Search results for: spin coating temperature
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7555

Search results for: spin coating temperature

7315 Analytical Solutions for Corotational Maxwell Model Fluid Arising in Wire Coating inside a Canonical Die

Authors: Muhammad Sohail Khan, Rehan Ali Shah

Abstract:

The present paper applies the optimal homotopy perturbation method (OHPM) and the optimal homotopy asymptotic method (OHAM) introduced recently to obtain analytic approximations of the non-linear equations modeling the flow of polymer in case of wire coating of a corotational Maxwell fluid. Expression for the velocity field is obtained in non-dimensional form. Comparison of the results obtained by the two methods at different values of non-dimensional parameter l10, reveal that the OHPM is more effective and easy to use. The OHPM solution can be improved even working in the same order of approximation depends on the choices of the auxiliary functions.

Keywords: corotational Maxwell model, optimal homotopy asymptotic method, optimal homotopy perturbation method, wire coating die

Procedia PDF Downloads 313
7314 Effect of Microstructure on Transition Temperature of Austempered Ductile Iron (ADI)

Authors: A. Ozel

Abstract:

The ductile to brittle transition temperature is a very important criterion that is used for selection of materials in some applications, especially in low-temperature conditions. For that reason, in this study transition temperature of as-cast and austempered unalloyed ductile iron in the temperature interval from -60 to +100 degrees C have been investigated. The microstructures of samples were examined by light microscope. The impact energy values obtained from the experiments were found to depend on the austempering time and temperature.

Keywords: Austempered Ductile Iron (ADI), Charpy test, microstructure, transition temperature

Procedia PDF Downloads 476
7313 Transverse Momentum Dependent Factorization and Evolution for Spin Physics

Authors: Bipin Popat Sonawane

Abstract:

After 1988 Electron muon Collaboration (EMC) announcement of measurement of spin dependent structure function, it has been found that it has become a need to understand spin structure of a hadron. In the study of three-dimensional spin structure of a proton, we need to understand the foundation of quantum field theory in terms of electro-weak and strong theories using rigorous mathematical theories and models. In the process of understanding the inner dynamical stricture of proton we need understand the mathematical formalism in perturbative quantum chromodynamics (pQCD). In QCD processes like proton-proton collision at high energy we calculate cross section using conventional collinear factorization schemes. In this calculations, parton distribution functions (PDFs) and fragmentation function are used which provide the information about probability density of finding quarks and gluons ( partons) inside the proton and probability density of finding final hadronic state from initial partons. In transverse momentum dependent (TMD) PDFs and FFs, collectively called as TMDs, take an account for intrinsic transverse motion of partons. The TMD factorization in the calculation of cross sections provide a scheme of hadronic and partonic states in the given QCD process. In this study we review Transverse Momentum Dependent (TMD) factorization scheme using Collins-Soper-Sterman (CSS) Formalism. CSS formalism considers the transverse momentum dependence of the partons, in this formalism the cross section is written as a Fourier transform over a transverse position variable which has physical interpretation as impact parameter. Along with this we compare this formalism with improved CSS formalism. In this work we study the TMD evolution schemes and their comparison with other schemes. This would provide description in the process of measurement of transverse single spin asymmetry (TSSA) in hadro-production and electro-production of J/psi meson at RHIC, LHC, ILC energy scales. This would surely help us to understand J/psi production mechanism which is an appropriate test of QCD.

Keywords: QCD, PDF, TMD, CSS

Procedia PDF Downloads 34
7312 The Effects of Dimethyl Adipate (DMA) on Coated Diesel Engine

Authors: Hanbey Hazar

Abstract:

An experimental study is conducted to evaluate the effects of using blends of diesel fuel with dimethyl adipate (DMA) in proportions of 2%, 6/%, and 12% on a coated engine. In this study, cylinder, piston, exhaust and inlet valves which are combustion chamber components have been coated with a ceramic material. Cylinder, exhaust and inlet valves of the diesel engine used in the tests were coated with ekabor-2 commercial powder, which is a ceramic material, to a thickness of 50 µm, by using the boriding method. The piston of a diesel engine was coated in 300 µm thickness with bor-based powder by using plasma coating method. Due to thermal barrier coating, the diesel engine's hazardous emission values decreased.

Keywords: diesel engine, dimethyl adipate (DMA), exhaust emissions, coating

Procedia PDF Downloads 247
7311 Effect of Nickel Coating on Corrosion of Alloys in Molten Salts

Authors: Divya Raghunandanan, Bhavesh D. Gajbhiye, C. S. Sona, Channamallikarjun S. Mathpati

Abstract:

Molten fluoride salts are considered as potential coolants for next generation nuclear plants where the heat can be utilized for production of hydrogen and electricity. Among molten fluoride salts, FLiNaK (LiF-NaF-KF: 46.5-11.5-42 mol %) is a potential candidate for the coolant due to its superior thermophysical properties such as high temperature stability, boiling point, volumetric heat capacity and thermal conductivity. Major technical challenge in implementation is the selection of structural material which can withstand corrosive nature of FLiNaK. Corrosion study of alloys SS 316L, Hastelloy B, Ni-201 was performed in molten FLiNaK at 650°C. Nickel was found to be more resistant to corrosive attack in molten fluoride medium. Corrosion experiments were performed to study the effect of nickel coating on corrosion of alloys SS 316L and Hastelloy B. Weight loss of the alloys due to corrosion was measured and corrosion rate was estimated. The surface morphology of the alloys was analyzed by Scanning Electron Microscopy.

Keywords: corrosion, FLiNaK, hastelloy, weight loss

Procedia PDF Downloads 412
7310 The Fabrication and Characterization of a Honeycomb Ceramic Electric Heater with a Conductive Coating

Authors: Siming Wang, Qing Ni, Yu Wu, Ruihai Xu, Hong Ye

Abstract:

Porous electric heaters, compared to conventional electric heaters, exhibit excellent heating performance due to their large specific surface area. Porous electric heaters employ porous metallic materials or conductive porous ceramics as the heating element. The former attains a low heating power with a fixed current due to the low electrical resistivity of metal. Although the latter can bypass the inherent challenges of porous metallic materials, the fabrication process of the conductive porous ceramics is complicated and high cost. This work proposed a porous ceramic electric heater with dielectric honeycomb ceramic as a substrate and surface conductive coating as a heating element. The conductive coating was prepared by the sol-gel method using silica sol and methyl trimethoxysilane as raw materials and graphite powder as conductive fillers. The conductive mechanism and degradation reason of the conductive coating was studied by electrical resistivity and thermal stability analysis. The heating performance of the proposed heater was experimentally investigated by heating air and deionized water. The results indicate that the electron transfer is achieved by forming the conductive network through the contact of the graphite flakes. With 30 wt% of graphite, the electrical resistivity of the conductive coating can be as low as 0.88 Ω∙cm. The conductive coating exhibits good electrical stability up to 500°C but degrades beyond 600°C due to the formation of many cracks in the coating caused by the weight loss and thermal expansion. The results also show that the working medium has a great influence on the volume power density of the heater. With air under natural convection as the working medium, the volume power density attains 640.85 kW/m3, which can be increased by 5 times when using deionized water as the working medium. The proposed honeycomb ceramic electric heater has the advantages of the simple fabrication method, low cost, and high volume power density, demonstrating great potential in the fluid heating field.

