Search results for: semi - arid climatic condition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7012

Search results for: semi - arid climatic condition

6892 Agro-Climatic Analysis in the Northern Areas of Khyber Pakhtunkhwa, Pakistan

Authors: Zia Ullah, Ruh Ullah

Abstract:

A research study was conceded in four locations (Swat, Dir, Kakul and Balakot) of Khyber Pakhtunkhwa, to find agro-climatic classes by using aridity index, Growing Degree Days of wheat and maize, crop growth index and Spatio-temporal analysis of rainfall by using long term climatic data (1970-2010). The climatic data used for research was acquired from Pakistan Meteorological Department (PMD) Islamabad, Agriculture Research Institute, Weather Station Peshawar and Tarnab Peshawar. Agro-climatic classes of each location were determined using three criteria mean temperature of the coldest month, mean temperature of the warmest month and aridity index. The agro-climatic classes of Dir, Swat, Kakul and Balakot were classified as Humid, Cold and very Warm (H-K-VW). Average aridity index of wheat for Dir, Swat, Kakul, and Balakot was 2.23, 2.67, 1.94 and 2.34 and for Maize was 1.31, 1.26, 1.97, and 2.83 respectively. The overall and decade-wise trend of GDD of Wheat and Maize was declined in Swat and Kakul while increased in Dir and Balakot.The average maximum CGI (1.26) and (0.73) of Wheat and Maize was observed for Balakot and Dir, while the minimum (1.09) and (0.62) was observed for Swat and Kakul. Spatio-temporal analysis of rainfall shows that the trend has increased in Swat while decreased in Dir, Kakul and Balakot. From the relation between rainfalls with altitude showed that there was an increasing trend between rainfalls with altitude. The maximum average rainfall was in Swat (2703mm) on altitude 2000m while the minimum average rainfall was observed in Kakul (1410mm) on altitude of 1255m.

Keywords: agro-climatic zones, aridity index, GDD, rainfall

Procedia PDF Downloads 377
6891 Assessment of the Groundwater Agricultural Pollution Risk: Case of the Semi-Arid Region (Batna-East Algeria)

Authors: Dib Imane, Chettah Wahid, Khedidja Abdelhamid

Abstract:

The plain of Gadaïne - Ain Yaghout, located in the wilaya of Batna (Eastern Algeria), experiences intensive human activities, particularly in agricultural practices which are accompanied by an increasing use of chemical fertilizers and manure. These activities lead to a degradation of the quality of water resources. In order to protect the quality of groundwater in this plain and formulate effective strategies to mitigate or avoid any contamination of groundwater, a risk assessment using the European method known as “COSTE Action 620” was applied to the mio-. plio-quaternary aquifer of this plain. Risk assessment requires the identification of existing dangers and their potential impact on groundwater by using a system of evaluation and weighting. In addition, it also requires the integration of the hydrogeological factors that influence the movement of contaminants by means of the intrinsic vulnerability maps of groundwater, which were produced according to the modified DRASTIC method. The overall danger on the plain ranges from very low to high. Farms containing stables, houses detached from the public sewer system, and sometimes manure piles were assigned a weighting factor expressing the highest degree of harmfulness; this created a medium to high danger index. Large areas for agricultural practice and grazing are characterized, successively, by low to very low danger. Therefore, the risks present at the study site are classified according to a range from medium to very high-risk intensity. These classes successively represent 3%, 49%, and 0.2% of the surface of the plain. Cultivated land and farms present a high to very high level of risk successively. In addition, with the exception of the salt mine, which presents a very high level of risk, the gas stations and cemeteries, as well as the railway line, represent a high level of risk.

Keywords: semi-arid, quality of water resources, risk assessment, vulnerability, contaminants

Procedia PDF Downloads 17
6890 Statistical Scientific Investigation of Popular Cultural Heritage in the Relationship between Astronomy and Weather Conditions in the State of Kuwait

Authors: Ahmed M. AlHasem

Abstract:

The Kuwaiti society has long been aware of climatic changes and their annual dates and trying to link them to astronomy in an attempt to forecast the future weather conditions. The reason for this concern is that many of the economic, social and living activities of the society depend deeply on the nature of the weather conditions directly and indirectly. In other words, Kuwaiti society, like the case of many human societies, has in the past tried to predict climatic conditions by linking them to astronomy or popular statements to indicate the timing of climate changes. Accordingly, this study was devoted to scientific investigation based on the statistical analysis of climatic data to show the accuracy and compatibility of some of the most important elements of the cultural heritage in relation to climate change and to relate it scientifically to precise climatic measurements for decades. The research has been divided into 10 topics, each topic has been focused on one legacy, whether by linking climate changes to the appearance/disappearance of star or a popular statement inherited through generations, through explain the nature and timing and thereby statistical analysis to indicate the proportion of accuracy based on official climatic data since 1962. The study's conclusion is that the relationship is weak and, in some cases, non-existent between the popular heritage and the actual climatic data. Therefore, it does not have a dependable relationship and a reliable scientific prediction between both the popular heritage and the forecast of weather conditions.

Keywords: astronomy, cultural heritage, statistical analysis, weather prediction

Procedia PDF Downloads 91
6889 Detection of Trends and Break Points in Climatic Indices: The Case of Umbria Region in Italy

Authors: A. Flammini, R. Morbidelli, C. Saltalippi

Abstract:

The increase of air surface temperature at global scale is a fact, with values around 0.85 ºC since the late nineteen century, as well as a significant change in main features of rainfall regime. Nevertheless, the detected climatic changes are not equally distributed all over the world, but exhibit specific characteristics in different regions. Therefore, studying the evolution of climatic indices in different geographical areas with a prefixed standard approach becomes very useful in order to analyze the existence of climatic trend and compare results. In this work, a methodology to investigate the climatic change and its effects on a wide set of climatic indices is proposed and applied at regional scale in the case study of a Mediterranean area, Umbria region in Italy. From data of the available temperature stations, nine temperature indices have been obtained and the existence of trends has been checked by applying the non-parametric Mann-Kendall test, while the non-parametric Pettitt test and the parametric Standard Normal Homogeneity Test (SNHT) have been applied to detect the presence of break points. In addition, aimed to characterize the rainfall regime, data from 11 rainfall stations have been used and a trend analysis has been performed on cumulative annual rainfall depth, daily rainfall, rainy days, and dry periods length. The results show a general increase in any temperature indices, even if with a trend pattern dependent of indices and stations, and a general decrease of cumulative annual rainfall and average daily rainfall, with a time rainfall distribution over the year different from the past.

