Search results for: soluble microbial products
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5397

Search results for: soluble microbial products

5307 Reduced Tillage and Bio-stimulant Application Can Improve Soil Microbial Enzyme Activity in a Dryland Cropping System

Authors: Flackson Tshuma, James Bennett, Pieter Andreas Swanepoel, Johan Labuschagne, Stephan van der Westhuizen, Francis Rayns

Abstract:

Amongst other things, tillage and synthetic agrochemicals can be effective methods of seedbed preparation and pest control. Nonetheless, frequent and intensive tillage and excessive application of synthetic agrochemicals, such as herbicides and insecticides, can reduce soil microbial enzyme activity. A decline in soil microbial enzyme activity can negatively affect nutrient cycling and crop productivity. In this study, the effects of four tillage treatments; continuous mouldboard plough; shallow tine-tillage to a depth of about 75 mm; no-tillage; and tillage rotation (involving shallow tine-tillage once every four years in rotation with three years of no-tillage), and two rates of synthetic agrochemicals (standard: with regular application of synthetic agrochemicals; and reduced: fewer synthetic agrochemicals in combination with bio-chemicals/ or bio-stimulants) on soil microbial enzyme activity were investigated between 2018 and 2020 in a typical Mediterranean climate zone in South Africa. Four different bio-stimulants applied contained: Trichoderma asperellum, fulvic acid, silicic acid, and Nereocystis luetkeana extracts, respectively. The study was laid out as a complete randomised block design with four replicated blocks. Each block had 14 plots, and each plot measured 50 m x 6 m. The study aimed to assess the combined impact of tillage practices and reduced rates of synthetic agrochemical application on soil microbial enzyme activity in a dryland cropping system. It was hypothesised that the application of bio-stimulants in combination with minimum soil disturbance will lead to a greater increase in microbial enzyme activity than the effect of applying either in isolation. Six soil cores were randomly and aseptically collected from each plot for microbial enzyme activity analysis from the 0-150 mm layer of a field trial under a dryland crop rotation system in the Swartland region. The activities of four microbial enzymes, β-glucosidase, acid phosphatase, alkaline phosphatase and urease, were assessed. The enzymes are essential for the cycling of glucose, phosphorus, and nitrogen, respectively. Microbial enzyme activity generally increased with a reduction of both tillage intensity and synthetic agrochemical application. The use of the mouldboard plough led to the least (P<0.05) microbial enzyme activity relative to the reduced tillage treatments, whereas the system with bio-stimulants (reduced synthetic agrochemicals) led to the highest (P<0.05) microbial enzyme activity relative to the standard systems. The application of bio-stimulants in combination with reduced tillage, particularly no-tillage, could be beneficial for enzyme activity in a dryland farming system.

Keywords: bio-stimulants, soil microbial enzymes, synthetic agrochemicals, tillage

Procedia PDF Downloads 43
5306 Microbial Dark Matter Analysis Using 16S rRNA Gene Metagenomics Sequences

Authors: Hana Barak, Alex Sivan, Ariel Kushmaro

Abstract:

Microorganisms are the most diverse and abundant life forms on Earth and account for a large portion of the Earth’s biomass and biodiversity. To date though, our knowledge regarding microbial life is lacking, as it is based mainly on information from cultivated organisms. Indeed, microbiologists have borrowed from astrophysics and termed the ‘uncultured microbial majority’ as ‘microbial dark matter’. The realization of how diverse and unexplored microorganisms are, actually stems from recent advances in molecular biology, and in particular from novel methods for sequencing microbial small subunit ribosomal RNA genes directly from environmental samples termed next-generation sequencing (NGS). This has led us to use NGS that generates several gigabases of sequencing data in a single experimental run, to identify and classify environmental samples of microorganisms. In metagenomics sequencing analysis (both 16S and shotgun), sequences are compared to reference databases that contain only small part of the existing microorganisms and therefore their taxonomy assignment may reveal groups of unknown microorganisms or origins. These unknowns, or the ‘microbial sequences dark matter’, are usually ignored in spite of their great importance. The goal of this work was to develop an improved bioinformatics method that enables more complete analyses of the microbial communities in numerous environments. Therefore, NGS was used to identify previously unknown microorganisms from three different environments (industrials wastewater, Negev Desert’s rocks and water wells at the Arava valley). 16S rRNA gene metagenome analysis of the microorganisms from those three environments produce about ~4 million reads for 75 samples. Between 0.1-12% of the sequences in each sample were tagged as ‘Unassigned’. Employing relatively simple methodology for resequencing of original gDNA samples through Sanger or MiSeq Illumina with specific primers, this study demonstrates that the mysterious ‘Unassigned’ group apparently contains sequences of candidate phyla. Those unknown sequences can be located on a phylogenetic tree and thus provide a better understanding of the ‘sequences dark matter’ and its role in the research of microbial communities and diversity. Studying this ‘dark matter’ will extend the existing databases and could reveal the hidden potential of the ‘microbial dark matter’.

Keywords: bacteria, bioinformatics, dark matter, Next Generation Sequencing, unknown

Procedia PDF Downloads 217
5305 The Ability of Consortium Wastewater Protozoan and Bacterial Species to Remove Chemical Oxygen Demand in the Presence of Nanomaterials under Varying pH Conditions

Authors: Anza-Vhudziki Mboyi, Ilunga Kamika, Maggy Momba

Abstract:

The aim of this study was to ascertain the survival limit and capability of commonly found wastewater protozoan (Aspidisca sp, Trachelophyllum sp, and Peranema sp) and bacterial (Bacillus licheniformis, Brevibacillus laterosporus, and Pseudomonas putida) species to remove COD while exposed to commercial nanomaterials under varying pH conditions. The experimental study was carried out in modified mixed liquor media adjusted to various pH levels (pH 2, 7 and 10), and a comparative study was performed to determine the difference between the cytotoxicity effects of commercial zinc oxide (nZnO) and silver (nAg) nanomaterials (NMs) on the target wastewater microbial communities using standard methods. The selected microbial communities were exposed to lethal concentrations ranging from 0.015 g/L to 40 g/L for nZnO and from 0.015 g/L to 2 g/L for nAg for a period of 5 days of incubation at 30°C (100 r/min). Compared with the absence of NMs in wastewater mixed liquor, the relevant environmental concentration ranging between 10 µg/L and 100 µg/L, for both nZnO and nAg caused no adverse effects, but the presence of 20 g of nZnO/L and 0.65 g of nAg/L significantly inhibited microbial growth. Statistical evidence showed that nAg was significantly more toxic compared to nZnO, but there was an insignificant difference in toxicity between microbial communities and pH variations. A significant decrease in the removal of COD by microbial populations was observed in the presence of NMs with a moderate correlation of r = 0.3 to r = 0.7 at all pH levels. It was evident that there was a physical interaction between commercial NMs and target wastewater microbial communities; although not quantitatively assessed, cell morphology and cell death were observed. Such phenomena suggest the high resilience of the microbial community, but it is the accumulation of NMs that will have adverse effects on the performance in terms of COD removal.

