Search results for: red sweet pepper powder
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1087

Search results for: red sweet pepper powder

757 Eating Patterns and Food Coping Strategy for Students of Prof. Dr. Hamka University During Covid-19 Pandemic

Authors: Chica Riska Ashari, Yoli Farradika

Abstract:

Background: Nutritional problems arise due to food security problems in the family, such as the ability of families to obtain food which is common in poor people due to lack of economic access to buy food. For this reason, it is hoped that there will be actions or behaviors that can be taken to fulfill their food or known as the Food Coping Strategy. The purpose of this study is to identify the eating patterns and Food Coping strategies of household students of prof. DR. HAMKA Muhammadiyah University Jakarta during the covid-19 pandemic. Methods: This study is a quantitative observational study with a cross-sectional approach. The dependent variable in this study is food coping strategies and eating patterns. The location of this research is Prof. DR. Hamka Muhammadiyah University. The population in this study were all students of Prof. DR. HAMKA Muhammadiyah University. The sampling technique is purposive sampling. The minimum number of samples in this study is 97 people with a response rate or drop out an estimate of 10%, so the total number of samples was 107 people. Statistical analysis with descriptive analysis. Results: The results showed that most of the food coping strategies were carried out by the students of the household of Prof. DR. HAMKA Muhammadiyah University, were buying the cheaper food (91.6%), then changing the priority of buying food (75.7%) and household members who carry out this food coping strategy are mothers (59.8%) then followed by students themselves (57, 9%). The diet of most students at the Prof. DR. HAMKA Muhammadiyah University in a day was fond of consuming sugar and foods containing sugar (candy, sugar, honey, sweet drinks) (98.1%) then eggs (97.2%). Conclusion: Food coping strategies are mostly used by households students at Prof. DR. HAMKA Muhammadiyah University who were buying the cheaper food and the member who did this behavior the most were the mothers. The diet of most students at Prof. DR. HAMKA Muhammadiyah University in a day was fond of consuming sugar and foods containing sugar (candy, sugar, honey, sweet drinks).

Keywords: behavior, eating patterns, food coping strategies, food security, students

Procedia PDF Downloads 150
756 Green Synthesis Approach for Renewable Textile Coating and Their Mechanical and Thermal Properties

Authors: Heba Gamal Abd Elhaleem Elsayed, Nour F Attia

Abstract:

The extensive use of textile and textile based materials in various applications including industrial applications are increasing regularly due to their interesting properties which require rapid development in their functions to be adapted to these applications [1-3]. Herein, green, new and renewable smart coating was developed for furniture textile fabrics. Facile and single step method was used for synthesis of green coating based on mandarin peel and chitosan. As, the mandarin peel as fruit waste material was dried, grinded and directly dispersed in chitosan solution producing new green coating composite and then coated on textile fabrics. The mass loadings of green mandarin peel powder was varied on 20-70 wt% and optimized. Thermal stability of coated textile fabrics was enhanced and char yield was improved compared to uncoated one. The charring effect of mandarin peel powder coated samples was significantly enhanced anticipating good flame retardancy effect. The tensile strength of the coated textile fabrics was improved achieved 35% improvement compared to uncoated sample. The interaction between the renewable coating and textile was evaluated. The morphology of uncoated and coated textile fabrics was studied using microscopic technique. Additionally, based on thermal properties of mandarin peel powder it could be promising flame retardant for textile fabrics. This study open new avenues for finishing textile fabrics with enhanced thermal, flame retardancy and mechanical properties with cost-effective and renewable green and effective coating

Keywords: flame retardant , Thermal Properties, Textile Coating , Renewable Textile

Procedia PDF Downloads 118
755 Microstructure and Sintering of Boron-Alloyed Martensitic Stainless Steel

Authors: Ming-Wei Wu, Yu-Jin Tsai, Ching-Huai Chang

Abstract:

Liquid phase sintering (LPS) is a versatile technique for achieving effective densification of powder metallurgy (PM) steels and other materials. The aim of this study was to examine the influences of 0.6 wt% boron on the microstructure and LPS behavior of boron-alloyed 410 martensitic stainless steel. The results showed that adding 0.6 wt% boron can obviously promote the LPS due to a eutectic reaction and increase the sintered density of 410 stainless steel. The density was much increased by 1.06 g/cm³ after 1225ºC sintering. Increasing the sintering temperature from 1225ºC to 1275ºC did not obviously improve the sintered density. After sintering at 1225ºC~1275ºC, the matrix was fully martensitic, and intragranular borides were extensively found due to the solidification of eutectic liquid. The microstructure after LPS consisted of the martensitic matrix and (Fe, Cr)2B boride, as identified by electron backscatter diffraction (EBSD) and electron probe micro-analysis (EPMA).