Keywords: climatic change, temperature, rainfall regime, trend analysis

Procedia PDF Downloads 88
6888 Experimental and Semi-Analytical Investigation of Wave Interaction with Double Vertical Slotted Walls

Authors: H. Ahmed, A. Schlenkhoff, R. Rousta, R. Abdelaziz

Abstract:

Vertical slotted walls can be used as permeable breakwaters to provide economical and environmental protection from undesirable waves and currents inside the port. The permeable breakwaters are partially protection and have been suggested to overcome the environmental disadvantages of fully protection breakwaters. For regular waves a semi-analytical model is based on an eigenfunction expansion method and utilizes a boundary condition at the surface of each wall are developed to detect the energy dissipation through the slots. Extensive laboratory tests are carried out to validate the semi-analytic models. The structure of the physical model contains two walls and it consists of impermeable upper and lower part, where the draft is based a decimal multiple of the total depth. The middle part is permeable with a porosity of 50%. The second barrier is located at a distant of 0.5, 1, 1.5 and 2 times of the water depth from the first one. A comparison of the theoretical results with previous studies and experimental measurements of the present study show a good agreement and that, the semi-analytical model is able to adequately reproduce most the important features of the experiment.

Keywords: permeable breakwater, double vertical slotted walls, semi-analytical model, transmission coefficient, reflection coefficient, energy dissipation coefficient

Procedia PDF Downloads 355
6887 Progress, Challenges, and Prospects of Non-Conventional Feed Resources for Livestock Production in Sub-Saharan Africa: A Review

Authors: Clyde Haruzivi, Olusegun Oyebade Ikusika, Thando Conference Mpendulo

Abstract:

Feed scarcity, increasing demand for animal products due to the growing human population, competition for conventional feed resources for humans and animal production, and ever-increasing prices of these feed resources are major constraints to the livestock industry in Sub-Saharan Africa. As a result, the industry is suffering immensely as the cost of production is high, hence the reduced returns. Most affected are the communal and resource-limited farmers who cannot afford the cost of conventional feed resources to supplement feeds, especially in arid and semi-arid areas where the available feed resources are not adequate for maintenance and production. This has tasked researchers and animal scientists to focus on the potential of non-conventional feed resources (NCFRs). Non-conventional feed resources could fill the gap through reduced competition, cost of feed, increased supply, increased profits, and independency as farmers will be utilizing locally available feed resources. Identifying available non-conventional feed resources is vital as it creates possibilities for novel feed industries and markets and implements methods of using these feedstuffs to improve livestock production and livelihoods in Sub-Saharan Africa. Hence, this research work analyses the progress, challenges, and prospects of some non-conventional feed resources in Sub-Saharan Africa.

Keywords: non-conventional, feed resources, livestock production, food security, Sub-Saharan

Procedia PDF Downloads 64
6886 Effect of Organic Fertilizers on the Improvement of Soil Microbiological Functioning under Saline Conditions of Arid Regions: Impact on Carbon and Nitrogen Mineralization

Authors: Oustani Mabrouka, Halilat Md Tahar, Hannachi Slimane

Abstract:

This study was conducted on representative and contrasting soils of arid regions. It focuses on the compared influence of two organic fertilizers: poultry manure (PM) and bovine manure (BM) on improving the microbial functioning of non-saline (SS) and saline (SSS) soils, in particularly, the process of mineralization of nitrogen and carbon. The microbiological activity was estimated by respirometric test (CO2–C emissions) and the extraction of two forms of mineral nitrogen (NH4+-N and NO3--N). Thus, after 56 days of incubation under controlled conditions (28 degrees and 80 per cent of the field capacity), the two types of manures showed that the mineralization activity varies according to type of soil and the organic substrate itself. However, the highest cumulative quantities of CO2–C, NH4+–N and NO3-–N obtained at the end of incubation were recorded in non-saline (SS) soil treated with poultry manure with 1173.4, 4.26 and 8.40 mg/100 g of dry soil, respectively. The reductions in rates of release of CO2–C and of nitrification under saline conditions were 21 and 36, 78 %, respectively. The influence of organic substratum on the microbial density shows a stimulating effect on all microbial groups studied. The whole results show the usefulness of two types of manures for the improvement of the microbiological functioning of arid soils.

Keywords: Salinity, Organic matter, Microorganisms, Mineralization, Nitrogen, Carbon, Arid regions

Procedia PDF Downloads 253
6885 The Assessment of Some Biological Parameters With Dynamic Energy Budget of Mussels in Agadir Bay

Authors: Zahra Okba, Hassan El Ouizgani

Abstract:

Anticipating an individual’s behavior to the environmental factors allows for having relevant ecological forecasts. The Dynamic Energy Budget model facilitates prediction, and it is mechanically dependent on biology to abiotic factors but is generally field verified under relatively stable physical conditions. Dynamic Energy Budget Theory (DEB) is a robust framework that can link the individual state to environmental factors, and in our work, we have tested its ability to account for variability by looking at model predictions in the Agadir Bay, which is characterized by a semi-arid climate and temperature is strongly influenced by the trade winds front and nutritional availability. From previous works in our laboratory, we have collected different biological DEB model parameters of Mytilus galloprovincialis mussel in Agadir Bay. We mathematically formulated the equations that make up the DEB model and then adjusted our analytical functions with the observed biological data of our local species. We also assumed the condition of constant immersion, and then we integrated the details of the tidal cycles to calculate the metabolic depression at low tide. Our results are quite satisfactory concerning the length and shape of the shell in one part and the gonadosomatic index in another part.

Keywords: dynamic energy budget, mussels, mytilus galloprovincialis, agadir bay, DEB model

Procedia PDF Downloads 80
6884 Reducing Uncertainty in Climate Projections over Uganda by Numerical Models Using Bias Correction

Authors: Isaac Mugume

Abstract:

Since the beginning of the 21st century, climate change has been an issue due to the reported rise in global temperature and changes in the frequency as well as severity of extreme weather and climatic events. The changing climate has been attributed to rising concentrations of greenhouse gases, including environmental changes such as ecosystems and land-uses. Climatic projections have been carried out under the auspices of the intergovernmental panel on climate change where a couple of models have been run to inform us about the likelihood of future climates. Since one of the major forcings informing the changing climate is emission of greenhouse gases, different scenarios have been proposed and future climates for different periods presented. The global climate models project different areas to experience different impacts. While regional modeling is being carried out for high impact studies, bias correction is less documented. Yet, the regional climate models suffer bias which introduces uncertainty. This is addressed in this study by bias correcting the regional models. This study uses the Weather Research and Forecasting model under different representative concentration pathways and correcting the products of these models using observed climatic data. This study notes that bias correction (e.g., the running-mean bias correction; the best easy systematic estimator method; the simple linear regression method, nearest neighborhood, weighted mean) improves the climatic projection skill and therefore reduce the uncertainty inherent in the climatic projections.