Keywords: bacteria, biological treatment, chemical oxygen demand (COD) and nanomaterials, consortium, pH, protozoan

Procedia PDF Downloads 268
5304 Preliminary Studies on the Potentials of Bambara nut (Voandzeia substerranea) and Pigeon pea (Cajanus cajan) as Imitation Milk

Authors: Onuoha Gideon

Abstract:

The preliminary studies on the potentials of Bambara nut and pigeon pea as imitation milk were investigated. Bambara nut and Pigeon pea milk were produced from two separate unit operations; Bambara nut seed was cooked, dehulled, milled and strained to milk (BCM) and another batch was toasted at moderate temperature, dehulled, milled and strained to milk (BTM). Pigeon pea seed was cooked, dehulled, milled and strained to milk (PCM) and another batch was toasted at moderate temperature, dehulled, milled and strained to milk (PTM). The result of the proximate analysis on the milk samples on wet basis showed that the protein content ranged from 28.56 – 26.77, the crude fibre ranged from 6.28 – 1.85, the ash content ranged from 5.22 – 1.17, the fat content ranged from 2.71 – 1.12, the moisture content ranged from 95.93 – 93.83, the carbohydrate content ranged from 67.62 – 58.83. The functional analysis on the milk samples showed that emulsification capacity ranged from 43.21 – 38.66, emulsion stability ranged from 34.10 – 25.00, the specific gravity ranged from 997.50 – 945.00, the foaming capacity ranged from 3,500 to 2,250, the measurement of viscosity ranged from 0.017 – 0.007, the pH range from 5.55 – 5.25, the measurement of dispersibility range from 11.00 – 7.00, the total soluble solid ranged from 4.00 to 1.75, the total titratable acidity ranged from 0.314 – 0.328. The sensory evaluation report showed that in terms of flavor, sample BCM and PCM value were significantly different from sample BTM and PTM. In terms of colour, sample BCM showed a significant difference from samples BTM, PCM and PTM. In term of texture, sample BCM was significantly different from samples BTM, PCM and PTM. The general acceptability shows that sample BCM was significantly different from other the samples and was the most accepted. The microbial analysis indicated that the microbial load increases with time. Bacterial count ranged from 1.3 x 105 – 1.20 x 106 to 1.6 x 105 – 1.06 x 106, fungal count ranged from 4.0 x 105 – 8.0 x 105 to 4.0 x 105 – 7.0 x 105. The studies showed that BCM was the most preferred.

Keywords: imitation milk, Bambara nut, Pigeon pea, proximate composition

Procedia PDF Downloads 317
5303 The Effect of Saccharomyces cerevisiae Live Yeast Culture on Microbial Nitrogen Supply to Small Intestine in Male Kivircik Yearlings Fed with Different Ratio of Forage and Concentrate

Authors: Nurcan Cetinkaya, Nadide Hulya Ozdemir

Abstract:

The aim of the study was to investigate the effect of Saccharomyces cerevisiae (SC) live yeast culture on microbial protein supply to the small intestine in Kivircik male yearlings when fed with different ratio of forage and concentrate diets. Four Kivircik male yearlings with permanent rumen canula were used in the experiment. . The treatments were allocated to a 4x4 Latin square design. Diet I consisted of 70% alfalfa hay and 30% concentrate, Diet II consisted of 30% alfalfa hay and 70% concentrate, Diet I and II were supplemented with a SC. Daily urine was collected and stored at -20°C until analysis. Calorimetric methods were used for the determination of urinary allantoin and creatinin levels. The estimated microbial N supply to small intestine for Diets I, I+SC, II and II+SC were 2.51, 2.64, 2.95 and 3.43 g N/d respectively. Supplementation of Diets I and II with SC significantly affected the allantoin levels in µmol/W0. 75 (p<0.05). Mean creatinine values in µmol/W0. 75 and allantoin:creatinin ratios were not significantly different among diets. In conclusion, supplementation with SC live yeast culture had a significant effect on urinary allantoin excretion and microbial protein supply to small intestine in Kivircik yearlings fed with high concentrate Diet II (P<0.05). Hence urinary allantoin excretion may be used as a tool for estimating microbial protein supply in Kivircık yearlings. However, further studies are necessary to understand the metabolism of Saccharomyces cerevisiae live yeast culture with different forage: concentrate ratio in Kıvırcık Yearlings.

Keywords: allantoin, creatinin, Kivircik yearling, microbial nitrogen, Saccharomyces cerevisia

Procedia PDF Downloads 379
5302 Production of Keratinase and Its Insilico Characterization

Authors: Akshita Bhardwaj

Abstract:

Keratinase is an enzyme obtained from extracellular sources that is involved in biodegradation of keratin. It is a member of a group of proteases that can break down keratin into amino acids. Keratinases are produced only in the presence of substrate that contain keratin. It attacked the disulfide bond of substrate and involve in keratin degradation. Human hair, feathers, animal hard tissues, horns, claws, and hooves all contain keratin.. It exists in two form alpha keratin (found in soft tissues) and beta keratin (found in hard tissue). By taking part in the degradation of keratin, keratinases derived from microbial sources, often referred to as microbial keratinases, are important in the process of turning wastes containing keratin into products with added value. Chicken feathers contain high level of keratin protein content than other sources and became a suitable protein source. Keratinase production occurs at near alkaline pH and thermophilic temperatures. The bioprocessing of keratinous waste benefits greatly from the use of keratinases. Additionally, it lessens the issue caused by poultry excrement. The use of feather meal, along with keratinase, improves the digestion of proteins and amino acids.