Keywords: powder metallurgy, liquid phase sintering, stainless steel, martensite, boron, microstructure

Procedia PDF Downloads 236
754 Autophagy Acceleration and Self-Healing by the Revolution against Frequent Eating, High Glycemic and Unabsorbable Substances as One Meal a Day Plan

Authors: Reihane Mehrparvar

Abstract:

Human age could exceed further by altering gene expression through food intaking, although as a consequence of recent century eating patterns, human life-span getting shorter by emerging irregulating in autophagy mechanism, insulin, leptin, gut microbiota which are important etiological factors of type-2 diabetes, obesity, infertility, cancer, metabolic and autoimmune diseases. However, restricted calorie intake and vigorous exercise might be beneficial for losing weight and metabolic regulation in a short period but could not be implementable in the long term as a way of life. Therefore, the lack of a dietary program that is compatible with the genes of the body is essential. Sweet and high-glycemic-index (HGI) foods were associated with type-2 diabetes and cancer morbidity. The neuropsychological perspective characterizes the inclination of sweet and HGI-food consumption as addictive behavior; hence this process engages preference of gut microbiota, neural node, and dopaminergic functions. Moreover, meal composition is not the only factor that affects body hemostasis. In this narrative review, it is believed to attempt to investigate how the body responded to different food intakes and represent an accurate model based on current evidence. Eating frequently and ingesting unassimilable protein and carbohydrates may not be compatible with human genes and could cause impairments in the self-renovation mechanism. This trajectory indicates our body is more adapted to starvation and eating animal meat and marrow. Here has been recommended a model that takes into account three important factors: frequent eating, meal composition, and circadian rhythm, which may offer a promising intervention for obesity, inflammation, cardiovascular, autoimmune disorder, type-2 diabetes, insulin resistance, infertility, and cancer through intensifying autophagy-mechanism and eliminate medical costs.

Keywords: metabolic disease, anti-aging, type-2 diabetes, autophagy

Procedia PDF Downloads 60
753 Tailoring Structural, Thermal and Luminescent Properties of Solid-State MIL-53(Al) MOF via Fe³⁺ Cation Exchange

Authors: T. Ul Rehman, S. Agnello, F. M. Gelardi, M. M. Calvino, G. Lazzara, G. Buscarino, M. Cannas

Abstract:

Metal-Organic Frameworks (MOFs) have emerged as promising candidates for detecting metal ions owing to their large surface area, customizable porosity, and diverse functionalities. In recent years, there has been a surge in research focused on MOFs with luminescent properties. These frameworks are constructed through coordinated bonding between metal ions and multi-dentate ligands, resulting in inherent fluorescent structures. Their luminescent behavior is influenced by factors like structural composition, surface morphology, pore volume, and interactions with target analytes, particularly metal ions. MOFs exhibit various sensing mechanisms, including photo-induced electron transfer (PET) and charge transfer processes such as ligand-to-metal (LMCT) and metal-to-ligand (MLCT) transitions. Among these, MIL-53(Al) stands out due to its flexibility, stability, and specific affinity towards certain metal ions, making it a promising platform for selective metal ion sensing. This study investigates the structural, thermal, and luminescent properties of MIL-53(Al) metal-organic framework (MOF) upon Fe3+ cation exchange. Two separate sets of samples were prepared to activate the MOF powder at different temperatures. The first set of samples, referred to as MIL-53(Al), activated (120°C), was prepared by activating the raw powder in a glass tube at 120°C for 12 hours and then sealing it. The second set of samples, referred to as MIL-53(Al), activated (300°C), was prepared by activating the MIL-53(Al) powder in a glass tube at 300°C for 70 hours. Additionally, 25 mg of MIL-53(Al) powder was dispersed in 5 mL of Fe3+ solution at various concentrations (0.1-100 mM) for the cation exchange experiment. The suspension was centrifuged for five minutes at 10,000 rpm to extract MIL-53(Al) powder. After three rounds of washing with ultrapure water, MIL-53(Al) powder was heated at 120°C for 12 hours. For PXRD and TGA analyses, a sample of the obtained MIL-53(Al) was used. We also activated the cation-exchanged samples for time-resolved photoluminescence (TRPL) measurements at two distinct temperatures (120 and 300°C) for comparative analysis. Powder X-ray diffraction patterns reveal amorphization in samples with higher Fe3+ concentrations, attributed to alterations in coordination environments and ion exchange dynamics. Thermal decomposition analysis shows reduced weight loss in Fe3+-exchanged MOFs, indicating enhanced stability due to stronger metal-ligand bonds and altered decomposition pathways. Raman spectroscopy demonstrates intensity decrease, shape disruption, and frequency shifts, indicative of structural perturbations induced by cation exchange. Photoluminescence spectra exhibit ligand-based emission (π-π* or n-π*) and ligand-to-metal charge transfer (LMCT), influenced by activation temperature and Fe3+ incorporation. Quenching of luminescence intensity and shorter lifetimes upon Fe3+ exchange result from structural distortions and Fe3+ binding to organic linkers. In a nutshell, this research underscores the complex interplay between composition, structure, and properties in MOFs, offering insights into their potential for diverse applications in catalysis, gas storage, and luminescent devices.

