Search results for: sequence control
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11444

Search results for: sequence control

11084 A Simulated Evaluation of Model Predictive Control

Authors: Ahmed AlNouss, Salim Ahmed

Abstract:

Process control refers to the techniques to control the variables in a process in order to maintain them at their desired values. Advanced process control (APC) is a broad term within the domain of control where it refers to different kinds of process control and control related tools, for example, model predictive control (MPC), statistical process control (SPC), fault detection and classification (FDC) and performance assessment. APC is often used for solving multivariable control problems and model predictive control (MPC) is one of only a few advanced control methods used successfully in industrial control applications. Advanced control is expected to bring many benefits to the plant operation; however, the extent of the benefits is plant specific and the application needs a large investment. This requires an analysis of the expected benefits before the implementation of the control. In a real plant simulation studies are carried out along with some experimentation to determine the improvement in the performance of the plant due to advanced control. In this research, such an exercise is undertaken to realize the needs of APC application. The main objectives of the paper are as follows: (1) To apply MPC to a number of simulations set up to realize the need of MPC by comparing its performance with that of proportional integral derivatives (PID) controllers. (2) To study the effect of controller parameters on control performance. (3) To develop appropriate performance index (PI) to compare the performance of different controller and develop novel idea to present tuning map of a controller. These objectives were achieved by applying PID controller and a special type of MPC which is dynamic matrix control (DMC) on the multi-tanks process simulated in loop-pro. Then the controller performance has been evaluated by changing the controller parameters. This performance was based on special indices related to the difference between set point and process variable in order to compare the both controllers. The same principle was applied for continuous stirred tank heater (CSTH) and continuous stirred tank reactor (CSTR) processes simulated in Matlab. However, in these processes some developed programs were written to evaluate the performance of the PID and MPC controllers. Finally these performance indices along with their controller parameters were plotted using special program called Sigmaplot. As a result, the improvement in the performance of the control loops was quantified using relevant indices to justify the need and importance of advanced process control. Also, it has been approved that, by using appropriate indices, predictive controller can improve the performance of the control loop significantly.

Keywords: advanced process control (APC), control loop, model predictive control (MPC), proportional integral derivatives (PID), performance indices (PI)

Procedia PDF Downloads 383
11083 Power-Aware Adaptive Coverage Control with Consensus Protocol

Authors: Mert Turanli, Hakan Temeltas

Abstract:

In this paper, we propose a new approach to coverage control problem by using adaptive coordination and power aware control laws. Nonholonomic mobile nodes position themselves suboptimally according to a time-varying density function using Centroidal Voronoi Tesellations. The Lyapunov stability analysis of the adaptive and decentralized approach is given. A linear consensus protocol is used to establish synchronization among the mobile nodes. Also, repulsive forces prevent nodes from collision. Simulation results show that by using power aware control laws, energy consumption of the nodes can be reduced.

Keywords: power aware, coverage control, adaptive, consensus, nonholonomic, coordination

Procedia PDF Downloads 327
11082 Intelligent Control Design of Car Following Behavior Using Fuzzy Logic

Authors: Abdelkader Merah, Kada Hartani

Abstract:

A reference model based control approach for improving behavior following car is proposed in this paper. The reference model is nonlinear and provides dynamic solutions consistent with safety constraints and comfort specifications. a robust fuzzy logic based control strategy is further proposed in this paper. A set of simulation results showing the suitability of the proposed technique for various demanding cenarios is also included in this paper.

Keywords: reference model, longitudinal control, fuzzy logic, design of car

Procedia PDF Downloads 398
11081 DNA-Based Gold Nanoprobe Biosensor to Detect Pork Contaminant

Authors: Rizka Ardhiyana, Liesbetini Haditjaroko, Sri Mulijani, Reki Ashadi Wicaksono, Raafqi Ranasasmita

Abstract:

Designing a sensitive, specific and easy to use method to detect pork contamination in the food industry remains a major challenge. In the current study, we developed a sensitive thiol-bond AuNP-Probe biosensor that will change color when detecting pork DNA in the Cytochrome B region. The interaction between the biosensors and DNA sample is measured by spectrophotometer at 540 nm. The biosensor is made by reducing gold with trisodium citrate to produce gold nanoparticle with 39.05 nm diameter. The AuNP-Probe biosensor (gold nanoprobe) achieved 16.04 ng DNA/µl limit of detection and 53.48 ng DNA/µl limit of quantification. The linearity (R2) between color absorbance changes and DNA concentration is 0.9916. The biosensor has a good specificty as it does not cross-react with DNA of chicken and beef. To verify specificity towards the target sequence, PCR was tested to the target sequence and reacted to the PCR product with the biosensor. The PCR DNA isolate resulted in a 2.7 fold higher absorbance compared to pork-DNA isolate alone (without PCR). The sensitivity and specificity of the method show the promising application of the thiol-bond AuNP biosensor in pork-detection.