Keywords: conductive coating, honeycomb ceramic electric heater, high specific surface area, high volume power density

Procedia PDF Downloads 109
7309 Wear Behavior of Grey Cast Iron Coated with Al2O3-13TiO2 and Ni20Cr Using Detonation Spray Process

Authors: Harjot Singh Gill, Neelkanth Grover, Jwala Parshad Singla

Abstract:

The main aim of this research work is to present the effect of coating on two different grades of grey cast iron using detonation spray method. Ni20Cr and Al2O3-13TiO2 powders were sprayed using detonation gun onto GI250 and GIHC substrates and the results as well as coating surface morphology of the coating is studied by XRD and SEM/EDAX analysis. The wear resistance of Ni20Cr and Al2O3-13TiO2 has been investigated on pin-on-disc tribometer using ASTM G99 standards. Cumulative wear rate and coefficient of friction (µ) were calculated under three normal load of 30N, 40N, 50N at constant sliding velocity of 1m/s. Worn out surfaces were analyzed by SEM/EDAX. The results show significant resistance to wear with Al2O3-13TiO2 coating as compared to Ni20Cr and bare substrates. SEM/EDAX analysis and cumulative wear loss bar charts clearly explain the wear behavior of coated as well as bare sample of GI250 and GIHC.

Keywords: detonation spray, grey cast iron, wear rate, coefficient of friction

Procedia PDF Downloads 339
7308 Plasma Spray Deposition of Bio-Active Coating on Titanium Alloy (Ti-6Al-4V) Substrate

Authors: Renu Kumari, Jyotsna Dutta Majumdar

Abstract:

In the present study, composite coating consisting of hydroxyapatite (HA) + 50 wt% TiO2 has been developed on Ti-6Al-4V substrate by plasma spray deposition technique. Followed by plasma spray deposition, detailed surface roughness and microstructural characterization were carried out by using optical profilometer and scanning electron microscopy (SEM), respectively. The composition and phase analysis were carried out by energy-dispersive X-ray spectroscopy analysis, and X-ray diffraction (XRD) technique, respectively. The bio-activity behavior of the uncoated and coated samples was also compared by dipping test in Hank’s solution. The average surface roughness of the coating was 10 µm (as compared to 0.5 µm of as-received Ti-6Al-4V substrate) with the presence of porosities. The microstructure of the coating was found to be continuous with the presence of solidified splats. A detailed XRD analysis shows phase transformation of TiO2 from anatase to rutile, decomposition of hydroxyapatite, and formation of CaTiO3 phase. Standard dipping test confirmed a faster kinetics of deposition of calcium phosphate in the coated HA+50% wt.% TiO2 surface as compared to the as-received substrate.

Keywords: titanium, plasma spraying, microstructure, bio-activity, TiO2, hydroxyapatite

Procedia PDF Downloads 286
7307 Plasma Spraying of 316 Stainless Steel on Aluminum and Investigation of Coat/Substrate Interface

Authors: P. Abachi, T. W. Coyle, P. S. Musavi Gharavi

Abstract:

By applying coating onto a structural component, the corrosion and/or wear resistance requirements of the surface can be fulfilled. Since the layer adhesion of the coating influences the mechanical integrity of the coat/substrate interface during the service time, it should be examined accurately. At the present work, the tensile bonding strength of the 316 stainless steel plasma sprayed coating on aluminum substrate was determined by using tensile adhesion test, TAT, specimen. The interfacial fracture toughness was specified using four-point bend specimen containing a saw notch and modified chevron-notched short-bar (SB) specimen. The coating microstructure and fractured specimen surface were examined by using scanning electron- and optical-microscopy. The investigation of coated surface after tensile adhesion test indicates that the failure mechanism is mostly cohesive and rarely adhesive type. The calculated value of critical strain energy release rate proposes relatively good interface status. It seems that four-point bending test offers a potentially more sensitive means for evaluation of mechanical integrity of coating/substrate interfaces than is possible with the tensile test. The fracture toughness value reported for the modified chevron-notched short-bar specimen testing cannot be taken as absolute value because its calculation is based on the minimum stress intensity coefficient value which has been suggested for the fracture toughness determination of homogeneous parts in the ASTM E1304-97 standard. 

Keywords: bonding strength, four-point bend test, interfacial fracture toughness, modified chevron-notched short-bar specimen, plasma sprayed coating, tensile adhesion test

Procedia PDF Downloads 232
7306 The Study of Seed Coating Effects on Germination Speed of Astragalus Adscendens under Different Moisture Conditions and Planting Depth in the Boroujerd Region

Authors: Hamidreza Mehrabi, Mandana Rezayee

Abstract:

The coated seed process is from amplifier ways that stick various materials on the outer surface of the seeds that minimize the negative environmental effects and increase the ability of Plant establishment. This study was done to assess the effects of coated seed on the germination speed of Astragalus adscendens in different conditions of drought stress and planting depth as it was conducted with a completely randomized factorial design with four replications. treatments of covering material was used in Four non coating levels (NC), mineral-based coating (CC), organic - based coating (OC) hydro gel-based coating (HC) ; treatment of moisture percent used in three levels of dried soil content, treatments of planting depth in two surfaces of planting and three times of the seed diameter was 9%, 14% and 21 % respectively. During the test, it was evaluated the germination speed attribute. The main results showed that moisture treatments and planting depth at a surface of 1% (P <0/01) was significant and has no significant effect of treatment materials. Also, In examining of the interaction between type of covering material and soil moisture were not observed significant differences for germination speed between covering treatments and controls covering, but there was a significant difference between treatments in 9% and 21%. Although in examining the triple interaction, increasing moisture and planting depth enhanced the speed of germination process, but it was not significant statistically, while it has made important differences in terms of description; because it had not growth in the moisture level of 9% and shallow cultivation (high stress). However, treatment of covered materials growth has developed significantly, so it can be useful in enhancing plant performance.