Keywords: bias correction, climatic projections, numerical models, representative concentration pathways

Procedia PDF Downloads 87
6883 Effect of Land Use and Abandonment on Soil Carbon and Nitrogen Depletion by Runoff in Shallow Soils under Semi-Arid Mediterranean Climate

Authors: Mohamed Emran, Giovanni Pardini, Maria Gispert, Mohamed Rashad

Abstract:

Land use and abandonment in semi-arid degraded ecosystems may cause regressive dynamics in vegetation cover affecting organic matter contents, soil nutrients and structural stability, thus reducing soil resistance to erosion. Mediterranean areas are generally subjected to climatic fluctuations, which modify soil conditions and hydrological processes, such as runoff and water infiltration within the upper soil horizons. Low erosion rates occur in very fragile and shallow soils with minor clay content progressively decrease organic carbon C and nitrogen N pools in the upper soil horizons. Seven soils were selected representing variant context of land use and abandonment at the Cap de Creus Peninsula, Catalonia, NE Spain, from recent cultivated vines and olive groves, mid abandoned forests standing under cork and pine trees, pasture to late abandoned Cistus and Erica scrubs. The aim of this work was to study the effect of changes in land use and abandonment on the depletion of soil organic carbon and nitrogen transported by runoff water in shallow soils after natural rainfall events during two years with different rainfall patterns (1st year with low rainfall and 2nd year with high rainfall) by i) monitoring the most significant soil erosion parameters at recorded rainfall events, ii) studying the most relevant soil physical and chemical characteristics on seasonal basis and iii) analysing the seasonal trends of depleted carbon and nitrogen and their interaction with soil surface compaction parameters. Significant seasonal variability was observed in the relevant soil physical and chemical parameters and soil erosion parameters in all soils to establish their evolution under land use and abandonment during two years of different rainfall patterns (214 and 487 mm per year), giving important indications on soil response to rainfall impacts. Erosion rates decreased significantly with the increasing of soil C and N under low and high rainfall. In cultivated soils, C and N depletion increased by 144% and 115%, respectively by 13% increase in erosion rates during the 1st year with respect to the 2nd year. Depleted C and N were proportionally higher in soils under vines and olive with vulnerable soil structure and low soil resilience leading to degradation, altering nutrients cycles and causing adverse impact on environmental quality. Statistical analysis underlined that, during the 1st year, soil surface was less effective in preserving stocks of organic resources leading to higher susceptibility to erosion with consequent C and N depletion. During the 2nd year, higher organic reserve and water storage occurred despite the increasing of C and N loss with an effective contribution from soil surface compaction parameters. The overall estimation during the two years indicated clear differences among soils under vines, olive, cork and pines, suggesting on the one hand, that current cultivation practices are inappropriate and that reforestation with pines may delay the achievement of better soil conditions. On the other hand, the natural succession of vegetation under Cistus, pasture and Erica suggests the recovery of good soil conditions.

Keywords: land abandonment, land use, nutrient's depletion, soil erosion

Procedia PDF Downloads 314
6882 Modeling Karachi Dengue Outbreak and Exploration of Climate Structure

Authors: Syed Afrozuddin Ahmed, Junaid Saghir Siddiqi, Sabah Quaiser

Abstract:

Various studies have reported that global warming causes unstable climate and many serious impact to physical environment and public health. The increasing incidence of dengue incidence is now a priority health issue and become a health burden of Pakistan. In this study it has been investigated that spatial pattern of environment causes the emergence or increasing rate of dengue fever incidence that effects the population and its health. The climatic or environmental structure data and the Dengue Fever (DF) data was processed by coding, editing, tabulating, recoding, restructuring in terms of re-tabulating was carried out, and finally applying different statistical methods, techniques, and procedures for the evaluation. Five climatic variables which we have studied are precipitation (P), Maximum temperature (Mx), Minimum temperature (Mn), Humidity (H) and Wind speed (W) collected from 1980-2012. The dengue cases in Karachi from 2010 to 2012 are reported on weekly basis. Principal component analysis is applied to explore the climatic variables and/or the climatic (structure) which may influence in the increase or decrease in the number of dengue fever cases in Karachi. PC1 for all the period is General atmospheric condition. PC2 for dengue period is contrast between precipitation and wind speed. PC3 is the weighted difference between maximum temperature and wind speed. PC4 for dengue period contrast between maximum and wind speed. Negative binomial and Poisson regression model are used to correlate the dengue fever incidence to climatic variable and principal component score. Relative humidity is estimated to positively influence on the chances of dengue occurrence by 1.71% times. Maximum temperature positively influence on the chances dengue occurrence by 19.48% times. Minimum temperature affects positively on the chances of dengue occurrence by 11.51% times. Wind speed is effecting negatively on the weekly occurrence of dengue fever by 7.41% times.

Keywords: principal component analysis, dengue fever, negative binomial regression model, poisson regression model

Procedia PDF Downloads 407
6881 Assessing Moisture Adequacy over Semi-arid and Arid Indian Agricultural Farms using High-Resolution Thermography

Authors: Devansh Desai, Rahul Nigam

Abstract:

Crop water stress (W) at a given growth stage starts to set in as moisture availability (M) to roots falls below 75% of maximum. It has been found that ratio of crop evapotranspiration (ET) and reference evapotranspiration (ET0) is an indicator of moisture adequacy and is strongly correlated with ‘M’ and ‘W’. The spatial variability of ET0 is generally less over an agricultural farm of 1-5 ha than ET, which depends on both surface and atmospheric conditions, while the former depends only on atmospheric conditions. Solutions from surface energy balance (SEB) and thermal infrared (TIR) remote sensing are now known to estimate latent heat flux of ET. In the present study, ET and moisture adequacy index (MAI) (=ET/ET0) have been estimated over two contrasting western India agricultural farms having rice-wheat system in semi-arid climate and arid grassland system, limited by moisture availability. High-resolution multi-band TIR sensing observations at 65m from ECOSTRESS (ECOsystemSpaceborne Thermal Radiometer Experiment on Space Station) instrument on-board International Space Station (ISS) were used in an analytical SEB model, STIC (Surface Temperature Initiated Closure) to estimate ET and MAI. The ancillary variables used in the ET modeling and MAI estimation were land surface albedo, NDVI from close-by LANDSAT data at 30m spatial resolution, ET0 product at 4km spatial resolution from INSAT 3D, meteorological forcing variables from short-range weather forecast on air temperature and relative humidity from NWP model. Farm-scale ET estimates at 65m spatial resolution were found to show low RMSE of 16.6% to 17.5% with R2 >0.8 from 18 datasets as compared to reported errors (25 – 30%) from coarser-scale ET at 1 to 8 km spatial resolution when compared to in situ measurements from eddy covariance systems. The MAI was found to show lower (<0.25) and higher (>0.5) magnitudes in the contrasting agricultural farms. The study showed the potential need of high-resolution high-repeat spaceborne multi-band TIR payloads alongwith optical payload in estimating farm-scale ET and MAI for estimating consumptive water use and water stress. A set of future high-resolution multi-band TIR sensors are planned on-board Indo-French TRISHNA, ESA’s LSTM, NASA’s SBG space-borne missions to address sustainable irrigation water management at farm-scale to improve crop water productivity. These will provide precise and fundamental variables of surface energy balance such as LST (Land Surface Temperature), surface emissivity, albedo and NDVI. A synchronization among these missions is needed in terms of observations, algorithms, product definitions, calibration-validation experiments and downstream applications to maximize the potential benefits.

Keywords: thermal remote sensing, land surface temperature, crop water stress, evapotranspiration

Procedia PDF Downloads 43
6880 Effects of Nitroxin Fertilizer on Physiological Characters Forage Millet under Drought Stress Conditions

Authors: Mohammad Darbani, Jafar Masoud Sinaki, Armaghan Abedzadeh Neyshaburi

Abstract:

An experiment was conducted as split plot factorial design using randomized complete block design in Damghan in 2012-2013 in order to investigate the effects of irrigation cut off (based on the Phenological stages of plants) on physiological properties of forage millet cultivars. The treatments included three irrigation levels (control with full irrigation, irrigation cut off when flowering started, and irrigation cut off when flowering ended) in the main plots, and applying nitroxin biofertilizer (+), not applying nitroxin biofertilizer (control), and Iranian forage millet cultivars (Bastan, Pishahang, and Isfahan) in the subplots. The highest rate of ashes and water-soluble carbohydrates content were observed in the cultivar Bastan (8.22 and 8.91%, respectively), the highest content of fiber and water (74.17 and 48.83%, respectively) in the treatment of irrigation cut off when flowering started, and the largest proline concentration (μmol/gfw-1) was seen in the treatment of irrigation cut off when flowering started. very rapid growth of millet, its short growing season, drought tolerance, its unique feature regarding harvest time, and its response to nitroxin biofertilizer can help expanding its cultivation in arid and semi-arid regions of Iran.

Keywords: irrigation cut off, forage millet, Nitroxin fertilizer, physiological properties

Procedia PDF Downloads 577
6879 Flood Risk Management in the Semi-Arid Regions of Lebanon - Case Study “Semi Arid Catchments, Ras Baalbeck and Fekha”

Authors: Essam Gooda, Chadi Abdallah, Hamdi Seif, Safaa Baydoun, Rouya Hdeib, Hilal Obeid

Abstract:

Floods are common natural disaster occurring in semi-arid regions in Lebanon. This results in damage to human life and deterioration of environment. Despite their destructive nature and their immense impact on the socio-economy of the region, flash floods have not received adequate attention from policy and decision makers. This is mainly because of poor understanding of the processes involved and measures needed to manage the problem. The current understanding of flash floods remains at the level of general concepts; most policy makers have yet to recognize that flash floods are distinctly different from normal riverine floods in term of causes, propagation, intensity, impacts, predictability, and management. Flash floods are generally not investigated as a separate class of event but are rather reported as part of the overall seasonal flood situation. As a result, Lebanon generally lacks policies, strategies, and plans relating specifically to flash floods. Main objective of this research is to improve flash flood prediction by providing new knowledge and better understanding of the hydrological processes governing flash floods in the East Catchments of El Assi River. This includes developing rainstorm time distribution curves that are unique for this type of study region; analyzing, investigating, and developing a relationship between arid watershed characteristics (including urbanization) and nearby villages flow flood frequency in Ras Baalbeck and Fekha. This paper discusses different levels of integration approach¬es between GIS and hydrological models (HEC-HMS & HEC-RAS) and presents a case study, in which all the tasks of creating model input, editing data, running the model, and displaying output results. The study area corresponds to the East Basin (Ras Baalbeck & Fakeha), comprising nearly 350 km2 and situated in the Bekaa Valley of Lebanon. The case study presented in this paper has a database which is derived from Lebanese Army topographic maps for this region. Using ArcMap to digitizing the contour lines, streams & other features from the topographic maps. The digital elevation model grid (DEM) is derived for the study area. The next steps in this research are to incorporate rainfall time series data from Arseal, Fekha and Deir El Ahmar stations to build a hydrologic data model within a GIS environment and to combine ArcGIS/ArcMap, HEC-HMS & HEC-RAS models, in order to produce a spatial-temporal model for floodplain analysis at a regional scale. In this study, HEC-HMS and SCS methods were chosen to build the hydrologic model of the watershed. The model then calibrated using flood event that occurred between 7th & 9th of May 2014 which considered exceptionally extreme because of the length of time the flows lasted (15 hours) and the fact that it covered both the watershed of Aarsal and Ras Baalbeck. The strongest reported flood in recent times lasted for only 7 hours covering only one watershed. The calibrated hydrologic model is then used to build the hydraulic model & assessing of flood hazards maps for the region. HEC-RAS Model is used in this issue & field trips were done for the catchments in order to calibrated both Hydrologic and Hydraulic models. The presented models are a kind of flexible procedures for an ungaged watershed. For some storm events it delivers good results, while for others, no parameter vectors can be found. In order to have a general methodology based on these ideas, further calibration and compromising of results on the dependence of many flood events parameters and catchment properties is required.