Keywords: biosensor, DNA probe, gold nanoparticle (AuNP), pork meat, qPCR

Procedia PDF Downloads 334
11080 Analysis of Electromechanical Torsional Vibration in Large-Power AC Drive System Based on Virtual Inertia Control

Authors: Jin Wang, Chunyi Zhu, Chongjian Li, Dapeng Zheng

Abstract:

A method based on virtual inertia for suppressing electromechanical torsional vibration of a large-power AC drive system is presented in this paper. The main drive system of the rolling mill is the research object, and a two-inertia elastic model is established to study the mechanism of electromechanical torsional vibration. The improvement is made based on the control of the load observer. The virtual inertia control ratio K is added to the speed forward channel, and the feedback loop adds 1-K to design virtual inertia control. The control method combines the advantages of the positive and negative feedback control of the load observer, can achieve the purpose of controlling the moment of inertia of the motor from the perspective of electrical control, and effectively suppress oscillation.

Keywords: electromechanical torsional vibration, large-power AC drive system, load observer, simulation design

Procedia PDF Downloads 101
11079 Developing Variable Repetitive Group Sampling Control Chart Using Regression Estimator

Authors: Liaquat Ahmad, Muhammad Aslam, Muhammad Azam

Abstract:

In this article, we propose a control chart based on repetitive group sampling scheme for the location parameter. This charting scheme is based on the regression estimator; an estimator that capitalize the relationship between the variables of interest to provide more sensitive control than the commonly used individual variables. The control limit coefficients have been estimated for different sample sizes for less and highly correlated variables. The monitoring of the production process is constructed by adopting the procedure of the Shewhart’s x-bar control chart. Its performance is verified by the average run length calculations when the shift occurs in the average value of the estimator. It has been observed that the less correlated variables have rapid false alarm rate.

Keywords: average run length, control charts, process shift, regression estimators, repetitive group sampling

Procedia PDF Downloads 538
11078 Partial M-Sequence Code Families Applied in Spectral Amplitude Coding Fiber-Optic Code-Division Multiple-Access Networks

Authors: Shin-Pin Tseng

Abstract:

Nowadays, numerous spectral amplitude coding (SAC) fiber-optic code-division-multiple-access (FO-CDMA) techniques were appealing due to their capable of providing moderate security and relieving the effects of multiuser interference (MUI). Nonetheless, the performance of the previous network is degraded due to fixed in-phase cross-correlation (IPCC) value. Based on the above problems, a new SAC FO-CDMA network using partial M-sequence (PMS) code is presented in this study. Because the proposed PMS code is originated from M-sequence code, the system using the PMS code could effectively suppress the effects of MUI. In addition, two-code keying (TCK) scheme can applied in the proposed SAC FO-CDMA network and enhance the whole network performance. According to the consideration of system flexibility, simple optical encoders/decoders (codecs) using fiber Bragg gratings (FBGs) were also developed. First, we constructed a diagram of the SAC FO-CDMA network, including (N/2-1) optical transmitters, (N/2-1) optical receivers, and one N×N star coupler for broadcasting transmitted optical signals to arrive at the input port of each optical receiver. Note that the parameter N for the PMS code was the code length. In addition, the proposed SAC network was using superluminescent diodes (SLDs) as light sources, which then can save a lot of system cost compared with the other FO-CDMA methods. For the design of each optical transmitter, it is composed of an SLD, one optical switch, and two optical encoders according to assigned PMS codewords. On the other hand, each optical receivers includes a 1 × 2 splitter, two optical decoders, and one balanced photodiode for mitigating the effect of MUI. In order to simplify the next analysis, the some assumptions were used. First, the unipolarized SLD has flat power spectral density (PSD). Second, the received optical power at the input port of each optical receiver is the same. Third, all photodiodes in the proposed network have the same electrical properties. Fourth, transmitting '1' and '0' has an equal probability. Subsequently, by taking the factors of phase‐induced intensity noise (PIIN) and thermal noise, the corresponding performance was displayed and compared with the performance of the previous SAC FO-CDMA networks. From the numerical result, it shows that the proposed network improved about 25% performance than that using other codes at BER=10-9. This is because the effect of PIIN was effectively mitigated and the received power was enhanced by two times. As a result, the SAC FO-CDMA network using PMS codes has an opportunity to apply in applications of the next-generation optical network.