Keywords: seed coating, soil moisture, sowing depth, germination percentage

Procedia PDF Downloads 243
7305 In-Situ Reactive Growth of Silver Nanoparticles on Cotton Textile for Antiviral and Electromagnetic Shielding Applications

Authors: Hamed Mohammadi Mofarah, Mutalifu Abulikemu, Ghassan E. Jabbour

Abstract:

Personal protective equipment (PPE) is finding increasing interest in incorporating silver nanoparticles (NPs) for various applications including microbial disinfection and shielding against electromagnetic waves. In this venue, we present an in situ reactive coating approach where silver nanoparticles are self-assembled on the surface of cotton yarn. The impacts of a variety of experimental parameters on the average size of the synthesized silver NPs were investigated. These include vacuum conditions, the concentration of the silver salt solution and reducer, temperature, and curing time. Silver NPs with an average size ranging from 10 to 50 nanometers were self-assembled as a result of careful regulation of such reaction conditions. The disinfection efficacy against the COVID surrogate virus of the functional textile reached a rate of 99.99%. On the other hand, the silver NPs decorated textile demonstrated an electromagnetic shielding ranging from 31 dB to 45 dB were achieved for the frequency range 8.2-12.4 GHz.

Keywords: antiviral, COVID, electromagnetic shielding, in-situ reactive coating, SARS CoV 2, silver nanoparticles, smart textile

Procedia PDF Downloads 59
7304 Developments and Implementation of Biomaterials in Textile Coating and Finishing

Authors: David De Smet, Myriam Vanneste

Abstract:

There is a constant need for the improvement of materials applied in textile industries. Nowadays there is a tendency for “bio, eco, natural and environmental friendly” consciousness of the consumer resulting in various textile labels. Materials, totally based on CO2-neutral renewable resources (biopolymers), respond very well to this tendency. Proteins and PLA were evaluated as binders for textile coatings. Much attention is paid to the functionalization of textiles, therefore bio-additves are examined to introduce abrasion resistance, antimicrobial and flame retardant properties.

Keywords: biomaterial, textile, coating, finishing

Procedia PDF Downloads 680
7303 Boryl Radical-Promoted Dehydroxylative Alkylation of 3-Hydroxyoxindole Derivatives

Authors: Tesfaye Tebeka Simur, Tian-Yu Peng, Yi-Feng Wang, Xiu-Wei Wu, Feng-Lian Zhang

Abstract:

A boryl radical-promoted dehydroxylative alkylation of 3-hydroxy-oxindole derivatives is achieved. The reaction starts from addition of 4-dimethylaminopyridine (DMAP)-boryl radical to the amide carbonyl oxygen atom, which induces a spin-center shift process to promote the C−O bond cleavage. The elimination of a hydroxide anion from a free hydroxy group is also accomplished. Capture of the generated carbon radical with alkenes furnishes a variety of C-3 alkylated oxindoles. This method features a simple operation and broad substrate scope.

Keywords: boryl radical, C-O, C-F, C=C, C=N bond activation, spin center shift

Procedia PDF Downloads 64
7302 Large-Area Film Fabrication for Perovskite Solar Cell via Scalable Thermal-Assisted and Meniscus-Guided Bar Coating

Authors: Gizachew Belay Adugna

Abstract:

Scalable and cost-effective device fabrication techniques are urgent to commercialize the perovskite solar cells (PSCs) for the next photovoltaic (PV) technology. Herein, large-area films of perovskite and hole-transporting materials (HTMs) were developed via a rapid and scalable thermal-assisting bar-coating process in the open air. High-quality and large crystalline grains of MAPbI₃ with homogenous morphology and thickness were obtained on a large-area (10 cm×10 cm) solution-sheared mp-TiO₂/c-TiO₂/FTO substrate. Encouraging photovoltaic performance of 19.02% was achieved for devices fabricated from the bar-coated perovskite film compared to that from the small-scale spin-coated film (17.27%) with 2,2′,7,7′-tetrakis-(N,N-di-p-methoxyphenylamine)-9,9′-spirobifluorene (spiro-OMeTAD) as an HTM whereas a higher power conversion efficiency of 19.89% with improved device stability was achieved by capping a fluorinated (HYC-2) HTM as an alternative to the traditional spiro-OMeTAD. The fluorinated exhibited better molecular packing in the HTM film and deeper HOMO level compared to the nonfluorinated counterpart; thus, improved hole mobility and overall charge extraction in the device were demonstrated. Furthermore, excellent film processability and an impressive PCE of 18.52% were achieved in the large area bar-coated HYC-2 prepared sequentially on the perovskite underlayer in the open atmosphere, compared to the bar-coated spiro-OMeTAD/perovskite (17.51%). This all-solution approach demonstrated the feasibility of high-quality films on a large-area substrate for PSCs, which is a vital step toward industrial-scale PV production.

Keywords: perovskite solar cells, hole transporting materials, up-scaling process, power conversion efficiency

Procedia PDF Downloads 37
7301 Synthesis and Tribological Properties of the Al-Cr-N/MoS₂ Self-Lubricating Coatings by Hybrid Magnetron Sputtering

Authors: Tie-Gang Wang, De-Qiang Meng, Yan-Mei Liu

Abstract:

Ternary AlCrN coatings were widely used to prolong cutting tool life because of their high hardness and excellent abrasion resistance. However, the friction between the workpiece and cutter surface was increased remarkably during machining difficult-to-cut materials (such as superalloy, titanium, etc.). As a result, a lot of cutting heat was generated and cutting tool life was shortened. In this work, an appropriate amount of solid lubricant MoS₂ was added into the AlCrN coating to reduce the friction between the tool and the workpiece. A series of Al-Cr-N/MoS₂ self-lubricating coatings with different MoS₂ contents were prepared by high power impulse magnetron sputtering (HiPIMS) and pulsed direct current magnetron sputtering (Pulsed DC) compound system. The MoS₂ content in the coatings was changed by adjusting the sputtering power of the MoS₂ target. The composition, structure and mechanical properties of the Al-Cr-N/MoS2 coatings were systematically evaluated by energy dispersive spectrometer, scanning electron microscopy, X-ray photoelectron spectroscopy, X-ray diffractometer, nano-indenter tester, scratch tester, and ball-on-disk tribometer. The results indicated the lubricant content played an important role in the coating properties. As the sputtering power of the MoS₂ target was 0.1 kW, the coating possessed the highest hardness 14.1GPa, the highest critical load 44.8 N, and the lowest wear rate 4.4×10−3μm2/N.