Keywords: mili litre (ml), micro litre (Ul), TCA - trichloroacetic acid, OD - optical density

Procedia PDF Downloads 45
5301 Electricity Production Enhancement in a Constructed Microbial Fuel Cell MFC Using Iron Nanoparticles

Authors: Khaoula Bensaida, Osama Eljamal

Abstract:

The electrical energy generation through Microbial Fuel Cells (MFCs) using microorganisms is a renewable and sustainable approach. It creates truly an efficient technology for power production and wastewater treatment. MFC is an electrochemical device which turns wastewater into electricity. The most important part of MFC is microbes. Nano zero-valent Iron NZVI technique was successfully applied in degrading the chemical pollutants and cleaning wastewater. However, the use of NZVI for enhancing the current production is still not confirmed yet. This study aims to confirm the effect of these particles on the current generation by using MFC. A constructed microbial fuel cell, which utilizes domestic wastewater, has been considered for wastewater treatment and bio-electricity generation. The two electrodes were connected to an external resistor (200 ohms). Experiments were conducted in two steps. First, the MFC was constructed without adding NZVI particles (Control) while at a second step, nanoparticles were added with a concentration of 50mg/L. After 20 hours, the measured voltage increased to 5 and 8mV, respectively. To conclude, the use of zero-valent iron in an MFC system can increase electricity generation.

Keywords: bacterial growth, electricity generation, microbial fuel cell MFC, nano zero-valent iron NZVI.

Procedia PDF Downloads 116
5300 Performance of Osmotic Microbial Fuel Cell in Wastewater Treatment and Electricity Generation: A Critical Review

Authors: Shubhangi R. Deshmukh, Anupam B. Soni

Abstract:

Clean water and electricity are vital services needed in all communities. Bio-degradation of wastewater contaminants and desalination technologies are the best possible alternatives for the global shortage of fresh water supply. Osmotic microbial fuel cell (OMFC) is a versatile technology that uses microorganism (used for biodegradation of organic waste) and membrane technology (used for water purification) for wastewater treatment and energy generation simultaneously. This technology is the combination of microbial fuel cell (MFC) and forward osmosis (FO) processes. OMFC can give more electricity and clean water than the MFC which has a regular proton exchange membrane. FO gives many improvements such as high contamination removal, lower operating energy, raising high proton flux than other pressure-driven membrane technology. Lower concentration polarization lowers the membrane fouling by giving osmotic water recovery without extra cost. In this review paper, we have discussed the principle, mechanism, limitation, and application of OMFC technology reported to date. Also, we have interpreted the experimental data from various literature on the water recovery and electricity generation assessed by a different component of OMFC. The area of producing electricity using OMFC has further scope for research and seems like a promising route to wastewater treatment.

Keywords: forward osmosis, microbial fuel cell, osmotic microbial fuel cell, wastewater treatment

Procedia PDF Downloads 158
5299 Effects of Gamma Irradiation on Chemical and Antioxidant Properties of Iranian Native Fresh Barberry Fruit

Authors: Samira Berenji Ardestani, Hamid Reza Akhavan

Abstract:

Gamma irradiation greatly reduces the potential microbiological risk of fresh fruits, resulting in improved microbial safety as well as extending their shelf life. The effects of 0.5-2 kGy gamma doses on some physicochemical, microbial and sensory properties of fresh barberry fruits (Berberis vulgaris) during refrigerated storage for 40 days were evaluated. The total anthocyanin and total phenolic contents of barberry fruits decreased in a dose-dependent manner immediately after irradiation and after subsequent storage. In general, it is recommended that, according to the effect of gamma radiation on physicochemical, microbial and sensorial characteristics, doses of 1.25-2 kGy could be used.

Keywords: antioxidant property, barberry fruit, chemical properties, gamma irradiation

Procedia PDF Downloads 248
5298 Listeria and Spoilage Inhibition Using Neutralized and Sodium Free Vinegar Powder

Authors: E. Heintz, H. J. van Lent, K. Glass, J. Lim

Abstract:

The trend for sodium reduction in food products is clear. Following the World Health Organization (WHO) publication on sodium usage and intake, several countries have introduced initiatives to reduce food-related sodium intake. As salt is a common food preservative, this trend motivates the formulation of a suitable additive with comparable benefits of shelf life extension and microbial safety. Organic acid derivatives like acetates are known as generic microbial growth inhibitors and are commonly applied as additives to meet food safety demands. However, modern consumers have negative perceptions towards -synthetic-derived additives and increasingly prefer natural alternatives. Vinegar, for example, is a well-known natural fermentation product used in food preservation. However, the high acidity of vinegar often makes it impractical for direct use in meat products and a neutralized form would be desirable. This research demonstrates the efficacy of powdered vinegar (Provian DV) in inhibiting Listeria and spoilage organisms (LAB) to increase safety and shelf life of meat products. For this, the efficacy of Provian DV was compared to the efficacy of Provian K, a commonly used sodium free acetate-based preservative, which is known for its inhibition against Listeria. Materials & methods— Cured pork hams: Ingredients: Pork ham muscle, water, salt, dextrose, sodium tripolyphosphate, carrageenan, sodium nitrite, sodium erythorbate, and starch. Targets: 73-74% moisture, 1.75+0.1% salt, and pH 6.4+0.1. Treatments: Control (no antimicrobials), Provian®K 0.5% and 0.75%, Provian®DV 0.5%, 0.65%, 0.8% and 1.0%. Meat formulations in casings were cooked reaching an internal temperature of 73.9oC, cooled overnight and stored for 4 days at 4oC until inoculation. Inoculation: Sliced products were inoculated with approximately 3-log per gram of a cocktail of L. monocytogenes (including serotypes 4b, 1/2a and 1/2b) or LAB-cocktail (C. divergens and L. mesenteroides). Inoculated slices were vacuum packaged and stored at 4oC and 7°C. Samples were incubated 28 days (LAB) or 12 weeks (L. monocytogenes) Microbial analysis: Microbial populations were enumerated in rinsate obtained after adding 100ml of sterile Butterfield’s phosphate buffer to each package and massaging the contents externally by hand. L. monocytogenes populations were determined on triplicate samples by surface plating on Modified Oxford agar whereas LAB plate counts were determined on triplicate samples by surface plating on All Purpose Tween agar with 0.4% bromocresol purple. Proximate analysis: Triplicate non-inoculated ground samples were analyzed for the moisture content, pH, aw, salt, and residual nitrite. Results—The results confirmed the no growth of Listeria on cured ham with 0.5% Provian K stored at 4°C and 7°C for 12 weeks, whereas the no-antimicrobial control showed a 1-log increase within two weeks. 0.5% Provian DV demonstrated similar efficacy towards Listeria inhibition at 4°C while 0.65% Provian DV was required to match the Listeria control at 7°C. 0.75% Provian K and 1% Provian DV were needed to show inhibition of the LAB for 4 weeks at both temperatures. Conclusions—This research demonstrated that it is possible to increase safety and shelf life of cured ready-to-eat ham using preservatives that meet current food trends, like sodium reduction and natural origin.