Keywords: spectral amplitude coding, SAC, fiber-optic code-division multiple-access, FO-CDMA, partial M-sequence, PMS code, fiber Bragg grating, FBG

Procedia PDF Downloads 353
11077 Model Predictive Control of Three Phase Inverter for PV Systems

Authors: Irtaza M. Syed, Kaamran Raahemifar

Abstract:

This paper presents a model predictive control (MPC) of a utility interactive three phase inverter (TPI) for a photovoltaic (PV) system at commercial level. The proposed model uses phase locked loop (PLL) to synchronize TPI with the power electric grid (PEG) and performs MPC control in a dq reference frame. TPI model consists of boost converter (BC), maximum power point tracking (MPPT) control, and a three leg voltage source inverter (VSI). Operational model of VSI is used to synthesize sinusoidal current and track the reference. Model is validated using a 35.7 kW PV system in Matlab/Simulink. Implementation and results show simplicity and accuracy, as well as reliability of the model.

Keywords: model predictive control, three phase voltage source inverter, PV system, Matlab/simulink

Procedia PDF Downloads 550
11076 Using Machine-Learning Methods for Allergen Amino Acid Sequence's Permutations

Authors: Kuei-Ling Sun, Emily Chia-Yu Su

Abstract:

Allergy is a hypersensitive overreaction of the immune system to environmental stimuli, and a major health problem. These overreactions include rashes, sneezing, fever, food allergies, anaphylaxis, asthmatic, shock, or other abnormal conditions. Allergies can be caused by food, insect stings, pollen, animal wool, and other allergens. Their development of allergies is due to both genetic and environmental factors. Allergies involve immunoglobulin E antibodies, a part of the body’s immune system. Immunoglobulin E antibodies will bind to an allergen and then transfer to a receptor on mast cells or basophils triggering the release of inflammatory chemicals such as histamine. Based on the increasingly serious problem of environmental change, changes in lifestyle, air pollution problem, and other factors, in this study, we both collect allergens and non-allergens from several databases and use several machine learning methods for classification, including logistic regression (LR), stepwise regression, decision tree (DT) and neural networks (NN) to do the model comparison and determine the permutations of allergen amino acid’s sequence.

Keywords: allergy, classification, decision tree, logistic regression, machine learning

Procedia PDF Downloads 278
11075 Power Control of DFIG in WECS Using Backstipping and Sliding Mode Controller

Authors: Abdellah Boualouch, Ahmed Essadki, Tamou Nasser, Ali Boukhriss, Abdellatif Frigui

Abstract:

This paper presents a power control for a Doubly Fed Induction Generator (DFIG) using in Wind Energy Conversion System (WECS) connected to the grid. The proposed control strategy employs two nonlinear controllers, Backstipping (BSC) and sliding-mode controller (SMC) scheme to directly calculate the required rotor control voltage so as to eliminate the instantaneous errors of active and reactive powers. In this paper the advantages of BSC and SMC are presented, the performance and robustness of this two controller’s strategy are compared between them. First, we present a model of wind turbine and DFIG machine, then a synthesis of the controllers and their application in the DFIG power control. Simulation results on a 1.5MW grid-connected DFIG system are provided by MATLAB/Simulink.

Keywords: backstipping, DFIG, power control, sliding-mode, WESC

Procedia PDF Downloads 570
11074 Modelling Causal Effects from Complex Longitudinal Data via Point Effects of Treatments

Authors: Xiaoqin Wang, Li Yin

Abstract:

Background and purpose: In many practices, one estimates causal effects arising from a complex stochastic process, where a sequence of treatments are assigned to influence a certain outcome of interest, and there exist time-dependent covariates between treatments. When covariates are plentiful and/or continuous, statistical modeling is needed to reduce the huge dimensionality of the problem and allow for the estimation of causal effects. Recently, Wang and Yin (Annals of statistics, 2020) derived a new general formula, which expresses these causal effects in terms of the point effects of treatments in single-point causal inference. As a result, it is possible to conduct the modeling via point effects. The purpose of the work is to study the modeling of these causal effects via point effects. Challenges and solutions: The time-dependent covariates often have influences from earlier treatments as well as on subsequent treatments. Consequently, the standard parameters – i.e., the mean of the outcome given all treatments and covariates-- are essentially all different (null paradox). Furthermore, the dimension of the parameters is huge (curse of dimensionality). Therefore, it can be difficult to conduct the modeling in terms of standard parameters. Instead of standard parameters, we have use point effects of treatments to develop likelihood-based parametric approach to the modeling of these causal effects and are able to model the causal effects of a sequence of treatments by modeling a small number of point effects of individual treatment Achievements: We are able to conduct the modeling of the causal effects from a sequence of treatments in the familiar framework of single-point causal inference. The simulation shows that our method achieves not only an unbiased estimate for the causal effect but also the nominal level of type I error and a low level of type II error for the hypothesis testing. We have applied this method to a longitudinal study of COVID-19 mortality among Scandinavian countries and found that the Swedish approach performed far worse than the other countries' approach for COVID-19 mortality and the poor performance was largely due to its early measure during the initial period of the pandemic.

Keywords: causal effect, point effect, statistical modelling, sequential causal inference

Procedia PDF Downloads 176
11073 Digital Control Techniques for Power Electronic Devices

Authors: Rakesh Krishna, Abhishek Poddar

Abstract:

The paper discusses the work carried out on the implementation of control techniques like Digital Pulse Width Modulation (PWM) and Digital Pulse Fired control(PFC). These techniques are often used in devices like inverters, battery chargers, DC-to-DC converters can also be implemented on household devices like heaters. The advantage being the control and improved life span of device. In case of batteries using these techniques are known to increase the life span of battery in mobiles and other hand-held devices. 8051 microcontroller is used to implement these methods.Thyristors are used for switching operations.

Keywords: PWM, SVM, PFC, bidirectional inverters, snubber

Procedia PDF Downloads 537
11072 Efficacy of Thrust on Basilar Spheno Synchondrosis in Boxers With Ocular Convergence Deficit. Comparison of Thrust and Therapeutic Exercise: Pilot Experimental Randomized Controlled Trial Study

Authors: Andreas Aceranti, Stefano Costa

Abstract:

The aim of this study was to demonstrate that manipulative treatment combined with therapeutic exercisetherapywas more effective than isolated therapeutic exercise in the short-term treatment of eye convergence disorders in boxers. A randomized controlled trial (RCT) pilot trial was performed at our physiotherapy practices. 30 adult subjects who practice the discipline of boxing were selected after an initial skimming defined by the Convergence Insufficiency Symptom Survey (CISS) test (results greater than or equal to 10) starting from the initial sample of 50 subjects; The 30 recruits were evaluated by an orthoptist using prisms to know the diopters of each eye and were divided into 2 groups (experimental group and control group). The members of the experimental group were subjected to manipulation of the lateral strain of sphenoid from the side contralateral to the eye that had fewer diopters and were subjected to a sequence of 3 ocular motor exercises immediately after manipulation. The control group, on the other hand, received only ocular motor treatment. A secondary outcome was also drawn up that demonstrated how changes in ocular motricity also affected cervical rotation. Analysis of the data showed that the experimental treatment was in the short term superior to the control group to astatistically significant extent both in terms of the prismatic delta of the right eye (0 OT median without manipulation and 10 OT median with manipulation) and that of the left eye (0 OT median without manipulation and 5 OT median with manipulation). Cervical rotation values also showed better values in the experimental group with a median of 4° in the right rotation without manipulation and 6° with thrust; the left rotation presented a median of 2° without manipulation and 7° with thrust. From the results that emerged, the treatment was effective. It would be desirable to increase the sample number and set up a timeline to see if the net improvements obtained in the short term will also be maintained in the medium to long term.

Keywords: boxing, basilar spheno synchondrosis, ocular convergence deficit, osteopathic treatment

Procedia PDF Downloads 56
11071 Design and Performance Evaluation of Hybrid Corrugated-GFRP Infill Panels

Authors: Woo Young Jung, Sung Min Park, Ho Young Son, Viriyavudh Sim

Abstract:

This study presents a way to reduce earthquake damage and emergency rehabilitation of critical structures such as schools, high-tech factories, and hospitals due to strong ground motions associated with climate changes. Regarding recent trend, a strong earthquake causes serious damage to critical structures and then the critical structure might be influenced by sequence aftershocks (or tsunami) due to fault plane adjustments. Therefore, in order to improve seismic performance of critical structures, retrofitted or strengthening study of the structures under aftershocks sequence after emergency rehabilitation of the structures subjected to strong earthquakes is widely carried out. Consequently, this study used composite material for emergency rehabilitation of the structure rather than concrete and steel materials because of high strength and stiffness, lightweight, rapid manufacturing, and dynamic performance. Also, this study was to develop or improve the seismic performance or seismic retrofit of critical structures subjected to strong ground motions and earthquake aftershocks, by utilizing GFRP-Corrugated Infill Panels (GCIP).