Keywords: flood risk management, flash flood, semi arid region, El Assi River, hazard maps

Procedia PDF Downloads 457
6878 Growth Performance, Body Linear Measurements and Body Condition Score of Savanna Brown Goats Fed Enzyme Treated Sawdust Diets as Replacement for Maize Offal and Managed Semi-intensively

Authors: Alabi Olushola John, Ogbiko Anthonia, Tsado Daniel Nma, Mbajiorgu Ejike Felix, Adama Theophilus Zubairu

Abstract:

A total of thirty (30) goats weighting between 5.8 and 7.3 kg were used to determine the growth performance, body linear measurements and body condition score of Semi intensively manged Savanna Brown goats fed enzyme treated sawdust diets (ETSD). They divided into five dietary treatments (T) groups with three replications using a completely randomized design. Treatment one (1) comprises of animals fed diet on 0 % enzyme treated sawdust while Treatment 2 (T2), Treatment 3 (T3), Treatment 4 (T4) and Treatment 5 (T5) comprises of animals fed diets containing 10, 20, 30 and 40 % enzyme treated sawdust diets, respectively. The study lasted 16 weeks. Data on growth performance parameters, body linear measurement (height at wither, body length, chest girth, hind leg length, foreleg length, facial length) and body condition score were collected and analyzed using one way analysis of variance. No significant difference (p>0.05) was observed in the all growth performance parameters and linear body measurements. However, significant difference was observed in body length and daily body length gains with highest value observed in animals fed the control diets (7.38 and 0.08 cm respectively) and animals on 30 % ETSD (7.25 and 0.07 cm respectively) and lowest values (4.75 and 0.05 cm respectively) were observed in animals fed 10 % ETSD among the treatment groups. It was, therefore, concluded that enzyme treated sawdust can be used in the diets of Savanna Brown goats up to 40 % replacement for maize offal since this treatment improved the body length and daily body length gains.

Keywords: performance, sawdust, enzyme treated, semi-intensively, replacement

Procedia PDF Downloads 64
6877 Magnetic Treatment of Irrigation Water and Its Effect on Water Salinity

Authors: Muhammad Waqar Ashraf

Abstract:

The influence of magnetic field on the structure of water and aqueous solutions are similar and can alter the physical and chemical properties of water-dispersed systems. With the application of magnetic field, hydration of salt ions and other impurities slides down and improve the possible technological characteristics of the water. Magnetic field can enhance the characteristic of water i.e. better salt solubility, kinetic changes in salt crystallization, accelerated coagulation, etc. Gulf countries are facing critical problem due to depletion of water resources and increasing food demands to cover the human needs; therefore water shortage is being increasingly accepted as a major limitation for increased agricultural production and food security. In arid and semi-arid regions sustainable agricultural development is influenced to a great extent by water quality that might be used economically and effectively in developing agriculture programs. In the present study, the possibility of using magnetized water to desalinate the soil is accounted for the enhanced dissolving capacity of the magnetized water. Magnetic field has been applied to treat brackish water. The study showed that the impact of magnetic field on saline water is sustained up to three hours (with and without shaking). These results suggest that even low magnetic field can decrease the electrical conductivity and total dissolved solids which are good for the removal of salinity from the irrigated land by using magnetized water.

Keywords: magnetic treatment, saline water, hardness of water, removal of salinity

Procedia PDF Downloads 459
6876 Experimental Evaluation of Stand Alone Solar Driven Membrane Distillation System

Authors: Mejbri Sami, Zhani Khalifa, Zarzoum Kamel, Ben Bacha Habib, Koschikowski Joachim, Pfeifle Daniel

Abstract:

Many places worldwide, especially arid and semi-arid remote regions, are suffering from the lack of drinkable water and the situation will be aggravated in the near future. Furthermore, remote areas are characterised by lack of conventional energy sources, skilled personnel and maintenance facilities. Therefore, the development of small to medium size, stand-alone and robust solar desalination systems is needed to provide independent fresh water supply in remote areas. This paper is focused on experimental studies on compact membrane distillation (MD) solar desalination prototype located at the Mechanical Engineering Department site, Kairouan University, Kairouan, Tunisia. The pilot system is designed and manufactured as a part of a research and development project funded by the MESRS/BMBF. The pilot system is totally autonomous. The electrical energy required to operate the unit is generated through a field of 4 m² of photovoltaic panels, and the heating of feed water is provided by a field of 6 m² of solar collectors. The Kairouan plant performance of the first few months of operation is presented. The highest freshwater production of 150 L/d is obtained on a sunny day in July of 633 W/m²d.

Keywords: experimental, membrane distillation, solar desalination, Permeat gap

Procedia PDF Downloads 104
6875 Temporal Variation of Surface Runoff and Interrill Erosion in Different Soil Textures of a Semi-arid Region, Iran

Authors: Ali Reza Vaezi, Naser Fakori Ivand, Fereshteh Azarifam

Abstract:

Interrill erosion is the detachment and transfer of soil particles between the rills due to the impact of raindrops and the shear stress of shallow surface runoff. This erosion can be affected by some soil properties such as texture, amount of organic matter and stability of soil aggregates. Information on the temporal variation of interrill erosion during a rainfall event and the effect soil properties have on it can help in understanding the process of runoff production and soil loss between the rills in hillslopes. The importance of this study is especially grate in semi-arid regions, where the soil is weakly aggregated and vegetation cover is mostly poor. Therefore, this research was conducted to investigate the temporal variation of surface flow and interrill erosion and the effect of soil properties on it in some semi-arid soils. A field experiment was done in eight different soil textures under simulated rainfalls with uniform intensity. A total of twenty four plots were installed for eight study soils with three replicates in the form of a random complete block design along the land. The plots were 1.2 m (length) × 1 m (width) in dimensions which designed with a distance of 3 m from each other across the slope. Then, soil samples were purred into the plots. The plots were surrounded by a galvanized sheet, and runoff and soil erosion equipment were placed at their outlets. Rainfall simulation experiments were done using a designed portable simulator with an intensity of 60 mm per hour for 60 minutes. A plastic cover was used around the rainfall simulator frame to prevent the impact of the wind on the free fall of water drops. Runoff production and soil loss were measured during 1 hour time with 5-min intervals. In order to study soil properties, such as particle size distribution, aggregate stability, bulk density, ESP and Ks were determined in the laboratory. Correlation and regression analysis was done to determine the effect of soil properties on runoff and interrill erosion. Results indicated that the study soils have lower booth organic matter content and aggregate stability. The soils, except for coarse textured textures, are calcareous and with relatively higher exchangeable sodium percentages (ESP). Runoff production and soil loss didn’t occur in sand, which was associated with higher infiltration and drainage rates. In other study soils, interrill erosion occurred simultaneously with the generation of runoff. A strong relationship was found between interrill erosion and surface runoff (R2 = 0.75, p< 0.01). The correlation analysis showed that surface runoff was significantly affected by some soil properties consisting of sand, silt, clay, bulk density, gravel, hydraulic conductivity (Ks), lime (calcium carbonate), and ESP. The soils with lower Ks such as fine-textured soils, produced higher surface runoff and more interrill erosion. In the soils, Surface runoff production temporally increased during rainfall and finally reached a peak after about 25-35 min. Time to peak was very short (30 min) in fine-textured soils, especially clay, which was related to their lower infiltration rate.