Keywords: food safety, natural preservation, listeria control, shelf life extension

Procedia PDF Downloads 110
5297 Microbial Biogeography of Greek Olive Varieties Assessed by Amplicon-Based Metagenomics Analysis

Authors: Lena Payati, Maria Kazou, Effie Tsakalidou

Abstract:

Table olives are one of the most popular fermented vegetables worldwide, which along with olive oil, have a crucial role in the world economy. They are highly appreciated by the consumers for their characteristic taste and pleasant aromas, while several health and nutritional benefits have been reported as well. Until recently, microbial biogeography, i.e., the study of microbial diversity over time and space, has been mainly associated with wine. However, nowadays, the term 'terroir' has been extended to other crops and food products so as to link the geographical origin and environmental conditions to quality aspects of fermented foods. Taking the above into consideration, the present study focuses on the microbial fingerprinting of the most important olive varieties of Greece with the state-of-the-art amplicon-based metagenomics analysis. Towards this, in 2019, 61 samples from 38 different olive varieties were collected at the final stage of ripening from 13 well spread geographical regions in Greece. For the metagenomics analysis, total DNA was extracted from the olive samples, and the 16S rRNA gene and ITS DNA region were sequenced and analyzed using bioinformatics tools for the identification of bacterial and yeasts/fungal diversity, respectively. Furthermore, principal component analysis (PCA) was also performed for data clustering based on the average microbial composition of all samples from each region of origin. According to the composition, results obtained, when samples were analyzed separately, the majority of both bacteria (such as Pantoea, Enterobacter, Roserbergiella, and Pseudomonas) and yeasts/fungi (such as Aureobasidium, Debaromyces, Candida, and Cladosporium) genera identified were found in all 61 samples. Even though interesting differences were observed at the relative abundance level of the identified genera, the bacterial genus Pantoea and the yeast/fungi genus Aureobasidium were the dominant ones in 35 and 40 samples, respectively. Of note, olive samples collected from the same region had similar fingerprint (genera identified and relative abundance level) regardless of the variety, indicating a potential association between the relative abundance of certain taxa and the geographical region. When samples were grouped by region of origin, distinct bacterial profiles per region were observed, which was also evident from the PCA analysis. This was not the case for the yeast/fungi profiles since 10 out of the 13 regions were grouped together mainly due to the dominance of the genus Aureobasidium. A second cluster was formed for the islands Crete and Rhodes, both of which are located in the Southeast Aegean Sea. These two regions clustered together mainly due to the identification of the genus Toxicocladosporium in relatively high abundances. Finally, the Agrinio region was separated from the others as it showed a completely different microbial fingerprinting. However, due to the limited number of olive samples from some regions, a subsequent PCA analysis with more samples from these regions is expected to yield in a more clear clustering. The present study is part of a bigger project, the first of its kind in Greece, with the ultimate goal to analyze a larger set of olive samples of different varieties and from different regions in Greece in order to have a reliable olives’ microbial biogeography.

Keywords: amplicon-based metagenomics analysis, bacteria, microbial biogeography, olive microbiota, yeasts/fungi

Procedia PDF Downloads 87
5296 Single Species vs Mixed Microbial Culture Degradation of Pesticide in a Membrane Bioreactor

Authors: Karan R. Chavan, Srivats Gopalan, Kumudini V. Marathe

Abstract:

In the current work, the comparison of degradation of malathion by single species, Pseudomonas Stutzeri, and Activated Sludge/Mixed Microbial Culture is studied in a Membrane Bioreactor. Various parameters were considered to study the effect of single species degradation compared to degradation by activated sludge. The experimental results revealed 85-90% reduction in the COD of the Malathion containing synthetic wastewater. Complete reduction of malathion was observed within 24 hours in both the cases. The critical flux was 10 LMH for both the systems. Fouling propensity, Cake and Membrane resistances were calculated thus giving an insight regarding the working of Membrane Bioreactor-based on single species and activated sludge.

Keywords: fouling, membrane bioreactor, mixed microbial culture, single species

Procedia PDF Downloads 324
5295 Preparation of Novel Antimicrobial Meat Packaging Using Chitosan-Arginine

Authors: R. A. Lahmer, A. P. Williams, S. Townsend, S. Baker, D. L. Jones

Abstract:

Chitosan-arginine (Ch-arg) has been proposed as an anti-microbial agent to reduce the proliferation of spoilage and pathogenic bacteria within meat products destined for human consumption. In the current experiment its use as an antimicrobial packaging material was examined. Two different concentrations of chitosan-arginine (0.05 and 0.15 % w/w) were blended into a cellulose film (Ch-arg film). When placed in contact with chicken and beef juice inoculated with a lux-marked strain of E. coli O157, the film incorporating the highest Ch-arg concentration resulted in a small reduction of E. coli O157 in chicken juice; however, there was no effect of the Ch-arg film on E. coli O157 in beef juice. The lack of observed effect in the beef juice experiment we ascribe to insufficient surface-to-surface contact between the film and the bacteria in the beef juice and the greater presence of other Ch-arg reactive components in the juice (e.g. fats, blood cells). Results suggest that, in combination with other anti microbials, Ch-arg packaging may offers some potential for limiting the growth of pathogenic bacteria in foodstuffs; however, further research is needed to enhance their anti-microbial performance.