Keywords: aftershock, composite material, GFRP, infill panel

Procedia PDF Downloads 310
11070 Smooth Second Order Nonsingular Terminal Sliding Mode Control for a 6 DOF Quadrotor UAV

Authors: V. Tabrizi, A. Vali, R. GHasemi, V. Behnamgol

Abstract:

In this article, a nonlinear model of an under actuated six degrees of freedom (6 DOF) quadrotor UAV is derived on the basis of the Newton-Euler formula. The derivation comprises determining equations of the motion of the quadrotor in three dimensions and approximating the actuation forces through the modeling of aerodynamic coefficients and electric motor dynamics. The robust nonlinear control strategy includes a smooth second order non-singular terminal sliding mode control which is applied to stabilizing this model. The control method is on the basis of super twisting algorithm for removing the chattering and producing smooth control signal. Also, nonsingular terminal sliding mode idea is used for introducing a nonlinear sliding variable that guarantees the finite time convergence in sliding phase. Simulation results show that the proposed algorithm is robust against uncertainty or disturbance and guarantees a fast and precise control signal.

Keywords: quadrotor UAV, nonsingular terminal sliding mode, second order sliding mode t, electronics, control, signal processing

Procedia PDF Downloads 412
11069 Optimization of E-motor Control Parameters for Electrically Propelled Vehicles by Integral Squared Method

Authors: Ibrahim Cicek, Melike Nikbay

Abstract:

Electrically propelled vehicles, either road or aerial vehicles are studied on contemporarily for their robust maneuvers and cost-efficient transport operations. The main power generating systems of such vehicles electrified by selecting proper components and assembled as e-powertrain. Generally, e-powertrain components selected considering the target performance requirements. Since the main component of propulsion is the drive unit, e-motor control system is subjected to achieve the performance targets. In this paper, the optimization of e-motor control parameters studied by Integral Squared Method (ISE). The overall aim is to minimize power consumption of such vehicles depending on mission profile and maintaining smooth maneuvers for passenger comfort. The sought-after values of control parameters are computed using the Optimal Control Theory. The system is modeled as a closed-loop linear control system with calibratable parameters.

Keywords: optimization, e-powertrain, optimal control, electric vehicles

Procedia PDF Downloads 93
11068 CDM-Based Controller Design for High-Frequency Induction Heating System with LLC Tank

Authors: M. Helaimi, R. Taleb, D. Benyoucef, B. Belmadani

Abstract:

This paper presents the design of a polynomial controller with coefficient diagram method (CDM). This controller is used to control the output power of high frequency resonant inverter with LLC tank. One of the most important problems associated with the proposed inverter is achieving ZVS operating during the induction heating process. To overcome this problem, asymmetrical voltage cancellation (AVC) control technique is proposed. The phased look loop (PLL) is used to track the natural frequency of the system. The small signal model of the system with the proposed control is obtained using extending describing function method (EDM). The validity of the proposed control is verified by simulation results.

Keywords: induction heating, AVC control, CDM, PLL, resonant inverter

Procedia PDF Downloads 631
11067 Tectonic Complexity: Out-of-Sequence Thrusting in the Higher Himalaya of Jhakri-Sarahan region, Himachal Pradesh, India

Authors: Rajkumar Ghosh

Abstract:

The study focuses on the tectonics of out-of-sequence thrusting (OOST) in the NW region of the Himalaya, particularly in Himachal Pradesh. The research aims to identify the features and nature of OOST in the field and the associated rock types and lithological boundaries in the field of NW Himalaya, Himachal Pradesh, India. The research employs fieldwork and micro-structure observations, correlations, and analyses to identify and analyze the OOST features and associated rock types. The study reveals the presence of three OOSTs, namely Jhakri Thrust (JT), Sarahan Thrust (ST), and Chaura Thrust (CT), which consist of several branches, some of which are still active. The thrust system exhibits varying internal geometry, including box folds, boudins, scar folds, crenulation cleavages, kink folds, and tension gashes. The CT, which is concealed beneath Jutogh Thrust sheet, represents a steepened downward thrust, while the JT has a western dip and is south-westward verging. The research provides crucial information on the tectonics of OOST in the NW region of the Himalaya, particularly in Himachal Pradesh, which is crucial in understanding the regional geological evolution and associated hazards. The data were collected through fieldwork and micro-structure observations, correlations, and analyses of rock samples. The data were analyzed using tectonic and geochronological techniques to identify the nature and characteristics of OOST. The research addressed the question of identifying Higher Himalayan OOST in the field of NW Himalaya, Himachal Pradesh, India, and the associated rock types and lithological boundaries. The study concludes that there is minimal documentation and a lack of suitable exposure of rocks to generalize the features of OOST in the field in NW Higher Himalaya, Himachal Pradesh. The study recommends more extensive mapping and fieldwork to improve understanding of OOST in the region.

