and automobile industries being a light metal alloy with the capacity for fuel efficiency needed in these industries. The P/M route has been a promising method for the fabrication of parts made from Ti6Al4V alloy due to its cost and material loss reductions and the ability to produce near net and intricate shapes. However, the use of this alloy has been largely limited owing to its relatively poor hardness and wear properties. The effect of sintering temperature on the densification, hardness, and wear behaviors of spark plasma sintered Ti6Al4V powders was investigated in this present study. Sintering of the alloy powders was performed in the 650–850°C temperature range at a constant heating rate, applied pressure and holding time of 100°C/min, 50 MPa and 5 min, respectively. Density measurements were carried out according to Archimedes’ principle and microhardness tests were performed on sectioned as-polished surfaces at a load of 100gf and dwell time of 15 s. Dry sliding wear tests were performed at varied sliding loads of 5, 15, 25 and 35 N using the ball-on-disc tribometer configuration with WC as the counterface material. Microstructural characterization of the sintered samples and wear tracks were carried out using SEM and EDX techniques. The density and hardness characteristics of sintered samples increased with increasing sintering temperature. Near full densification (99.6% of the theoretical density) and Vickers’ micro-indentation hardness of 360 HV were attained at 850°C. The coefficient of friction (COF) and wear depth improved significantly with increased sintering temperature under all the loading conditions examined, except at 25 N indicating better mechanical properties at high sintering temperatures. Worn surface analyses showed the wear mechanism was a synergy of adhesive and abrasive wears, although the former was prevalent.

Keywords: hardness, powder metallurgy, spark plasma sintering, wear

Procedia PDF Downloads 242
131 The Association between Prior Antibiotic Use and Subsequent Risk of Infectious Disease: A Systematic Review

Authors: Umer Malik, David Armstrong, Mark Ashworth, Alex Dregan, Veline L'Esperance, Lucy McDonnell, Mariam Molokhia, Patrick White

Abstract:

Introduction: The microbiota lining epithelial surfaces is thought to play an important role in many human physiological functions including defense against pathogens and modulation of immune response. The microbiota is susceptible to disruption from external influences such as exposure to antibiotic medication. It is thought that antibiotic-induced disruption of the microbiota could predispose to pathogen overgrowth and invasion. We hypothesized that antibiotic use would be associated with increased risk of future infections. We carried out a systematic review of evidence of associations between antibiotic use and subsequent risk of community-acquired infections. Methods: We conducted a review of the literature for observational studies assessing the association between antibiotic use and subsequent community-acquired infection. Eligible studies were published before April 29th, 2016. We searched MEDLINE, EMBASE, and Web of Science and screened titles and abstracts using a predefined search strategy. Infections caused by Clostridium difficile, drug-resistant organisms and fungal organisms were excluded as their association with prior antibiotic use has been examined in previous systematic reviews. Results: Eighteen out of 21,518 retrieved studies met the inclusion criteria. The association between past antibiotic exposure and subsequent increased risk of infection was reported in 16 studies, including one study on Campylobacter jejuni infection (Odds Ratio [OR] 3.3), two on typhoid fever (ORs 5.7 and 12.2), one on Staphylococcus aureus skin infection (OR 2.9), one on invasive pneumococcal disease (OR 1.57), one on recurrent furunculosis (OR 16.6), one on recurrent boils and abscesses (Risk ratio 1.4), one on upper respiratory tract infection (OR 2.3) and urinary tract infection (OR 1.1), one on invasive Haemophilus influenzae type b (Hib) infection (OR 1.51), one on infectious mastitis (OR 5.38), one on meningitis (OR 2.04) and five on Salmonella enteric infection (ORs 1.4, 1.59, 1.9, 2.3 and 3.8). The effect size in three studies on Salmonella enteric infection was of marginal statistical significance. A further two studies on Salmonella infection did not demonstrate a statistically significant association between prior antibiotic exposure and subsequent infection. Conclusion: We have found an association between past antibiotic exposure and subsequent risk of a diverse range of infections in the community setting. Our findings provide evidence to support the hypothesis that prior antibiotic usage may predispose to future infection risk, possibly through antibiotic-induced alteration of the microbiota. The findings add further weight to calls to minimize inappropriate antibiotic prescriptions.