Keywords: cross-contamination, foodborne pathogen, polymer film, shelf life

Procedia PDF Downloads 381
5294 Evaluation of the Contamination of Consumed Wheat and Its Derivatives by Ochratoxinogenic Fungi

Authors: Zebiri Saliha

Abstract:

Ochratoxin A (OTA) is a mycotoxin produced by certain species of the genera Aspergillus and Penicillium, primarily found in cereals, coffee, and grapevine products. Its accumulation in the body can lead to nephrotoxic, teratogenic, immunosuppressive, and carcinogenic effects. The objective of this study is to investigate the contamination of consumed wheat and its derivatives by toxic fungi in Algeria. For this purpose, an analysis of 200 samples was conducted, including 90 samples of durum wheat and common wheat and 110 samples of wheat derivatives collected from mills (semolina and flour manufacturers). The results revealed an average fungal contamination rate ranging from 60% to 100%. The identified fungal isolates primarily belonged to the genera Aspergillus (70%), Penicillium (27.5%), Alternaria (40%), and Mucor (19.4%). The density of the fungal flora was higher in products intended for animal consumption, such as durum wheat flour (2525 CFU/g), wheat scraps (3175 CFU/g), and wheat bran (2950 CFU/g). Conversely, low fungal density was observed in fine semolina (900 CFU/g) and flour (800 CFU/g) intended for human consumption. The genus Penicillium was isolated in 46% of the analyzed samples of durum wheat derivatives and in 62.7% of the analyzed samples of common wheat derivatives. The Aspergillus genus dominated the majority of the analyzed samples. Molecular identification of Aspergillus and Penicillium isolates by sequencing ITS1-5.8S-ITS2 regions of DNAr and a part of the calmodulin (CaM) gene indicated that the species involved in the production of OTA in wheat and its derivatives were mainly Aspergillus ochraceus, A. westerdijkia, A. alliaceus, A. carbonarius, and Penicillium islandicus. The amounts of OTA produced by these species were determined by HPLC-FLD and ranged between 0,8.9 and 3033μg/g. Given that food safety and quality are major concerns today, understanding the microbial biodiversity of wheat is crucial because it is a staple food in Algeria.

Keywords: wheat derivatives, Aspergillus, microbial biodiversity, OTA

Procedia PDF Downloads 12
5293 Evaluation of Different Fertilization Practices and Their Impacts on Soil Chemical and Microbial Properties in Two Agroecological Zones of Ghana

Authors: Ansong Richard Omari, Yosei Oikawa, Yoshiharu Fujii, Dorothea Sonoko Bellingrath-Kimura

Abstract:

Renewed interest in soil management aimed at improving the productive capacity of Sub Saharan Africa (SSA) soils has called for the need to analyse the long term effect of different fertilization systems on soil. This study was conducted in two agroecological zones (i.e., Guinea Savannah (GS) and Deciduous forest (DF)) of Ghana to evaluate the impacts of long term (> 5 years) fertilization schemes on soil chemical and microbial properties. Soil samples under four different fertilization schemes (inorganic, inorganic and organic, organic, and no fertilization) were collected from 20 farmers` field in both agroecological zones. Soil analyses were conducted using standard procedures. All average soil quality parameters except extractable C, potential mineralizable nitrogen and CEC were significantly higher in DF sites compared to GS. Inorganic fertilization proved superior in soil chemical and microbial biomass especially in GS zone. In GS, soil deterioration index (DI) revealed that soil quality deteriorated significantly (−26%) under only organic fertilization system whereas soil improvement was observed under inorganic and no fertilization sites. In DF, either inorganic or organic and inorganic fertilization showed significant positive effects on soil quality. The high soil chemical composition and enhanced microbial biomass in DF were associated with the high rate of inorganic fertilization.

Keywords: deterioration index, fertilization scheme, microbial biomass, tropical agroecological zone

Procedia PDF Downloads 372
5292 Rheumatoid Arthritis, Periodontitis and the Subgingival Microbiome: A Circular Relationship

Authors: Isabel Lopez-Oliva, Akshay Paropkari, Shweta Saraswat, Stefan Serban, Paola de Pablo, Karim Raza, Andrew Filer, Iain Chapple, Thomas Dietrich, Melissa Grant, Purnima Kumar

Abstract:

Objective: We aimed to explicate the role of the subgingival microbiome in the causal link between rheumatoid arthritis (RA) and periodontitis (PD). Methods: Subjects with/without RA and with/without PD were randomized for treatment with scaling and root planing (SRP) or oral hygiene instructions. Subgingival biofilm, gingival crevicular fluid, and serum were collected at baseline and at 3- and 6-months post-operatively. Correlations were generated between 72 million 16S rDNA sequences, immuno-inflammatory mediators, circulating antibodies to oral microbial antigens, serum inflammatory molecules, and clinical metrics of RA. The dynamics of inter-microbial and host-microbial interactions were modeled using differential network analysis. Results: RA superseded periodontitis as a determinant of microbial composition, and DAS28 score superseded the severity of periodontitis as a driver of microbial assemblages (p=0.001, ANOSIM). RA subjects evidenced higher serum anti-PPAD (p=0.0013), anti-Pg-enolase (p=0.0031), anti-RPP3, anti- Pg-OMP and anti- Pi-OMP (p=0.001) antibodies than non-RA controls (with and without periodontitis). Following SRP, bacterial networks anchored by IL-1b, IL-4, IL-6, IL-10, IL-13, MIP-1b, and PDGF-b underwent ≥5-fold higher rewiring; and serum antibodies to microbial antigens decreased significantly. Conclusions: Our data suggest a circular relationship between RA and PD, beginning with an RA-influenced dysbiosis within the healthy subgingival microbiome that leads to exaggerated local inflammation in periodontitis and circulating antibodies to periodontal pathogens and positive correlation between severity of periodontitis and RA activity. Periodontal therapy restores host-microbial homeostasis, reduces local inflammation, and decreases circulating microbial antigens. Our data highlights the importance of integrating periodontal care into the management of RA patients.

Keywords: rheumatoid arthritis, periodontal, subgingival, DNA sequence analysis, oral microbiome

Procedia PDF Downloads 63
5291 Nutritional Value and Forage Quality Indicators in Some Rangeland’s Species at Different Vegetation Forms

Authors: Reza Dehghani Bidgoli

Abstract:

Information on different rangeland plants’ nutritive values at various phonological stages is important in rangelands management. This information helps rangeland managers to choose proper grazing times to achieve higher animal performance without detrimental effects on the rangeland vegetations. Effects of various plant parts’ phonological stages and vegetation types on reserve carbohydrates and forage quality indicators were investigated during the 2009 and 2010. Plant samples were collected in a completely randomized block (CRB) design. The species included, grasses (Secale montanum and Festuco ovina), forbs (Lotus corniculatus and Sanguisorba minor), and shrubs (Kochia prosterata and Salsola rigida). Aerial plant parts’ samples were oven-dried at 80oC for 24 hours, then analyzed for soluble carbohydrates, crude protein (CP), acid detergent fiber (ADF), dry matter digestible (DMD), and metabolizable energy (ME). Results showed that plants at the seedling stage had more reserve carbohydrates and from the three vegetation types (grass, forbs, and shrub), forbs contained more soluble carbohydrates compared to the other two (grasses and shrubs). Differences in soluble carbohydrate contents of different species at various phonological stages in 2 years were statistically significant. The forage quality indicators (CP, ADF, DMD, and ME) in different species, in different vegetation types, in the 2 years were statistically significant, except for the CP.