Keywords: out-of-sequence thrust (OOST), main central thrust (MCT), jhakri thrust (JT), sarahan thrust (ST), chaura thrust (CT), higher himalaya (HH)

Procedia PDF Downloads 61
11066 Genetic Algorithm and Multi-Parametric Programming Based Cascade Control System for Unmanned Aerial Vehicles

Authors: Dao Phuong Nam, Do Trong Tan, Pham Tam Thanh, Le Duy Tung, Tran Hoang Anh

Abstract:

This paper considers the problem of cascade control system for unmanned aerial vehicles (UAVs). Due to the complicated modelling technique of UAV, it is necessary to separate them into two subsystems. The proposed cascade control structure is a hierarchical scheme including a robust control for inner subsystem based on H infinity theory and trajectory generator using genetic algorithm (GA), outer loop control law based on multi-parametric programming (MPP) technique to overcome the disadvantage of a big amount of calculations. Simulation results are presented to show that the equivalent path has been found and obtained by proposed cascade control scheme.

Keywords: genetic algorithm, GA, H infinity, multi-parametric programming, MPP, unmanned aerial vehicles, UAVs

Procedia PDF Downloads 188
11065 Masked Candlestick Model: A Pre-Trained Model for Trading Prediction

Authors: Ling Qi, Matloob Khushi, Josiah Poon

Abstract:

This paper introduces a pre-trained Masked Candlestick Model (MCM) for trading time-series data. The pre-trained model is based on three core designs. First, we convert trading price data at each data point as a set of normalized elements and produce embeddings of each element. Second, we generate a masked sequence of such embedded elements as inputs for self-supervised learning. Third, we use the encoder mechanism from the transformer to train the inputs. The masked model learns the contextual relations among the sequence of embedded elements, which can aid downstream classification tasks. To evaluate the performance of the pre-trained model, we fine-tune MCM for three different downstream classification tasks to predict future price trends. The fine-tuned models achieved better accuracy rates for all three tasks than the baseline models. To better analyze the effectiveness of MCM, we test the same architecture for three currency pairs, namely EUR/GBP, AUD/USD, and EUR/JPY. The experimentation results demonstrate MCM’s effectiveness on all three currency pairs and indicate the MCM’s capability for signal extraction from trading data.

Keywords: masked language model, transformer, time series prediction, trading prediction, embedding, transfer learning, self-supervised learning

Procedia PDF Downloads 94
11064 An AK-Chart for the Non-Normal Data

Authors: Chia-Hau Liu, Tai-Yue Wang

Abstract:

Traditional multivariate control charts assume that measurement from manufacturing processes follows a multivariate normal distribution. However, this assumption may not hold or may be difficult to verify because not all the measurement from manufacturing processes are normal distributed in practice. This study develops a new multivariate control chart for monitoring the processes with non-normal data. We propose a mechanism based on integrating the one-class classification method and the adaptive technique. The adaptive technique is used to improve the sensitivity to small shift on one-class classification in statistical process control. In addition, this design provides an easy way to allocate the value of type I error so it is easier to be implemented. Finally, the simulation study and the real data from industry are used to demonstrate the effectiveness of the propose control charts.

Keywords: multivariate control chart, statistical process control, one-class classification method, non-normal data

Procedia PDF Downloads 396
11063 MP-SMC-I Method for Slip Suppression of Electric Vehicles under Braking

Authors: Tohru Kawabe

Abstract:

In this paper, a new SMC (Sliding Mode Control) method with MP (Model Predictive Control) integral action for the slip suppression of EV (Electric Vehicle) under braking is proposed. The proposed method introduce the integral term with standard SMC gain , where the integral gain is optimized for each control period by the MPC algorithms. The aim of this method is to improve the safety and the stability of EVs under braking by controlling the wheel slip ratio. There also include numerical simulation results to demonstrate the effectiveness of the method.