Keywords: antibiotic, infection, risk factor, side effect

Procedia PDF Downloads 203
130 Effect of Tooth Bleaching Agents on Enamel Demineralisation

Authors: Najlaa Yousef Qusti, Steven J. Brookes, Paul A. Brunton

Abstract:

Background: Tooth discoloration can be an aesthetic problem, and tooth whitening using carbamide peroxide bleaching agents are a popular treatment option. However, there are concerns about possible adverse effects such as demineralisation of the bleached enamel; however, the cause of this demineralisation is unclear. Introduction: Teeth can become stained or discoloured over time. Tooth whitening is an aesthetic solution for tooth discoloration. Bleaching solutions of 10% carbamide peroxide (CP) have become the standard agent used in dentist-prescribed and home-applied ’vital bleaching techniques’. These materials release hydrogen peroxide (H₂O₂), the active whitening agent. However, there is controversy in the literature regarding the effect of bleaching agents on enamel integrity and enamel mineral content. The purpose of this study was to establish if carbamide peroxide bleaching agents affect the acid solubility of enamel (i.e., make teeth more prone to demineralisation). Materials and Methods: Twelve human premolar teeth were sectioned longitudinally along the midline and varnished to leave the natural enamel surface exposed. The baseline behavior of each tooth half in relation to its demineralisation in acid was established by sequential exposure to 4 vials containing 1ml of 10mM acetic acid (1 minute/vial). This was followed by exposure to 10% CP for 8 hours. After washing in distilled water, the tooth half was sequentially exposed to 4 further vials containing acid to test if the acid susceptibility of the enamel had been affected. The corresponding tooth half acted as a control and was exposed to distilled water instead of CP. The mineral loss was determined by measuring [Ca²⁺] and [PO₄³⁻] released in each vial using a calcium ion-selective electrode and the phosphomolybdenum blue method, respectively. The effect of bleaching on the tooth surfaces was also examined using SEM. Results: Exposure to carbamide peroxide did not significantly alter the susceptibility of enamel to acid attack, and SEM of the enamel surface revealed a slight alteration in surface appearance. SEM images of the control enamel surface showed a flat enamel surface with some shallow pits, whereas the bleached enamel appeared with an increase in surface porosity and some areas of mild erosion. Conclusions: Exposure to H₂O₂ equivalent to 10% CP does not significantly increase subsequent acid susceptibility of enamel as determined by Ca²⁺ release from the enamel surface. The effects of bleaching on mineral loss were indistinguishable from distilled water in the experimental system used. However, some surface differences were observed by SEM. The phosphomolybdenum blue method for phosphate is compromised by peroxide bleaching agents due to their oxidising properties. However, the Ca²⁺ electrode is unaffected by oxidising agents and can be used to determine the mineral loss in the presence of peroxides.

Keywords: bleaching, carbamide peroxide, demineralisation, teeth whitening

Procedia PDF Downloads 101
129 I, Me and the Bot: Forming a theory of symbolic interactivity with a Chatbot

Authors: Felix Liedel

Abstract:

The rise of artificial intelligence has numerous and far-reaching consequences. In addition to the obvious consequences for entire professions, the increasing interaction with chatbots also has a wide range of social consequences and implications. We are already increasingly used to interacting with digital chatbots, be it in virtual consulting situations, creative development processes or even in building personal or intimate virtual relationships. A media-theoretical classification of these phenomena has so far been difficult, partly because the interactive element in the exchange with artificial intelligence has undeniable similarities to human-to-human communication but is not identical to it. The proposed study, therefore, aims to reformulate the concept of symbolic interaction in the tradition of George Herbert Mead as symbolic interactivity in communication with chatbots. In particular, Mead's socio-psychological considerations will be brought into dialog with the specific conditions of digital media, the special dispositive situation of chatbots and the characteristics of artificial intelligence. One example that illustrates this particular communication situation with chatbots is so-called consensus fiction: In face-to-face communication, we use symbols on the assumption that they will be interpreted in the same or a similar way by the other person. When briefing a chatbot, it quickly becomes clear that this is by no means the case: only the bot's response shows whether the initial request corresponds to the sender's actual intention. This makes it clear that chatbots do not just respond to requests. Rather, they function equally as projection surfaces for their communication partners but also as distillations of generalized social attitudes. The personalities of the chatbot avatars result, on the one hand, from the way we behave towards them and, on the other, from the content we have learned in advance. Similarly, we interpret the response behavior of the chatbots and make it the subject of our own actions with them. In conversation with the virtual chatbot, we enter into a dialog with ourselves but also with the content that the chatbot has previously learned. In our exchanges with chatbots, we, therefore, interpret socially influenced signs and behave towards them in an individual way according to the conditions that the medium deems acceptable. This leads to the emergence of situationally determined digital identities that are in exchange with the real self but are not identical to it: In conversation with digital chatbots, we bring our own impulses, which are brought into permanent negotiation with a generalized social attitude by the chatbot. This also leads to numerous media-ethical follow-up questions. The proposed approach is a continuation of my dissertation on moral decision-making in so-called interactive films. In this dissertation, I attempted to develop a concept of symbolic interactivity based on Mead. Current developments in artificial intelligence are now opening up new areas of application.