Keywords: grazing, soluble carbohydrate, protein, fiber, metabolizeable energy

Procedia PDF Downloads 247
5290 Water Soluble Chitosan Derivatives via the Freeze Concentration Technique

Authors: Senem Avaz, Alpay Taralp

Abstract:

Chitosan has been an attractive biopolymer for decades, but its processibility is lowered by its poor solubility, especially in physiological pH values. Freeze concentrated reactions of Chitosan with several organic acids including acrylic, citraconic, itaconic, and maleic acid revealed improved solubility and morphological properties. Solubility traits were assessed with a modified ninhydrin test. Chitosan derivatives were characterized by ATR-FTIR and morphological characteristics were determined by SEM. This study is a unique approach to chemically modify Chitosan to enhance water solubility.

Keywords: chitosan, freeze concentration, frozen reactions, ninhydrin test, water soluble chitosan

Procedia PDF Downloads 400
5289 Survey on the Use of Anti-ticks in Cattle by Breeders in the Department of Korhogo

Authors: Coulibaly Fatoumata, Seme Kpassi, Aboly Nicolas, Ccoulibaly Zonzereke

Abstract:

Introduction and Objective: Microbial resistance is nowadays a major public health problem. In the perspective of a better understanding of the resistance of ticks against acaricides, a study was conducted in the Department of Korhogo. The general objective was to verify the knowledge and skills of breeders on the use of acaricides and contribute to reducing the impact of ticks on livestock productivity. Methodology: To carry out the work, a cross-sectional survey was conducted using elaborate questionnaires, followed by specific interviews with livestock stakeholders in the Korhogo sub-prefecture. Results: The results showed that in the study area, cattle breeders, the majority of whom (58.06%) are Ivorians, use anti-ticks without strict compliance with recommendations of the instructions and standards for use. 68% of them performed under-dosed treatments, and 32% an over-dosed treatment. The most common method for treating cattle against ticks was spraying. Conclusion: Despite the use of tick repellents by these breeders, tick-borne diseases still persist. This could be explained by the misuse of the products (under dosage and overdose), which can cause harmful effects or even resistance of certain ticks. It is, therefore important to respect the normal dosage of the products used as well as the methods of use (bath, spray, pour-on, etc.). In order to minimize the problems of resistance, awareness is necessary among breeders for the proper use of acaricidal products as well as all other drugs.

Keywords: ticks, resistance, anti-tick, cattle, korhogo

Procedia PDF Downloads 43
5288 Biosurfactant-Mediated Nanoparticle Synthesis by Bacillus subtilis

Authors: Satya Eswari Jujjavarapu, Swasti Dhagat, Lata Upadhyay, Reecha Sahu

Abstract:

Silver nanoparticles have a broad range of antimicrobial and antifungal properties ranging from soaps, pastes to sterilization and drug delivery systems. These can be synthesized by physical, chemical and biological methods; biological methods being the most popular owing to their non-toxic nature and reduced energy requirements. Microbial surfactants, produced on the microbial cell surface or excreted extracellularly are an alternative to synthetic surfactants for the production of silver nanoparticles. Hence, they are also called as green molecules. Microbial lipopeptide surfactants (biosurfactant) exhibit anti-tumor and anti-microbial properties and can be used as drug delivery agents. In this study, biosurfactant was synthesized by using a strain of acillus subtilis. The biosurfactant thus produced was analysed by emulsification assay, oil spilling test, and haemolytic test. Biosurfactant-mediated silver nanoparticles were synthesised by microwave irradiation of the culture supernatant and further characterized by UV–vis spectroscopy for a range of 400-600 nm. The UV–vis spectra showed a surface plasmon resonance vibration band at 410 nm corresponding to the peak of silver nanoparticles.

Keywords: biosurfactant, Bacillus subtilis, silver nano particle, lipopeptide

Procedia PDF Downloads 210
5287 Economics of Household Expenditure Pattern on Animal Products in Bauchi Metropolis, Bauchi State, Nigeria

Authors: B. Hamidu, A. Abdulhamid, S. Mohammed, S. Idi

Abstract:

This study examined the household expenditure pattern on animal products in Bauchi metropolis. A cross-sectional data were collected from 157 households using systematic sampling technique. The data were analyzed using descriptive statistics, correlation and regression models. The results reveal that the mean age, mean household size, mean monthly income and mean total expenditure on animal products were found to be 39 years, 7 persons, N28,749 and N1,740 respectively. It was also found that household monthly income, number of children and educational level of the household heads (P<0.01) significantly influence the level of household expenditure on animal products. Similarly, income was found to be the most important factor determining the proportion of total expenditure on animal products (20.91%). Income elasticity was found to be 0.66 indicating that for every 1% increase in income, expenditure on animal products would increase by 0.66%. Furthermore, beef was found to be the most preferred (54.83%) and most regularly consumed (61.84%) animal products. However, it was discovered that the major constraints affecting the consumption of animal products were low-income level of the households (29.85%), high cost of animal products (15.82%) and increase in prices of necessities (15.82%). Therefore to improve household expenditure on animal products per capita real income of the households should be improved through creation of employment opportunities. Also stabilization of market prices of animal products and other foods items of necessities through increased production are recommended.

Keywords: animal products, economics, expenditure, households

Procedia PDF Downloads 211
5286 Electricity Production from Vermicompost Liquid Using Microbial Fuel Cell

Authors: Pratthana Ammaraphitak, Piyachon Ketsuwan, Rattapoom Prommana

Abstract:

Electricity production from vermicompost liquid was investigated in microbial fuel cells (MFCs). The aim of this study was to determine the performance of vermicompost liquid as a biocatalyst for electricity production by MFCs. Chemical and physical parameters of vermicompost liquid as total nitrogen, ammonia-nitrogen, nitrate, nitrite, total phosphorus, potassium, organic matter, C:N ratio, pH, and electrical conductivity in MFCs were studied. The performance of MFCs was operated in open circuit mode for 7 days. The maximum open circuit voltage (OCV) was 0.45 V. The maximum power density of 5.29 ± 0.75 W/m² corresponding to a current density of 0.024 2 ± 0.0017 A/m² was achieved by the 1000 Ω on day 2. Vermicompost liquid has efficiency to generate electricity from organic waste.