Keywords: self-lubricating coating, Al-Cr-N/MoS₂ coating, wear rate, friction coefficient

Procedia PDF Downloads 101
7300 Modifying the Electrical Properties of Liquid Crystal Cells by Including TiO₂ Nanoparticles on a Substrate

Authors: V. Marzal, J. C. Torres, B. Garcia-Camara, Manuel Cano-Garcia, Xabier Quintana, I. Perez Garcilopez, J. M. Sanchez-Pena

Abstract:

At the present time, the use of nanostructures in complex media, like liquid crystals, is widely extended to manipulate their properties, either electrical or optical. In addition, these media can also be used to control the optical properties of the nanoparticles, for instance when they are resonant. In this work, the change on electrical properties of a liquid crystal cell by adding TiO₂ nanoparticles on one of the alignment layers has been analyzed. These nanoparticles, with a diameter of 100 nm and spherical shape, were deposited in one of the substrates (ITO + polyimide) by spin-coating in order to produce a homogeneous layer. These substrates were checked using an optical microscope (objective x100) to avoid potential agglomerates. The liquid crystal cell is then fabricated, using one of these substrates and another without nanoparticles, and filled with E7. The study of the electrical response was done through impedance measurements in a long range of frequencies (3 Hz- 6 MHz) and at ambient temperature. Different nanoparticle concentrations were considered, as well as pure E7 and an empty cell for comparison purposes. Results about the effective dielectric permittivity and conductivity are presented along with models of equivalent electric circuits and its physical interpretation. As a summary, it has been observed the clear influence of the presence of the nanoparticles, strongly modifying the electric response of the device. In particular, a variation of both the effective permittivity and the conductivity of the device have been observed. This result requires a deep analysis of the effect of these nanoparticles on the trapping of free ions in the device, allowing a controlled manipulation and frequency tuning of the electrical response of these devices.

Keywords: alignment layer, electrical behavior, liquid crystal, TiO₂ nanoparticles

Procedia PDF Downloads 178
7299 Cost Efficient Receiver Tube Technology for Eco-Friendly Concentrated Solar Thermal Applications

Authors: M. Shiva Prasad, S. R. Atchuta, T. Vijayaraghavan, S. Sakthivel

Abstract:

The world is in need of efficient energy conversion technologies which are affordable, accessible, and sustainable with eco-friendly nature. Solar energy is one of the cornerstones for the world’s economic growth because of its abundancy with zero carbon pollution. Among the various solar energy conversion technologies, solar thermal technology has attracted a substantial renewed interest due to its diversity and compatibility in various applications. Solar thermal systems employ concentrators, tracking systems and heat engines for electricity generation which lead to high cost and complexity in comparison with photovoltaics; however, it is compatible with distinct thermal energy storage capability and dispatchable electricity which creates a tremendous attraction. Apart from that, employing cost-effective solar selective receiver tube in a concentrating solar thermal (CST) system improves the energy conversion efficiency and directly reduces the cost of technology. In addition, the development of solar receiver tubes by low cost methods which can offer high optical properties and corrosion resistance in an open-air atmosphere would be beneficial for low and medium temperature applications. In this regard, our work opens up an approach which has the potential to achieve cost-effective energy conversion. We have developed a highly selective tandem absorber coating through a facile wet chemical route by a combination of chemical oxidation, sol-gel, and nanoparticle coating methods. The developed tandem absorber coating has gradient refractive index nature on stainless steel (SS 304) and exhibited high optical properties (α ≤ 0.95 & ε ≤ 0.14). The first absorber layer (Cr-Mn-Fe oxides) developed by controlled oxidation of SS 304 in a chemical bath reactor. A second composite layer of ZrO2-SiO2 has been applied on the chemically oxidized substrate by So-gel dip coating method to serve as optical enhancing and corrosion resistant layer. Finally, an antireflective layer (MgF2) has been deposited on the second layer, to achieve > 95% of absorption. The developed tandem layer exhibited good thermal stability up to 250 °C in open air atmospheric condition and superior corrosion resistance (withstands for > 200h in salt spray test (ASTM B117)). After the successful development of a coating with targeted properties at a laboratory scale, a prototype of the 1 m tube has been demonstrated with excellent uniformity and reproducibility. Moreover, it has been validated under standard laboratory test condition as well as in field condition with a comparison of the commercial receiver tube. The presented strategy can be widely adapted to develop highly selective coatings for a variety of CST applications ranging from hot water, solar desalination, and industrial process heat and power generation. The high-performance, cost-effective medium temperature receiver tube technology has attracted many industries, and recently the technology has been transferred to Indian industry.

Keywords: concentrated solar thermal system, solar selective coating, tandem absorber, ultralow refractive index

Procedia PDF Downloads 71
7298 A Potential Spin-orbit Torque Device Using the Tri-layer Structure

Authors: Chih-Wei Cheng, Wei-Jen Chan, Yu-Han Huang, Yi-Tsung Lin, Yen-Wei Huang, Min-Cheng Chen, Shou-Zen Chang, G. Chern, Yuan-Chieh Tseng

Abstract:

How to develop spin-orbit-torque (SOT) devices with the virtues of field-free, perpendicular magnetic anisotropy (PMA), and low switching current is one of the many challenges in spintronics today. We propose a CoFeB/Ta/CoFeB tri-layer antiferromagnetic SOT device that could meet the above requirements. The device’s PMA was developed by adopting CoFeB–MgO interface. The key to the success of this structure is to ensure that (i)changes of the inter-layer coupling(IEC) and CoFeB anisotropy can occur simultaneously; (ii) one of the CoFeB needs to have a slightly tilted moment in the beginning. When sufficient current is given, the SHEreverses the already-tiltedCoFeB, and the other CoFeB can be reversed simultaneously by the IEC with the field-free nature. Adjusting the thickness of Ta can modify the coupling state to reduce the switching current while the field-free nature was preserved. Micromagnetic simulation suggests that the Néel orange peel effect (NOPE) is non-negligible due to interface roughness and coupling effect in the presence of perpendicular anisotropy. Fortunately, the Néel field induced by the NOPE appears to favor the field-free reversal.