Keywords: erosion plot, rainfall simulator, soil properties, surface flow

Procedia PDF Downloads 35
6874 Study of the Effect of Humic Acids on Soil Salinity Reduction

Authors: S. El Hasini, M. El Azzouzi, M. De Nobili, K. Azim, A. Zouahri

Abstract:

Soil salinization is one of the most severe environmental hazards which threaten sustainable agriculture in arid and semi-arid regions, including Morocco. In this regard the application of organic matter to saline soil has confirmed its effectiveness. The present study was aimed to examine the effect of humic acid which represent, among others, the important component of organic matter that contributes to reduce soil salinity. In fact, different composts taken from Agadir (Morocco), with different C/N ratio, were tested. After extraction and purification of humic acid, the interaction with Na2CO3 was carried out. The reduction of salinity is calculated as a value expressed in mg Na2CO3 equivalent/g HA. The results showed that humic acid had generally a significant effect on salinity. In that respect, the hypothesis proposed that carboxylic groups of humic acid create bonds with excess sodium in the soil to form a coherent complex which descends by leaching operation. The comparison between composts was based on C/N ratio, it showed that the compost with the lower ratio C/N had the most important effect on salinity reduction, whereas the compost with higher C/N ratio was less effective. The study is attended also to evaluate the quality of each compost by determining the humification index, we noticed that the compost which have the lowest C/N (20) ratio was relatively less stable, where a greater predominance of the humified substances, when the compost with C/N ratio is 35 exhibited higher stability.

Keywords: compost, humic acid, organic matter, salinity

Procedia PDF Downloads 206
6873 Physiological Response of Water-Restricted Xhosa Goats Supplemented with Vitamin C

Authors: O.F. Akinmoladun, F.N. Fon, C.T. Mpendulo, O. Okoh

Abstract:

The sustainability of livestock production is under threat as a result of water scarcity, fluctuating precipitation, and high environmental temperature. These combined stressors have impacted negatively on general animal production and welfare, necessitating a very reliable and cost-effective management practices, especially in arid and water-limited regions of the world. Instead of the above, this study was designed to investigate the growth performance and physiological response of water-restricted Xhosa ear-lobe goats fed diets supplemented with single or multiple vitamin C (VC) during summer. The total forty-eight goats used for the experiment were balanced for body weight and randomly assigned to the seven treatment groups (seven goats/treatment): GI (W100%); GII (W70%); GIII (W50%); GIV (W70%+3g/day VC); GV ((W50% +3g/day VC); GVI (W70%+3g/d VC+extra 5g on every eight-day); GVII (W50%+3g/d VC+extra 5g on every eight-day). The design was a complete randomized design and VC was administered per os. At the end of the 75-day feeding trial, GIII (W50%) animals were the most affected (P<0.05) and the effect was more pronounced in their body condition scores (BCs). Weight loss and depression in feed intake due to water restriction (P<0.05) were attenuated by VC treated groups (GIV-GVII). Changes in body thermal gradient (BTG) and rectal temperature (RcT) were similar (P>0.05) across the various experimental groups. The attenuation effect of VC was significant in responses to respiratory rate (RR) and cortisol. Supplementation of VC (either single or multiple) did not significantly (P>0.05) improve water restriction effect on body condition scores (BCs) and FAMACHA©. The current study found out that Xhosa ear lobe goats can adapt to the prevailing bioclimatic changes and limited water intake. However, supplementation of vitamin C can be beneficial at modulating these stressful stimuli. Continuous consistencies in the outcome of vitamin C on water-stressed animals can help validate recommendations especially to farmers in the arid and water-limited regions across the globe.

Keywords: vitamin C, Xhosa ear-lobe, thermotolerance, water stress

Procedia PDF Downloads 99
6872 Plant Supporting Units (Ekobox) Application Project for Increasing Planting Success in Arid and Semi-Arid Areas

Authors: Gürcan D. Baysal, Ali Tanış

Abstract:

In this study, samples of plant types including rose hip (Rosa canina L.), jujube (Ziziphus jujube), sea buckthorn (Hippophae rhamnoides), elderberry (Sambucus nigra), apricot (Prunus armeniaca), scots pine (Pinus sylvestris), and cedar of Lebanon (Cedrus libani) were grown using plant supporting units called Ekobox and drip irrigation systems in the Karapınar, Konya region of Turkey to reveal the efficiency of Ekobox and drip irrigation compared against a control with no irrigation. The plant diameter, height, and survival rates were determined, compared with each other, and statistically analyzed. According to the statistical analysis of the results, Ekobox applications resulted in the highest values for survival rate, diameter, and height measurements whereas the lowest values were determined in the control groups. These results indicate that the cultivation of plants with Ekobox may help protect against the loss of fertile soils as an effective mechanism for combating erosion and desertification. These advantages may also lead to a lasting economic effect on the cultivation of plants by locals of the Karapınar, Konya province who suffer from an ever-decreasing underground water level as a result of agricultural consumption.

Keywords: drip irrigation, ekobox, plant diameter, plant height, plant survival rate

Procedia PDF Downloads 96
6871 Comprehensive Regional Drought Assessment Index

Authors: A. Zeynolabedin, M. A. Olyaei, B. Ghiasi

Abstract:

Drought is an inevitable part of the earth’s climate. It occurs regularly with no clear warning and without recognizing borders. In addition, its impact is cumulative and not immediately discernible. Iran is located in a semi-arid region where droughts occur periodically as natural hazard. Standardized Precipitation Index (SPI), Surface Water Supply Index (SWSI), and Palmer Drought Severity Index (PDSI) are three well-known indices which describe drought severity; each has its own advantages and disadvantages and can be used for specific types of drought. These indices take into account some factors such as precipitation, reservoir storage and discharge, temperature, and potential evapotranspiration in determining drought severity. In this paper, first all three indices are calculated in Aharchay river watershed located in northwestern part of Iran in East Azarbaijan province. Next, based on two other important parameters which are groundwater level and solar radiation, two new indices are defined. Finally, considering all five aforementioned indices, a combined drought index (CDI) is presented and calculated for the region. This combined index is based on all the meteorological, hydrological, and agricultural features of the region. The results show that the most severe drought condition in Aharchay watershed happened in Jun, 2004. The result of this study can be used for monitoring drought and prepare for the drought mitigation planning.