Keywords: artificial intelligence, chatbot, media theory, symbolic interactivity

Procedia PDF Downloads 17
128 Sorghum Polyphenols Encapsulated by Spray Drying, Using Modified Starches as Wall Materials

Authors: Adriana Garcia G., Alberto A. Escobar P., Amira D. Calvo L., Gabriel Lizama U., Alejandro Zepeda P., Fernando Martínez B., Susana Rincón A.

Abstract:

Different studies have recently been focused on the use of antioxidants such as polyphenols because of to its anticarcinogenic capacity. However, these compounds are highly sensible to environmental factors such as light and heat, so lose its long-term stability, besides possess an astringent and bitter taste. Nevertheless, the polyphenols can be protected by microcapsule formulation. In this sense, a rich source of polyphenols is sorghum, besides presenting a high starch content. Due to the above, the aim of this work was to obtain modified starches from sorghum by extrusion to encapsulate polyphenols the sorghum by spray drying. Polyphenols were extracted by ethanol solution from sorghum (Pajarero/red) and determined by the method of Folin-Ciocalteu, obtaining GAE at 30 mg/g. Moreover, was extracted starch of sorghum (Sinaloense/white) through wet milling (yield 32 %). The hydrolyzed starch was modified with three treatments: acetic anhydride (2.5g/100g), sodium tripolyphosphate (4g/100g), and sodium tripolyphosphate/ acetic anhydride (2g/1.25g by each 100 g) by extrusion. Processing conditions of extrusion were as follows: barrel temperatures were of 60, 130 and 170 °C at the feeding, transition, and high-pressure extrusion zones, respectively. Analysis of Fourier Transform Infrared spectroscopy (FTIR), showed bands exhibited of acetyl groups (1735 cm-1) and phosphates (1170 cm-1, 910 cm-1 and 525 cm-1), indicating the respective modification of starch. Besides, all modified starches not developed viscosity, which is a characteristic required for use in the encapsulation of polyphenols using the spray drying technique. As result of the modification starch, was obtained a water solubility index (WSI) from 33.8 to 44.8 %, and crystallinity from 8 to 11 %, indicating the destruction of the starch granule. Afterwards, microencapsulation of polyphenols was developed by spray drying, with a blend of 10 g of modified starch, 60 ml polyphenol extract and 30 ml of distilled water. Drying conditions were as follows: inlet air temperature 150 °C ± 1, outlet air temperature 80°C ± 5. As result of the microencapsulation: were obtained yields of 56.8 to 77.4 % and an efficiency of encapsulation from 84.6 to 91.4 %. The FTIR analysis showed evidence of microcapsules loaded with polyphenols in bands 1042 cm-1, 1038 cm-1 and 1148 cm-1. Analysis Differential scanning calorimetry (DSC) showed transition temperatures from 144.1 to 173.9 °C. For the order hand, analysis of Scanning Electron Microscopy (SEM), were observed rounded surfaces with concavities, typical feature of microcapsules produced by spray drying, how result of rapid evaporation of water. Finally, the modified starches were obtained by extrusion with good characteristics for use as cover materials by spray drying, where the phosphorylated starch was the best treatment in this work, according to the encapsulation yield, efficiency, and transition temperature.

Keywords: encapsulation, extrusion, modified starch, polyphenols, spray drying

Procedia PDF Downloads 280