Keywords: CoFeB, spin-orbit torque, antiferromagnetic, MRAM, trilayer

Procedia PDF Downloads 84
7297 Controlling the Surface Morphology of the Biocompatible Hydroxyapatite Layer Deposited by Using a Flame-Coating

Authors: Nabaa M. Abdul Rahim, Mohammed A.Kadhim, Fadhil K. Fuliful

Abstract:

A biocompatible layer is prepared from calcium phosphate, which plays a role in building damaged bones and is used in many applications. In this research, calcium phosphate is coated on stainless steel substrates (SS 316) by using the flame coating. FE-SEM images show that the behavior of the sample surfaces varies with distance, at 3cm, appeared with nanostructures of bumps shaped of diameter about 317 nm. The contents of the elements are analyzed by energy-dispersive X-ray spectroscopy (EDX). The chemical elements C, Ca, Fe, Ni, Cr, Mn and O corresponding to calcium phosphate and the alloy are revealed by EDX analysis of the coating layer. XRD patterns for the calcium phosphate layers indicate the formation of the Hap layer on the deposited layers. The samples are immersed in a solution of simulated body fluids (SBF) for 21 days to examine the biocompatibility, as the tests show that the calcium phosphate ratio of 1.65 is the appropriate and biocompatible ratio in the human body. The assays show antibacterial activity using the diffusion disk procedure. On the surface of the agar, observed infested E.coli bacteria and incubated for 24 hours at 37°C. Bacteria grow on the entire agar rather than in some areas around some samples at a distance of 3 cm from the flame hole.

Keywords: biomaterial, flame coating, antibacterial activity, stainless steel

Procedia PDF Downloads 69
7296 Functional Plasma-Spray Ceramic Coatings for Corrosion Protection of RAFM Steels in Fusion Energy Systems

Authors: Chen Jiang, Eric Jordan, Maurice Gell, Balakrishnan Nair

Abstract:

Nuclear fusion, one of the most promising options for reliably generating large amounts of carbon-free energy in the future, has seen a plethora of ground-breaking technological advances in recent years. An efficient and durable “breeding blanket”, needed to ensure a reactor’s self-sufficiency by maintaining the optimal coolant temperature as well as by minimizing radiation dosage behind the blanket, still remains a technological challenge for the various reactor designs for commercial fusion power plants. A relatively new dual-coolant lead-lithium (DCLL) breeder design has exhibited great potential for high-temperature (>700oC), high-thermal-efficiency (>40%) fusion reactor operation. However, the structural material, namely reduced activation ferritic-martensitic (RAFM) steel, is not chemically stable in contact with molten Pb-17%Li coolant. Thus, to utilize this new promising reactor design, the demand for effective corrosion-resistant coatings on RAFM steels represents a pressing need. Solution Spray Technologies LLC (SST) is developing a double-layer ceramic coating design to address the corrosion protection of RAFM steels, using a novel solution and solution/suspension plasma spray technology through a US Department of Energy-funded project. Plasma spray is a coating deposition method widely used in many energy applications. Novel derivatives of the conventional powder plasma spray process, known as the solution-precursor and solution/suspension-hybrid plasma spray process, are powerful methods to fabricate thin, dense ceramic coatings with complex compositions necessary for the corrosion protection in DCLL breeders. These processes can be used to produce ultra-fine molten splats and to allow fine adjustment of coating chemistry. Thin, dense ceramic coatings with chosen chemistry for superior chemical stability in molten Pb-Li, low activation properties, and good radiation tolerance, is ideal for corrosion-protection of RAFM steels. A key challenge is to accommodate its CTE mismatch with the RAFM substrate through the selection and incorporation of appropriate bond layers, thus allowing for enhanced coating durability and robustness. Systematic process optimization is being used to define the optimal plasma spray conditions for both the topcoat and bond-layer, and X-ray diffraction and SEM-EDS are applied to successfully validate the chemistry and phase composition of the coatings. The plasma-sprayed double-layer corrosion resistant coatings were also deposited onto simulated RAFM steel substrates, which are being tested separately under thermal cycling, high-temperature moist air oxidation as well as molten Pb-Li capsule corrosion conditions. Results from this testing on coated samples, and comparisons with bare RAFM reference samples will be presented and conclusions will be presented assessing the viability of the new ceramic coatings to be viable corrosion prevention systems for DCLL breeders in commercial nuclear fusion reactors.

Keywords: breeding blanket, corrosion protection, coating, plasma spray

Procedia PDF Downloads 281
7295 Knowledge Transfer through Entrepreneurship: From Research at the University to the Consolidation of a Spin-off Company

Authors: Milica Lilic, Marina Rosales Martínez

Abstract:

Academic research cannot be oblivious to social problems and needs, so projects that have the capacity for transformation and impact should have the opportunity to go beyond the University circles and bring benefit to society. Apart from patents and R&D research contracts, this opportunity can be achieved through entrepreneurship as one of the most direct tools to turn knowledge into a tangible product. Thus, as an example of good practices, it is intended to analyze the case of an institutional entrepreneurship program carried out at the University of Seville, aimed at researchers interested in assessing the business opportunity of their research and expanding their knowledge on procedures for the commercialization of technologies used at academic projects. The program is based on three pillars: training, teamwork sessions and networking. The training includes aspects such as product-client fit, technical-scientific and economic-financial feasibility of a spin-off, institutional organization and decision making, public and private fundraising, and making the spin-off visible in the business world (social networks, key contacts, corporate image and ethical principles). On the other hand, the teamwork sessions are guided by a mentor and aimed at identifying research results with potential, clarifying financial needs and procedures to obtain the necessary resources for the consolidation of the spin-off. This part of the program is considered to be crucial in order for the participants to convert their academic findings into a business model. Finally, the networking part is oriented to workshops about the digital transformation of a project, the accurate communication of the product or service a spin-off offers to society and the development of transferable skills necessary for managing a business. This blended program results in the final stage where each team, through an elevator pitch format, presents their research turned into a business model to an experienced jury. The awarded teams get a starting capital for their enterprise and enjoy the opportunity of formally consolidating their spin-off company at the University. Studying the results of the program, it has been shown that many researchers have basic or no knowledge of entrepreneurship skills and different ways to turn their research results into a business model with a direct impact on society. Therefore, the described program has been used as an example to highlight the importance of knowledge transfer at the University and the role that this institution should have in providing the tools to promote entrepreneurship within it. Keeping in mind that the University is defined by three main activities (teaching, research and knowledge transfer), it is safe to conclude that the latter, and the entrepreneurship as an expression of it, is crucial in order for the other two to comply with their purpose.