Keywords: drought, GIS, intensity index, regional assessment, variation maps

Procedia PDF Downloads 213
6870 Energy Retrofitting Application Research to Achieve Energy Efficiency in Hot-Arid Climates in Residential Buildings: A Case Study of Saudi Arabia

Authors: A. Felimban, A. Prieto, U. Knaack, T. Klein

Abstract:

This study aims to present an overview of recent research in building energy-retrofitting strategy applications and analyzing them within the context of hot arid climate regions which is in this case study represented by the Kingdom of Saudi Arabia. The main goal of this research is to do an analytical study of recent research approaches to show where the primary gap in knowledge exists and outline which possible strategies are available that can be applied in future research. Also, the paper focuses on energy retrofitting strategies at a building envelop level. The study is limited to specific measures within the hot arid climate region. Scientific articles were carefully chosen as they met the expression criteria, such as retrofitting, energy-retrofitting, hot-arid, energy efficiency, residential buildings, which helped narrow the research scope. Then the papers were explored through descriptive analysis and justified results within the Saudi context in order to draw an overview of future opportunities from the field of study for the last two decades. The conclusions of the analysis of the recent research confirmed that the field of study had a research shortage on investigating actual applications and testing of newly introduced energy efficiency applications, lack of energy cost feasibility studies and there was also a lack of public awareness. In terms of research methods, it was found that simulation software was a major instrument used in energy retrofitting application research. The main knowledge gaps that were identified included the need for certain research regarding actual application testing; energy retrofitting strategies application feasibility; the lack of research on the importance of how strategies apply first followed by the user acceptance of developed scenarios.

Keywords: energy efficiency, energy retrofitting, hot arid, Saudi Arabia

Procedia PDF Downloads 92
6869 A Semi-Markov Chain-Based Model for the Prediction of Deterioration of Concrete Bridges in Quebec

Authors: Eslam Mohammed Abdelkader, Mohamed Marzouk, Tarek Zayed

Abstract:

Infrastructure systems are crucial to every aspect of life on Earth. Existing Infrastructure is subjected to degradation while the demands are growing for a better infrastructure system in response to the high standards of safety, health, population growth, and environmental protection. Bridges play a crucial role in urban transportation networks. Moreover, they are subjected to high level of deterioration because of the variable traffic loading, extreme weather conditions, cycles of freeze and thaw, etc. The development of Bridge Management Systems (BMSs) has become a fundamental imperative nowadays especially in the large transportation networks due to the huge variance between the need for maintenance actions, and the available funds to perform such actions. Deterioration models represent a very important aspect for the effective use of BMSs. This paper presents a probabilistic time-based model that is capable of predicting the condition ratings of the concrete bridge decks along its service life. The deterioration process of the concrete bridge decks is modeled using semi-Markov process. One of the main challenges of the Markov Chain Decision Process (MCDP) is the construction of the transition probability matrix. Yet, the proposed model overcomes this issue by modeling the sojourn times based on some probability density functions. The sojourn times of each condition state are fitted to probability density functions based on some goodness of fit tests such as Kolmogorov-Smirnov test, Anderson Darling, and chi-squared test. The parameters of the probability density functions are obtained using maximum likelihood estimation (MLE). The condition ratings obtained from the Ministry of Transportation in Quebec (MTQ) are utilized as a database to construct the deterioration model. Finally, a comparison is conducted between the Markov Chain and semi-Markov chain to select the most feasible prediction model.

Keywords: bridge management system, bridge decks, deterioration model, Semi-Markov chain, sojourn times, maximum likelihood estimation

Procedia PDF Downloads 180
6868 Significance of Treated Wasteater in Facing Consequences of Climate Change in Arid Regions

Authors: Jamal A. Radaideh, A. J. Radaideh

Abstract:

Being a problem threatening the planet and its ecosystems, the climate change has been considered for a long time as a disturbing topic impacting water resources in Jordan. Jordan is expected for instance to be highly vulnerable to climate change consequences given its unbalanced distribution between water resources availability and existing demands. Thus, action on adaptation to climate impacts is urgently needed to cope with the negative consequences of climate change. Adaptation to global change must include prudent management of treated wastewater as a renewable resource, especially in regions lacking groundwater or where groundwater is already over exploited. This paper highlights the expected negative effects of climate change on the already scarce water sources and to motivate researchers and decision makers to take precautionary measures and find alternatives to keep the level of water supplies at the limits required for different consumption sectors in terms of quantity and quality. The paper will focus on assessing the potential for wastewater recycling as an adaptation measure to cope with water scarcity in Jordan and to consider wastewater as integral part of the national water budget to solve environmental problems. The paper also identified a research topic designed to help the nation progress in making the most appropriate use of the resource, namely for agricultural irrigation. Wastewater is a promising alternative to fill the shortage in water resources, especially due to climate changes, and to preserve the valuable fresh water to give priority to securing drinking water for the population from these resources and at the same time raise the efficiency of the use of available resources. Jordan has more than 36 wastewater treatment plants distributed throughout the country and producing about 386,000 CM/day of reclaimed water. According to the reports of water quality control programs, more than 85 percent of this water is of a quality that is completely identical to the quality suitable for irrigation of field crops and forest trees according to the requirements of Jordanian Standard No. 893/2006.

Keywords: climate change effects on water resources, adaptation on climate change, treated wastewater recycling, arid and semi-arid regions, Jordan

Procedia PDF Downloads 92
6867 Solar Calculations of Modified Arch (Semi-Spherical) Type Greenhouse System for Bayburt City

Authors: Uğur Çakir, Erol Şahin, Kemal Çomakli, Ayşegül Çokgez Kuş

Abstract:

Solar energy is thought as main source of all energy sources on the world and it can be used in many applications like agricultural areas, heating cooling or direct electricity production directly or indirectly. Greenhousing is the first one of the agricultural activities that solar energy can be used directly in. Greenhouses offer us suitable conditions which can be controlled easily for the growth of the plant and they are made by using a covering material that allows the sun light entering into the system. Covering material can be glass, fiber glass, plastic or another transparent element. This study investigates the solar energy usability rates and solar energy benefiting rates of a semi-spherical (modified arch) type greenhouse system according to different orientations and positions which exists under climatic conditions of Bayburt. In the concept of this study it is tried to determine the best direction and best sizes of a semi-spherical greenhouse to get best solar benefit from the sun. To achieve this aim a modeling study is made by using MATLAB. However this modeling study is running for some determined shapes and greenhouses it can be used for different shaped greenhouses or buildings. The basic parameters are determined as greenhouse azimuth angle, the rate of size of long edge to short and seasonal solar energy gaining of greenhouse.