Keywords: sliding mode control, model predictive control, integral action, electric vehicle, slip suppression

Procedia PDF Downloads 536
11062 Task Space Synchronization Control of Multi-Robot Arms with Position Synchronous Method

Authors: Zijian Zhang, Yangyang Dong

Abstract:

Synchronization is of great importance to ensure the multi-arm robot to complete the task. Therefore, a synchronous controller is designed to coordinate task space motion of the multi-arm in the paper. The position error, the synchronous position error, and the coupling position error are all considered in the controller. Besides, an adaptive control method is used to adjust parameters of the controller to improve the effectiveness of coordinated control performance. Simulation in the Matlab shows the effectiveness of the method. At last, a robot experiment platform with two 7-DOF (Degree of Freedom) robot arms has been established and the synchronous controller simplified to control dual-arm robot has been validated on the experimental set-up. Experiment results show the position error decreased 10% and the corresponding frequency is also greatly improved.

Keywords: synchronous control, space robot, task space control, multi-arm robot

Procedia PDF Downloads 133
11061 Control of Hybrid System Using Fuzzy Logic

Authors: Faiza Mahi, Fatima Debbat, Mohamed Fayçal Khelfi

Abstract:

This paper proposes a control approach using Fuzzy Lo system. More precisely, the study focuses on the improvement of users service in terms of analysis and control of a transportation system their waiting times in the exchange platforms of passengers. Many studies have been developed in the literature for such problematic, and many control tools are proposed. In this paper we focus on the use of fuzzy logic technique to control the system during its evolution in order to minimize the arrival gap of connected transportation means at the exchange points of passengers. An example of illustration is worked out and the obtained results are reported. an important area of research is the modeling and simulation ordering system. We describe an approach to analysis using Fuzzy Logic. The hybrid simulator developed in toolbox Matlab consists calculation of waiting time transportation mode.

Keywords: Fuzzy logic, Hybrid system, Waiting Time, Transportation system, Control

Procedia PDF Downloads 525
11060 Fault-Tolerant Fuzzy Gain-Adaptive PID Control for a 2 DOF Helicopter, TRMS System

Authors: Abderrahmen Bouguerra, Kamel Kara, Djamel Saigaa, Samir Zeghlache, Keltoum Loukal

Abstract:

In this paper, a Fault-Tolerant control of 2 DOF Helicopter (TRMS System) Based on Fuzzy Gain-Adaptive PID is presented. In particular, the introduction part of the paper presents a Fault-Tolerant Control (FTC), the first part of this paper presents a description of the mathematical model of TRMS, an adaptive PID controller is proposed for fault-tolerant control of a TRMS helicopter system in the presence of actuator faults, A fuzzy inference scheme is used to tune in real-time the controller gains, The proposed adaptive PID controller is compared with the conventional PID. The obtained results show the effectiveness of the proposed method.

Keywords: fuzzy control, gain-adaptive PID, helicopter model, PID control, TRMS system

Procedia PDF Downloads 444
11059 Design of Lead-Lag Based Internal Model Controller for Binary Distillation Column

Authors: Rakesh Kumar Mishra, Tarun Kumar Dan

Abstract:

Lead-Lag based Internal Model Control method is proposed based on Internal Model Control (IMC) strategy. In this paper, we have designed the Lead-Lag based Internal Model Control for binary distillation column for SISO process (considering only bottom product). The transfer function has been taken from Wood and Berry model. We have find the composition control and disturbance rejection using Lead-Lag based IMC and comparing with the response of simple Internal Model Controller.

Keywords: SISO, lead-lag, internal model control, wood and berry, distillation column

Procedia PDF Downloads 613
11058 Effect of Cost Control and Cost Reduction Techniques in Organizational Performance

Authors: Babatunde Akeem Lawal

Abstract:

In any organization, the primary aim is to maximize profit, but the major challenges facing them is the increase in cost of operation because of this there is increase in cost of production that could lead to inevitable cost control and cost reduction scheme which make it difficult for most organizations to operate at the cost efficient frontier. The study aims to critically examine and evaluate the application of cost control and cost reduction in organization performance and also to review budget as an effective tool of cost control and cost reduction. A descriptive survey research was adopted. A total number of 40 respondent retrieved were used for the study. The analysis of data collected was undertaken by applying appropriate statistical tools. Regression analysis was used to test the hypothesis with the use of SPSS. Based on the findings; it was evident that cost control has a positive impact on organizational performance and also the style of management has a positive impact on organizational performance.