Keywords: good practice, knowledge transfer, a spin-off company, university

Procedia PDF Downloads 116
7294 Formulation of Hybrid Nanopowder-Molecular Ink for Fabricating Critical Material-Free Cu₂ZnSnS₄ Thin Film Solar Absorber

Authors: Anies Mutiari, Neha Bansal, Martin Artner, Veronika Mayer, Juergen Roth, Mathias Weil, Rachmat Adhi Wibowo

Abstract:

Cu₂ZnSnS₄ (CZTS) compound (mineral name kesterite) has attracted considerable interests for photovoltaic application owing to its optoelectrical properties. Moreover, its elemental abundance in Earth’s crust offers a comparative advantage for envisaged large-scale photovoltaic deployment without any material shortage issues. In this contribution, we present an innovative route to prepare CZTS solar absorber layer for photovoltaic application from low-cost and up-scalable process. CZTS layers were spin coated on the Molybdenum-coated glass from two inks composed of different solvents; dimethylsulfoxide (DMSO) and ultrapure water. Into each solvent; 0.57M CuCl₂, 0.39M ZnCl₂, 0.53M SnCl₂, and 1.85M Thiourea or Na₂S₂O₃, as well as pre-synthesized CZTS nanopowder, were added as sources of Cu, Zn, Sn and S in the ink. The crystallisation of ink into CZTS dense layers was carried out by firstly annealing the as-deposited CZTS layer in open air at 300°C for 1 minute, followed by sulfurisation at 560–620°C under atmospheric pressure for 120 minutes. Complementary electron microscopy, grazing incidence X-ray diffraction and Raman spectroscopy investigations suggest that both solvents can be used for preparing high quality and device relevant CZTS solar absorber layers. The sulphurisation crystallizes the as-deposited CZTS into highly polycrystalline CZTS layer with tetragonal structure demonstrated by the presence of tetrahedrally-shaped grains with the size of 1 µm. An advancement of the CZTS layer preparation was made by gradual substitution of volatile organic compound solvent of DMSO with ultrapure water. It is revealed that by using similar air annealing and sulphurisation process, dense and compact CZTS layers can also be fabricated from an ink with reduced volatile organic compound content.

Keywords: kesterite, solar ink, spin coating, photovoltaics

Procedia PDF Downloads 134
7293 Effects of Bipolar Plate Coating Layer on Performance Degradation of High-Temperature Proton Exchange Membrane Fuel Cell

Authors: Chen-Yu Chen, Ping-Hsueh We, Wei-Mon Yan

Abstract:

Over the past few centuries, human requirements for energy have been met by burning fossil fuels. However, exploiting this resource has led to global warming and innumerable environmental issues. Thus, finding alternative solutions to the growing demands for energy has recently been driving the development of low-carbon and even zero-carbon energy sources. Wind power and solar energy are good options but they have the problem of unstable power output due to unpredictable weather conditions. To overcome this problem, a reliable and efficient energy storage sub-system is required in future distributed-power systems. Among all kinds of energy storage technologies, the fuel cell system with hydrogen storage is a promising option because it is suitable for large-scale and long-term energy storage. The high-temperature proton exchange membrane fuel cell (HT-PEMFC) with metallic bipolar plates is a promising fuel cell system because an HT-PEMFC can tolerate a higher CO concentration and the utilization of metallic bipolar plates can reduce the cost of the fuel cell stack. However, the operating life of metallic bipolar plates is a critical issue because of the corrosion phenomenon. As a result, in this work, we try to apply different coating layer on the metal surface and to investigate the protection performance of the coating layers. The tested bipolar plates include uncoated SS304 bipolar plates, titanium nitride (TiN) coated SS304 bipolar plates and chromium nitride (CrN) coated SS304 bipolar plates. The results show that the TiN coated SS304 bipolar plate has the lowest contact resistance and through-plane resistance and has the best cell performance and operating life among all tested bipolar plates. The long-term in-situ fuel cell tests show that the HT-PEMFC with TiN coated SS304 bipolar plates has the lowest performance decay rate. The second lowest is CrN coated SS304 bipolar plate. The uncoated SS304 bipolar plate has the worst performance decay rate. The performance decay rates with TiN coated SS304, CrN coated SS304 and uncoated SS304 bipolar plates are 5.324×10⁻³ % h⁻¹, 4.513×10⁻² % h⁻¹ and 7.870×10⁻² % h⁻¹, respectively. In addition, the EIS results indicate that the uncoated SS304 bipolar plate has the highest growth rate of ohmic resistance. However, the ohmic resistance with the TiN coated SS304 bipolar plates only increases slightly with time. The growth rate of ohmic resistances with TiN coated SS304, CrN coated SS304 and SS304 bipolar plates are 2.85×10⁻³ h⁻¹, 3.56×10⁻³ h⁻¹, and 4.33×10⁻³ h⁻¹, respectively. On the other hand, the charge transfer resistances with these three bipolar plates all increase with time, but the growth rates are all similar. In addition, the effective catalyst surface areas with all bipolar plates do not change significantly with time. Thus, it is inferred that the major reason for the performance degradation is the elevated ohmic resistance with time, which is associated with the corrosion and oxidation phenomena on the surface of the stainless steel bipolar plates.

Keywords: coating layer, high-temperature proton exchange membrane fuel cell, metallic bipolar plate, performance degradation

Procedia PDF Downloads 255
7292 Effect of Whey Protein Based Edible Coating on the Moisture Loss and Sensory Attributes of Fresh Mutton

Authors: Saba Belgheisi

Abstract:

Food packaging, is an important discipline in the area of food technology, concerns preservation and protection of foods. The objective of this research was to determine of the effect of whey protein based edible coating on the moisture loss and sensory attributes of fresh mutton after 0, 1, 3 and 5 days at 5° C. The moisture content, moisture loss and sensory attributes (juiciness, color and odor) of the coated and uncoated samples were analyzed. The results showed that, moisture content, moisture loss, juiciness and color of the coated and uncoated samples have significant differences (p < 0.05) at the intervals of 0 to 1 and 1 to 3 days of storage. But no significant difference was observed at interval time 3 to 5 days of storage (p > 0.05). Also, there was no significant differences in the odor values of the coated and uncoated samples (p > 0.05). Therefore, the coated samples had consistently more moisture, juiciness and colored values than uncoated samples after 3 days at 5° C. So, whey protein edible coating could enhance product presentation and eliminate the need for placing absorbent pads at the bottom of the trays.