Keywords: greenhousing, solar energy, direct radiation, renewable energy

Procedia PDF Downloads 455
6866 Cultivation of Stenocereus Spp. as an Option to Reduce Crop Loss Problems in High Marginalization States in Mexico

Authors: Abraham Castro-Alvarez, Luisaldo Sandate-Flores, Roberto Parra-Saldivar

Abstract:

The losing of crops during the whole production process is a problem that is affecting farmers in the whole world, as climate change affects the weather behavior. Stenocereus spp. is a tropical, exotic and endemic columnar cacti, it produces a colored and expensive fruit known how “pitaya”. The quality and value of the fruit, these species represent an attractive option for economical development in arid and semi-arid regions. This fruits are produced in Mexico, mainly in 4 regions, Mixteca Oaxaca-Puebla, Michoacan, Sinaloa-Sonora, Jalisco-Zacatecas. Pitaya can be an option to try mixed crop in this states due to the resistance to hard weather conditions. And also because of the marginalization problems that exist in these townships. As defined by the Population National Council it consists in the absence of development opportunities and the lack of capacity to get them. According to an analysis done in EsriPress ArcGis 10.1 the potential area in the country is almost the half of the territory being the total area of Mexico 1,965,249 km2 and the area with potential to produce pitaya 960,527 km2. This area covers part of the most affected townships that also have a few options of maize varieties making even harder the production of maize and exposing farmers to crop losing if conditions are good enough. Making pitaya a good option for these farmers to have an economic backup in their productions.

Keywords: maize, pitaya, rain fed, Stenocereus

Procedia PDF Downloads 296
6865 The Impact of Passive Design Factors on House Energy Efficiency for New Cities in Egypt

Authors: Mahmoud Mourad, Ahmad Hamza H. Ali, S.Ookawara, Ali Kamel Abdel-Rahman, Nady M. Abdelkariem

Abstract:

The energy consumption of a house can be affected simultaneously by many building design factors related to its main architectural features, building elements and materials. This study focuses on the impact of passive design factors on the annual energy consumption of a suggested prototype house for single-family detached houses of 240 m2 in two floors, each floor of 120 m2 in new Egyptian cities located in (Alexandria - Cairo - Siwa - Assuit – Aswan) which resemble five different climatic zones (Northern coast – Northern upper Egypt - dessert region- Southern upper Egypt – South Egypt) respectively. This study present the effect of the passive design factors affecting the building energy consumption as building orientation, building material (walls, roof and slabs), building type (residential, educational, commercial), building occupancy (type of occupant, no. of occupant, age), building landscape and site selection, building envelope and fenestration (glazing material, shading), and building plan form. This information can be used to estimate the approximate saving in energy consumption, which would result on a change in the design datum for the future houses development, and to identify the major design problems for energy efficiency. To achieve the above objective, this paper presents a study for the factors affecting on the building energy consumption in the hot arid area in new Egyptian cities in five different climatic zones , followed by defining the energy needs for different utilization in this suggested prototype house. Consequently, a detailed analysis of the available Renewable Energy utilizations technologies used in the suggested home, and a calculation of the energy as a function of yearly distribution that required for this home will presented. The results obtained from building annual energy analyses show that architecture passive design factors saves about 35% of the annual energy consumption. It shows also passive cooling techniques saves about 45%, and renewable energy systems saves about 40% of the annual energy needs for this proposed home depending on the cities location on the climatic zones.

Keywords: architecture passive design factors, energy efficient homes, Egypt new cites, renewable energy technologies

Procedia PDF Downloads 370
6864 Entomological Study of Pests of Olive Trees in the Region of Batna - Algeria

Authors: Smail Chafaa, Abdelkrim Si Bachir

Abstract:

Our work aims to study the insect diversity based on bioclimatic levels of pests in olive cultures (Olea europea L.) in the area of Batna (arid and semi arid north eastern Algeria) during the period from January 2011 to May 2011. Several sampling techniques were used, those of hunting on sight, visual inspection, hatches traps, colored traps, Japanese umbrella and sweep net. We have identified in total, 2311 individuals with results in inventory 206 species divided to 74 families and 11 orders, including Coleoptera order is quantitatively the most represented with 47.1%. The most dominant diet in our inventory is the phytophagous. Between the herbivorous insects that we have listed and which are the main olive pest of olive cultivation; we quote the olive fly (Bactrocera oleae), cochineal purple olive (Parlatoria oleae) the psyllid olive (Euphyllura olivina) and olive Trips (Liothrips oleae). The distribution of species between stations shows that Boumia resort with the most number of species (113) compared to other resorts and beetles are also better represented in three groves. Total wealth is high in Boumia station compared with the others stations. The values of (H') exceeding 3.9 bits for all the stations studied indicate a specific wealth and diversity of ecological nests in insect species. The values of equitability are near the unit; that suggests a balance between the numbers of insect populations sampled in the various stations.

Keywords: entomology, olive, grove, batna, Algeria

Procedia PDF Downloads 313
6863 Determination of Suction of Arid Region Soil Using Filter Paper Method

Authors: Bhavita S. Dave, Chandresh H. Solanki, Atul K. Desai

Abstract:

Soils of Greater Himalayas mostly pertain to Leh & Ladakh, Lahaul & Sppiti, & high reaches to Uttarakhand. The moisture regime is aridic. The arid zone starts from Baralacha pass in Lahaul and covers the entire Spiti valley in the district of Lahaul & Spiti, Himachal Pradesh of India. Here, the present study is an attempt to determine the suction value of soil collected from the arid zone of Spiti valley for different freezing-thawing cycles considering the climate ranges of Spiti valley. Suction is the basic and most important parameter which influences the behavior of unsaturated soil. It is essential to determine the suction value of unsaturated soil before other tests like shear test, and permeability. Basically, it is the negative pore water pressure in partially saturated soil measured in terms of the height of the water column. The filter paper method has been used for the study as an economical approach to evaluate suction. It is the only method from which both contact and non-contact suction can be deduced. In this study, soil specimens were subjected to 0, 1, 3, & 5 freezing-thawing (F-T) cycles for different degrees of saturation to have a wide range of suction, and soil freezing characteristic curves (SFCC) were formulated for all F-T cycles. The result data collected from the experiments have shown best-fitted values using Fredlund & Xing model for each SFCC.

Keywords: suction, arid region soil, soil freezing characteristic curve, freezing-thawing cycle

Procedia PDF Downloads 194