Keywords: vermicompost liquid, microbial fuel cell, nutrient, electricity production

Procedia PDF Downloads 148
5285 Fiqh Challenge in Production of Halal Pharmaceutical Products

Authors: Saadan Man, Razidah Othmanjaludin, Madiha Baharuddin

Abstract:

Nowadays, the pharmaceutical products are produced through the mixing of active and complex ingredient, naturally or synthetically; and involve extensive use of prohibited animal products. This article studies the challenges faced from fiqh perspective in the production of halal pharmaceutical products which frequently contain impure elements or prohibited animal derivatives according to Islamic law. This study is qualitative which adopts library research as well as field research by conducting series of interviews with the several related parties. The gathered data is analyzed from Sharia perspective by using some instruments especially the principle of Maqasid of Sharia. This study shows that the halal status of pharmaceutical products depends on the three basic elements: the sources of the basic ingredient; the processes involved in three phases of production, i.e., before, during and after; and the possible effects of the products. Various fiqh challenges need to be traversed in producing halal pharmaceutical products including the sources of the ingredients, the logistic process, the tools used, and the procedures of productions. Thus, the whole supply chain of production of pharmaceutical products must be well managed in accordance to the halal standard.

Keywords: fiqh, halal pharmaceutical, pharmaceutical products, Malaysia

Procedia PDF Downloads 163
5284 Microbial Bioagent Triggered Biochemical Response in Tea (Camellia sinensis) Inducing Resistance against Grey Blight Disease and Yield Enhancement

Authors: Popy Bora, L. C. Bora, A. Bhattacharya, Sehnaz S. Ahmed

Abstract:

Microbial bioagents, viz., Pseudomonas fluorescens, Bacillus subtilis, and Trichoderma viride were assessed for their ability to suppress grey blight caused by Pestalotiopsis theae, a major disease of tea crop in Assam. The expression of defense-related phytochemicals due to the application of these bioagents was also evaluated. The individual bioagents, as well as their combinations, were screened for their bioefficacy against P. theae in vitro using nutrient agar (NA) as basal medium. The treatment comprising a combination of the three bioagents, P. fluorescens, B. subtilis, and T. viride showed significantly the highest inhibition against the pathogen. Bioformulation of effective bioagent combinations was further evaluated under field condition, where significantly highest reduction of grey blight (90.30%), as well as the highest increase in the green leaf yield (10.52q/ha), was recorded due to application of the bioformulation containing the three bioagents. The application of the three bioformulation also recorded an enhanced level of caffeine (4.15%) and polyphenols (22.87%). A significant increase in the enzymatic activity of phenylalanine ammonia-lyase, peroxidase and polyphenol oxidase were recorded in the plants treated with the microbial bioformulation of the three bioagents. The present investigation indicates the role of microbial agents in suppressing disease, inducing plant defense response, as well as improving the quality of tea.

Keywords: enzymatic activity, grey blight, microbial bioagents, Pestalotiopsis theae, phytochemicals, plant defense, tea

Procedia PDF Downloads 115
5283 Short-Term Impact of a Return to Conventional Tillage on Soil Microbial Attributes

Authors: Promil Mehra, Nanthi Bolan, Jack Desbiolles, Risha Gupta

Abstract:

Agricultural practices affect the soil physical and chemical properties, which in turn influence the soil microorganisms as a function of the soil biological environment. On the return to conventional tillage (CT) from continuing no-till (NT) cropping system, a very little information is available from the impact caused by the intermittent tillage on the soil biochemical properties from a short-term (2-year) study period. Therefore, the contribution made by different microorganisms (fungal, bacteria) was also investigated in order to find out the effective changes in the soil microbial activity under a South Australian dryland faring system. This study was conducted to understand the impact of microbial dynamics on the soil organic carbon (SOC) under NT and CT systems when treated with different levels of mulching (0, 2.5 and 5 t/ha). Our results demonstrated that from the incubation experiment the cumulative CO2 emitted from CT system was 34.5% higher than NT system. Relatively, the respiration from surface layer (0-10 cm) was significantly (P<0.05) higher by 8.5% and 15.8 from CT; 8% and 18.9% from NT system w.r.t 10-20 and 20-30 cm respectively. Further, the dehydrogenase enzyme activity (DHA) and microbial biomass carbon (MBC) were both significantly lower (P<0.05) under CT, i.e., 7.4%, 7.2%, 6.0% (DHA) and 19.7%, 15.7%, 4% (MBC) across the different mulching levels (0, 2.5, 5 t/ha) respectively. In general, it was found that from both the tillage system the enzyme activity and MBC decreased with the increase in depth (0-10, 10-20 and 20-30 cm) and with the increase in mulching rate (0, 2.5 and 5 t/ha). From the perspective of microbial stress, there was 28.6% higher stress under CT system compared to NT system. Whereas, the microbial activity of different microorganisms like fungal and bacterial activities were determined by substrate-induced inhibition respiration using antibiotics like cycloheximide (16 mg/gm of soil) and streptomycin sulphate (14 mg/gm of soil), by trapping the CO2 using an alkali (0.5 M NaOH) solution. The microbial activities were confirmed through platting technique, where it was that found bacterial activities were 46.2% and 38.9% higher than fungal activity under CT and NT system. In conclusion, it was expected that changes in the relative abundance and activity of different microorganisms (bacteria and fungi) under different tillage systems could significantly affect the C cycling and storage due to its unique structures and differential interactions with the soil physical properties.

Keywords: tillage, soil respiration, MBC, fungal-bacterial activity

Procedia PDF Downloads 232
5282 Banking Innovation and Customers' Satisfaction in Nigeria: A Case Study of Some Selected Banks

Authors: Jameelah O. Yaqub

Abstract:

The financial industry all over the world has undergone and still undergoing great transformation especially with the introduction of e-products which involves the use of computers and telecommunications to enable banking transactions to be done by telephone or computer rather than by humans. The adoption of e-banking in Nigeria is becoming more popular with customers now being able to use the ATM cards for different transactions. The internet banking, POS machines, telephone banking as well as mobile banking are some other e-products being used in Nigeria. This study examines how satisfied bank customers are with the e-products. The study found that the ATM is the most popular e-products among bank customers in Nigeria; followed by the POS. The least use of the e-products is telephone banking. The study also found that visits to banks for transactions declined with the use of e-products. The chi-square analysis shows that there is significant relationship between the use of banks’ e-products and customers’ satisfaction. One of the major reason adduced by respondents for low usage of e-products is insecurity or fear of cyber fraud, it is therefore recommended that banks should provide adequate. Security for transactions and ensure the proper backing up of critical data files. In addition, government should ensure stable electricity supply to reduce banks’ running costs and consequently, customers’ cost of transactions.