Keywords: coating, whey protein, mutton, moisture, sensory

Procedia PDF Downloads 434
7291 Coating of Cotton with Blend of Natural Rubber and Chloroprene Containing Ammonium Acetate for Producing Moisture Vapour Permeable Waterproof Fabric

Authors: Debasish Das, Mainak Mitra, A.Chaudhuri

Abstract:

For the purpose of producing moisture vapor permeable waterproof cotton fabric to be used for protective apparel against rain, cotton fabric was coated with the blend of natural rubber and chloroprene rubber containing ammonium acetate as the water-soluble salt, employing a calendar coating technique. Rubber formulations also contained filler, homogenizer, and a typical sulphur curing system. Natural rubber and chloroprene blend in the blend ratio of 30: 70, containing 25 parts of sodium acetate per hundred parts of rubber was coated on the fabric. The coated fabric was vulcanized thereafter at 140oC for 3 h. Coated and vulcanized fabric was subsequently dipped in water for 45 min, followed by drying in air. Such set of treatments produced optimum results. Coated, vulcanized, washed and dried cotton fabric showed optimum developments in the property profiles in respect of waterproofness, breathability as revealed by moisture vapor transmission rate, coating adhesion, tensile properties, abrasion resistance, flex endurance and fire retardancy. Incorporation of highly water-soluble ammonium acetate salt in the coating formulation and their subsequent removal from vulcanized coated layer affected by post washing in consequent to dipping in the water-bath produced holes of only a few microns in the coating matrix of the fabric. Such microporous membrane formed on the cotton fabric allowed only transportation of moisture vapor through them, giving a moisture vapor transmission rate of 3734 g/m2/24h, while acting as a barrier for large liquid water droplet resisting 120cm of the water column in the hydrostatic water-head tester, rendering the coated cotton fabric waterproof. Examination of surface morphology of vulcanized coating by scanning electron microscopy supported the mechanism proposed for development of breathable waterproof layer on cotton fabric by the process employed above. Such process provides an easy and cost-effective route for achieving moisture vapor permeable waterproof cotton.

Keywords: moisture vapour permeability, waterproofness, chloroprene, calendar coating, coating adhesion, fire retardancy

Procedia PDF Downloads 227
7290 Ni-W-P Alloy Coating as an Alternate to Electroplated Hard Cr Coating

Authors: S. K. Ghosh, C. Srivastava, P. K. Limaye, V. Kain

Abstract:

Electroplated hard chromium is widely known in coatings and surface finishing, automobile and aerospace industries because of its excellent hardness, wear resistance and corrosion properties. However, its precursor, Cr+6 is highly carcinogenic in nature and a consensus has been adopted internationally to eradicate this coating technology with an alternative one. The search for alternate coatings to electroplated hard chrome is continuing worldwide. Various alloys and nanocomposites like Co-W alloys, Ni-Graphene, Ni-diamond nanocomposites etc. have already shown promising results in this regard. Basically, in this study, electroless Ni-P alloys with excellent corrosion resistance was taken as the base matrix and incorporation of tungsten as third alloying element was considered to improve the hardness and wear resistance of the resultant alloy coating. The present work is focused on the preparation of Ni–W–P coatings by electrodeposition with different content of phosphorous and its effect on the electrochemical, mechanical and tribological performances. The results were also compared with Ni-W alloys. Composition analysis by EDS showed deposition of Ni-32.85 wt% W-3.84 wt% P (designated as Ni-W-LP) and Ni-18.55 wt% W-8.73 wt% P (designated as Ni-W-HP) alloy coatings from electrolytes containing of 0.006 and 0.01M sodium hypophosphite respectively. Inhibition of tungsten deposition in the presence of phosphorous was noted. SEM investigation showed cauliflower like growth along with few microcracks. The as-deposited Ni-W-P alloy coating was amorphous in nature as confirmed by XRD investigation and step-wise crystallization was noticed upon annealing at higher temperatures. For all the coatings, the nanohardness was found to increase after heat-treatment and typical nanonahardness values obtained for 400°C annealed samples were 18.65±0.20 GPa, 20.03±0.25 GPa, and 19.17±0.25 for alloy coatings Ni-W, Ni-W-LP and Ni-W-HP respectively. Therefore, the nanohardness data show very promising results. Wear and coefficient of friction data were recorded by applying a different normal load in reciprocating motion using a ball on plate geometry. Post experiment, the wear mechanism was established by detail investigation of wear-scar morphology. Potentiodynamic measurements showed coating with a high content of phosphorous was most corrosion resistant in 3.5wt% NaCl solution.

Keywords: corrosion, electrodeposition, nanohardness, Ni-W-P alloy coating

Procedia PDF Downloads 325
7289 Morphotropic Phase Boundary in Ferromagnets: Unusual Magnetoelastic Behavior In Tb₁₋ₓNdₓCo₂

Authors: Adil Murtaza, Muhammad Tahir Khan, Awais Ghani, Chao Zhou, Sen Yang, Xiaoping Song

Abstract:

The morphotropic phase boundary (MPB); a boundary between two different crystallographic symmetries in the composition–temperature phase diagram has been widely studied in ferroelectrics and recently has drawn interest in ferromagnets for obtaining enhanced large field-induced strain. At MPB, the system gets a compressed free energy state, which allows the polarization to freely rotate and hence results in a high magnetoelastic response (e.g., high magnetization, low coercivity, and large magnetostriction). Based on the same mechanism, we designed MPB in a ferromagnetic Tb₁₋ₓNdₓCo₂ system. The temperature-dependent magnetization curves showed spin reorientation (SR); which can be explained by a two-sublattice model. Contrary to previously reported MPB involved ferromagnetic systems, the MPB composition of Tb₀.₃₅Nd₀.₆₅Co₂ exhibits a low saturation magnetization (MS), indicating a compensation of the Tb and Nd magnetic moments at MPB. The coercive field (HC) under a low magnetic field and first anisotropy constant (K₁) shows a minimum value at MPB composition of x=0.65. A detailed spin configuration diagram is provided for the Tb₁₋ₓNdₓCo₂ around the composition for the anisotropy compensation; this can guide the development of novel magnetostrictive materials. The anisotropic magnetostriction (λS) first decreased until x=0.8 and then continuously increased in the negative direction with further increase of Nd concentration. In addition, the large ratio between magnetostriction and the absolute values of the first anisotropy constant (λS/K₁) appears at MPB, indicating that Tb₀.₃₅Nd₀.₆₅Co₂ has good magnetostrictive properties. Present work shows an anomalous type of MPB in ferromagnetic materials, revealing that MPB can also lead to a weakening of magnetoelastic behavior as shown in the ferromagnetic Tb₁₋ₓNdₓCo₂ system. Our work shows the universal presence of MPB in ferromagnetic materials and suggests the differences between different ferromagnetic MPB systems that are important for substantial improvement of magnetic and magnetostrictive properties. Based on the results of this study, similar MPB effects might be achieved in other ferroic systems that can be used for technological applications. The finding of magnetic MPB in the ferromagnetic system leads to some important significances. First, it provides a better understanding of the fundamental concept of spin reorientation transitions (SRT) like ferro-ferro transitions are not only reorientation of magnetization but also crystal symmetry change upon magnetic ordering. Second, the flattened free energy corresponding to a low energy barrier for magnetization rotation and enhanced magnetoelastic response near MPB. Third, to attain large magnetostriction with MPB approach two terminal compounds have different easy magnetization directions below Curie temperature Tc in order to accomplish the weakening of magnetization anisotropy at MPB (as in ferroelectrics), thus easing the magnetic domain switching and the lattice distortion difference between two terminal compounds should be large enough, e.g., lattice distortion of R symmetry ˃˃ lattice distortion of T symmetry). So that the MPB composition agrees to a nearly isotropic state along with large ‘net’ lattice distortion, which is revealed in a higher value of magnetostriction.