Keywords: organization, cost reduction, cost control, performance, budget, profit

Procedia PDF Downloads 560
11057 Sequence Analysis and Molecular Cloning of PROTEOLYSIS 6 in Tomato

Authors: Nurulhikma Md Isa, Intan Elya Suka, Nur Farhana Roslan, Chew Bee Lynn

Abstract:

The evolutionarily conserved N-end rule pathway marks proteins for degradation by the Ubiquitin Proteosome System (UPS) based on the nature of their N-terminal residue. Proteins with a destabilizing N-terminal residue undergo a series of condition-dependent N-terminal modifications, resulting in their ubiquitination and degradation. Intensive research has been carried out in Arabidopsis previously. The group VII Ethylene Response Factor (ERFs) transcription factors are the first N-end rule pathway substrates found in Arabidopsis and their role in regulating oxygen sensing. ERFs also function as central hubs for the perception of gaseous signals in plants and control different plant developmental including germination, stomatal aperture, hypocotyl elongation and stress responses. However, nothing is known about the role of this pathway during fruit development and ripening aspect. The plant model system Arabidopsis cannot represent fleshy fruit model system therefore tomato is the best model plant to study. PROTEOLYSIS6 (PRT6) is an E3 ubiquitin ligase of the N-end rule pathway. Two homologs of PRT6 sequences have been identified in tomato genome database using the PRT6 protein sequence from model plant Arabidopsis thaliana. Homology search against Ensemble Plant database (tomato) showed Solyc09g010830.2 is the best hit with highest score of 1143, e-value of 0.0 and 61.3% identity compare to the second hit Solyc10g084760.1. Further homology search was done using NCBI Blast database to validate the data. The result showed best gene hit was XP_010325853.1 of uncharacterized protein LOC101255129 (Solanum lycopersicum) with highest score of 1601, e-value 0.0 and 48% identity. Both Solyc09g010830.2 and uncharacterized protein LOC101255129 were genes located at chromosome 9. Further validation was carried out using BLASTP program between these two sequences (Solyc09g010830.2 and uncharacterized protein LOC101255129) to investigate whether they were the same proteins represent PRT6 in tomato. Results showed that both proteins have 100 % identity, indicates that they were the same gene represents PRT6 in tomato. In addition, we used two different RNAi constructs that were driven under 35S and Polygalacturonase (PG) promoters to study the function of PRT6 during tomato developmental stages and ripening processes.

Keywords: ERFs, PRT6, tomato, ubiquitin

Procedia PDF Downloads 216
11056 Control Technique for Single Phase Bipolar H-Bridge Inverter Connected to the Grid

Authors: L. Hassaine, A. Mraoui, M. R. Bengourina

Abstract:

In photovoltaic system, connected to the grid, the main goal is to control the power that the inverter injects into the grid from the energy provided by the photovoltaic generator. This paper proposes a control technique for a photovoltaic system connected to the grid based on the digital pulse-width modulation (DSPWM) which can synchronise a sinusoidal current output with a grid voltage and generate power at unity power factor. This control is based on H-Bridge inverter controlled by bipolar PWM Switching. The electrical scheme of the system is presented. Simulations results of output voltage and current validate the impact of this method to determinate the appropriate control of the system. A digital design of a generator PWM using VHDL is proposed and implemented on a Xilinx FPGA.

Keywords: grid connected photovoltaic system, H-Bridge inverter, control, bipolar PWM

Procedia PDF Downloads 291
11055 Application of Fuzzy Logic in Voltage Regulation of Radial Feeder with Distributed Generators

Authors: Anubhav Shrivastava, Lakshya Bhat, Shivarudraswamy

Abstract:

Distributed Generation is the need of the hour. With current advancements in the DG technology, there are some major issues that need to be tackled in order to make this method of generation of energy more efficient and feasible. Among other problems, the control in voltage is the major issue that needs to be addressed. This paper focuses on control of voltage using reactive power control of DGs with the help of fuzzy logic. The membership functions have been defined accordingly and the control of the system is achieved. Finally, with the help of simulation results in Matlab, the control of voltage within the tolerance limit set (+/- 5%) is achieved. The voltage waveform graphs for the IEEE 14 bus system are obtained by using simple algorithm with MATLAB and then with fuzzy logic for 14 bus system. The goal of this project was to control the voltage within limits by controlling the reactive power of the DG using fuzzy logic.

Keywords: distributed generation, fuzzy logic, matlab, newton raphson, IEEE 14 bus, voltage regulation, radial network

Procedia PDF Downloads 603