Keywords: banks, e-products, innovation, Nigeria

Procedia PDF Downloads 314
5281 Impact of Climatic Parameters on Soil's Nutritional and Enzymatic Properties

Authors: Kanchan Vishwakarma, Shivesh Sharma, Nitin Kumar

Abstract:

Soil is incoherent matter on Earth’s surface having organic and mineral content. The spatial variation of 4 soil enzyme activities and microbial biomass were assessed for two seasons’ viz. monsoon and winter along the latitudinal gradient in North-central India as the area of this study is fettered with respect to national status. The study was facilitated to encompass the effect of climate change, enzyme activity and biomass on nutrient cycling. Top soils were sampled from 4 sites in North-India. There were significant correlations found between organic C, N & P wrt to latitude gradient in two seasons. This distribution of enzyme activities and microbial biomass was consequence of alterations in temperature and moisture of soil because of which soil properties change along the latitude transect.

Keywords: latitude gradient, microbial biomass, moisture, soil, organic carbon, temperature

Procedia PDF Downloads 364
5280 A Proteomic Approach for Discovery of Microbial Cellulolytic Enzymes

Authors: M. S. Matlala, I. Ignatious

Abstract:

Environmental sustainability has taken the center stage in human life all over the world. Energy is the most essential component of our life. The conventional sources of energy are non-renewable and have a detrimental environmental impact. Therefore, there is a need to move from conventional to non-conventional renewable energy sources to satisfy the world’s energy demands. The study aimed at screening for microbial cellulolytic enzymes using a proteomic approach. The objectives were to screen for microbial cellulases with high specific activity and separate the cellulolytic enzymes using a combination of zymography and two-dimensional (2-D) gel electrophoresis followed by tryptic digestion, Matrix-assisted Laser Desorption Ionisation-Time of Flight (MALDI-TOF) and bioinformatics analysis. Fungal and bacterial isolates were cultured in M9 minimal and Mandel media for a period of 168 hours at 60°C and 30°C with cellobiose and Avicel as carbon sources. Microbial cells were separated from supernatants through centrifugation, and the crude enzyme from the cultures was used for the determination of cellulase activity, zymography, SDS-PAGE, and two-dimensional gel electrophoresis. Five isolates, with lytic action on carbon sources studied, were a bacterial strain (BARK) and fungal strains (VCFF1, VCFF14, VCFF17, and VCFF18). Peak cellulase production by the selected isolates was found to be 3.8U/ml, 2.09U/ml, 3.38U/ml, 3.18U/ml, and 1.95U/ml, respectively. Two-dimensional gel protein maps resulted in the separation and quantitative expression of different proteins by the microbial isolates. MALDI-TOF analysis and database search showed that the expressed proteins in this study closely relate to different glycoside hydrolases produced by other microbial species with an acceptable confidence level of 100%.

Keywords: cellulases, energy, two-dimensional gel electrophoresis, matrix-assisted laser desorption ionisation-time of flight, MALDI-TOF MS

Procedia PDF Downloads 104
5279 The Impact of Innovation Catalog of Products to Achieve the Fulfillment of Customers

Authors: Azzi Mohammed Amin

Abstract:

The study aimed to measure the impact of the product for its size marketing innovation (the development of existing products, innovation of new products) in achieving customer loyalty from the perspective of a sample of consumers brand (Omar Ben Omar) food in the state of Biskra, and also measure the degree of customer loyalty to the brand. To achieve the objectives of the study, designed a form and distributed to a random sample of 280 consumers of the brand, has been relying on SPSS to analyze the results, the study revealed several findings; There is a strong customer loyalty to Omar bin Omar products. The presence of the impact of product innovation (development of existing products, the innovation of new products) on customer loyalty, with a Pearson correlation coefficient of 0.74 is a strong relationship. The presence of a statistically significant effect for the development of existing products in customer loyalty. The presence of a statistically significant effect for the innovation of new products to customer loyalty.

Keywords: marketing innovation, product innovation, customer loyalty, products

Procedia PDF Downloads 499
5278 Preparations of Fruit Nectars from Fresh Fruit Juices-Analyses before and after Storage

Authors: Youcef Amir

Abstract:

The consumption of beverages continues to grow worldwide due to increasing demography, but pure fruit juices and high-quality nectars can induce protective effects on human health because of their natural bioactive components. In contrast, sodas and gaseous drinks containing synthetic food additives are considered as responsible for consumers of several pathologies such as obesity, diabetes, and non-alcoholic fatty liver disease. The nutritional and therapeutic virtues of fruit juices are generally a remarkable antioxidant power, anti-cancer activity linked to their richness of indigestible and indigestible sugars, vitamins, mineral salts, carotenoids and phenolic compounds. The main reasons, which led us to produce these fruit derivatives, are the non-availability of the fresh fruits mentioned above all along the year and also the existence of variations in the chemical composition of these different fruits as well as for the major or minor components. We tested, therefore, the physicochemical characteristics of each fruit juice and pulp apart and afterward those of the cocktails formulated. The fresh juices used during our experiments were obtained from the following fruits from north-central Algeria: prickly pear, pomegranate, melon, red oranges. The formulations of these fruit juices were tested after several trials comprising sensorial analysis, physicochemical factors (pH, titratable acidity, Brix degree, formal index, water content, total ash, total and reducing sugars, vitamin C, carotenoids, phenolic compounds) and microbial analysis after a storage period. To the pure juices proportions, citric acid E330, sucrose, and water were added followed by pasteurisation. These products were analysed from the physicochemical, microbial and sensorial viewpoints after a storage period of one month according to national legislation to evaluate their stability. The results of the physicochemical parameters of the prepared beverages had shown good physicochemical results, acceptable sensorial characteristics and microbial stability and safety before and after a storage period. We measured appreciable amounts of minor compounds with health properties.

Keywords: fruit juices, microbial analyses, nectars, physico chemical characteristics, sensorial analysis, storage period

Procedia PDF Downloads 203