Keywords: magnetization, magnetostriction, morphotropic phase boundary (MPB), phase transition

Procedia PDF Downloads 114
7288 Method for Identification of Through Defects of Polymer Films Applied onto Metal Parts

Authors: Yu A. Pluttsova , O. V. Vakhnina , K. B. Zhogova

Abstract:

Nowadays, many devices operate under conditions of enhanced humidity, temperature drops, fog, and vibration. To ensure long-term and uninterruptable equipment operation under adverse conditions, one applies moisture-proof films on products and electronics components, which helps to prevent corrosion, short circuit, allowing a significant increase in device lifecycle. The reliability of such moisture-proof films is mainly determined by their coating uniformity without gaps and cracks. Unprotected product edges, as well as pores in films, can cause device failure during operation. The work objective was to develop an effective, affordable, and profit-proved method for determining the presence of through defects of protective polymer films on the surface of parts made of iron and its alloys. As a diagnostic reagent, one proposed water solution of potassium ferricyanide (III) in hydrochloric acid, this changes the color from yellow to blue according to the reactions; Feº → Fe²⁺ and 4Fe²⁺ + 3[Fe³⁺(CN)₆]³⁻ → Fe ³⁺4[Fe²⁺(CN)₆]₃. There was developed the principle scheme of technological process for determining the presence of polymer films through defects on the surface of parts made of iron and its alloys. There were studied solutions with different diagnostic reagent compositions in water: from 0,1 to 25 mass fractions, %, of potassium ferricyanide (III), and from 5 to 25 mass fractions, %, of hydrochloride acid. The optimal component ratio was chosen. The developed method consists in submerging a part covered with a film into a vessel with a diagnostic reagent. In the polymer film through defect zone, the part material (ferrum) interacts with potassium ferricyanide (III), the color changes to blue. Pilot samples were tested by the developed method for the presence of through defects in the moisture-proof coating. It was revealed that all the studied parts had through defects of the polymer film coating. Thus, the claimed method efficiently reveals polymer film coating through defects on parts made of iron or its alloys, being affordable and profit-proved.

Keywords: diagnostic reagent, metal parts, polimer films, through defects

Procedia PDF Downloads 124
7287 Response of Post-harvest Treatments on Shelf Life, Biochemical and Microbial Quality of Banana Variety Red Banana

Authors: Karishma Sebastian, Pavethra A., Manjula B. S., K. N. Satheeshan, Jenita Thinakaran

Abstract:

Red Banana is a popular variety of banana with strong market demand. Its ripe fruits are less resistant to transportation, complicating logistics. Moreover, as it is a climacteric fruit, its post-harvest shelf life is limited. The current study aimed to increase the postharvest shelf life of Red Banana fruits by adopting different postharvest treatments. Fruit bunches of Red Banana were harvested at the mature green stage, separated into hands, precooled, subjected to 12 treatments, and stored in Corrugated Fibre Board boxes till the end of shelf life under ambient conditions. Fruits coated with 10% bee wax + 0.5% clove oil (T₄), fruits subjected to coating with 10% bee wax and packaging with potassium permanganate (T₉), and fruits dipped in hot water at 50°C for 10 minutes and packaging with potassium permanganate (T₁₁) registered the highest shelf life of 18.67 days. The highest TSS of 26.33°Brix was noticed in fruits stored with potassium permanganate (T₈) after 12.67 days of storage, and lowest titratable acidity of 0.19%, and the highest sugar-acid ratio of 79.76 was noticed in control (T₁₂) after 11.33 days of storage. Moreover, the highest vitamin C content (7.74 mg 100 g⁻¹), total sugar content (18.47%), reducing sugar content (15.49%), total carotenoid content (24.13 µg 100 g-¹) was noticed in treatments T₇ (hot water dipping at 50 °C for 10 minutes) after 17.67 days, T₁₀ (coating with 40% aloe vera extract and packaged with potassium permanganate) after 13.33 days, T₄ (coating with 10% bee wax + 0.5% clove oil) after 18.67 days and T₉ (coating with 10% bee wax + potassium permanganate) after 18.67 days of storage respectively. Furthermore, the lowest fungal and bacterial counts were observed in treatments T₂ (dipping in 30ppm sodium hypochlorite solution), T₇ (hot water dipping at 50 °C for 10 minutes), T₉ (coating with 10% bee wax + potassium permanganate), and T₁₀ (coating with 40% aloe vera extract + potassium permanganate).

Keywords: bee wax, post-harvest treatments, potassium permanganate, Red Banana, shelf life

Procedia PDF Downloads 22
7286 Modelling of Silicon Solar Cell with Anti-reflecting Coating

Authors: Ankita Gaur, Mouli Karmakar, Shyam

Abstract:

In this study, a silicon solar cell has been modeled and analyzed to enhance its electrical performance by improving the optical properties using an antireflecting coating (ARC). The dynamic optical reflectance, transmittance along with the net transmissivity absorptivity product of each layer are assessed as per the diurnal variation of the angle of incidence using MATLAB 2019. The model is tested with various Anti-Reflective coatings and the performance has also been compared with uncoated cells. ARC improves the optical transmittance of the photon. Higher transmittance of ⁓96.57% with lowest reflectance of ⁓ 1.74% at 12.00 hours was obtained with MgF₂ coated silicon cells. The electrical efficiency of the configured solar cell was evaluated for a composite climate of New Delhi, India, for all weather conditions. The annual electricity generation for Anti-reflective coated and uncoated crystalline silicon PV Module was observed to be 103.14 KWh and 99.51 KWh, respectively.

Keywords: antireflecting coating, electrical efficiency, reflectance, solar cell, transmittance

Procedia PDF Downloads 123