Keywords: Fe³⁺ cation exchange, luminescent metal-organic frameworks (LMOFs), MIL-53(Al), solid-state analysis

Procedia PDF Downloads 26
752 Effect of Non-Fat Solid Ratio on Bloom Formation in Untempered Chocolate

Authors: Huanhuan Zhao, Bryony J. James

Abstract:

The relationship between the non-fat solid ratio and bloom formation in untempered chocolate was investigated using two types of chocolate: model chocolate made of varying cocoa powder ratios (46, 49.5 and 53%) and cocoa butter, and commercial Lindt chocolate with varying cocoa content (70, 85 and 90%). X-ray diffraction and colour measurement techniques were used to examine the polymorphism of cocoa butter and the surface whiteness index (WI), respectively. The polymorphic transformation of cocoa butter was highly correlated with the changes of WI during 30 days of storage since it led to the redistribution of fat within the chocolate matrix and resulted in a bloomed surface. The change in WI indicated a similar bloom rate in the chocolates, but the model chocolates with a higher cocoa powder ratio had more pronounced total bloom. This is due to a higher ratio of non-fat solid particles on the surface resulting in microscopic changes in morphology. The ratio of non-fat solids is an important factor in determining the extent of bloom but not the bloom rate.

Keywords: untempered chocolate, microstructure of bloom, polymorphic transformation, surface whiteness

Procedia PDF Downloads 327
751 Development of Agomelatine Loaded Proliposomal Powders for Improved Intestinal Permeation: Effect of Surface Charge

Authors: Rajasekhar Reddy Poonuru, Anusha Parnem

Abstract:

Purpose: To formulate proliposome powder of agomelatine, an antipsychotic drug, and to evaluate physicochemical, in vitro characters and effect of surface charge on ex vivo intestinal permeation. Methods: Film deposition technique was employed to develop proliposomal powders of agomelatin with varying molar ratios of lipid Hydro Soy PC L-α-phosphatidylcholine (HSPC) and cholesterol with fixed sum of drug. With the aim to derive free flowing and stable proliposome powder, fluid retention potential of various carriers was examined. Liposome formation and number of vesicles formed for per mm3 up on hydration, vesicle size, and entrapment efficiency was assessed to deduce an optimized formulation. Sodium cholate added to optimized formulation to induce surface charge on formed vesicles. Solid-state characterization (FTIR, DSC, and XRD) was performed with the intention to assess native crystalline and chemical behavior of drug. The in vitro dissolution test of optimized formulation along with pure drug was evaluated to estimate dissolution efficiency (DE) and relative dissolution rate (RDR). Effective permeability co-efficient (Peff(rat)) in rat and enhancement ratio (ER) of drug from formulation and pure drug dispersion were calculated from ex vivo permeation studies in rat ileum. Results: Proliposomal powder formulated with equimolar ratio of HSPC and cholesterol ensued in higher no. of vesicles (3.95) with 90% drug entrapment up on hydration. Neusilin UFL2 was elected as carrier because of its high fluid retention potential (4.5) and good flow properties. Proliposome powder exhibited augmentation in DE (60.3 ±3.34) and RDR (21.2±01.02) of agomelation over pure drug. Solid state characterization studies demonstrated the transformation of native crystalline form of drug to amorphous and/or molecular state, which was in correlation with results obtained from in vitro dissolution test. The elevated Peff(rat) of 46.5×10-4 cm/sec and ER of 2.65 of drug from charge induced proliposome formulation with respect to pure drug dispersion was assessed from ex vivo intestinal permeation studies executed in ileum of wistar rats. Conclusion: Improved physicochemical characters and ex vivo intestinal permeation of drug from charge induced proliposome powder with Neusilin UFL2 unravels the potentiality of this system in enhancing oral delivery of agomelatin.

Keywords: agomelatin, proliposome, sodium cholate, neusilin

Procedia PDF Downloads 105
750 Mechanochemical Behaviour of Aluminium–Boron Oxide–Melamine Ternary System

Authors: Ismail Seckin Cardakli, Mustafa Engin Kocadagistan, Ersin Arslan

Abstract:

In this study, mechanochemical behaviour of aluminium - boron oxide - melamine ternary system was investigated by high energy ball milling. According to the reaction Al + B₂O₃ = Al₂O₃ + B, stochiometric amount of aluminium and boron oxide with melamine up to ten percent of total weight was used in the experiments. The powder characterized by X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR) and Scanning Electron Microscopy (SEM) after leaching of product by 1M HCl acid. Results show that mechanically induced self-sustaining reaction (MSR) between aluminium and boron oxide takes place after four hours high energy ball milling. Al₂O₃/h-BN composite powder is obtained as the product of aluminium - boron oxide - melamine ternary system.

Keywords: high energy ball milling, hexagonal boron nitride, mechanically induced self-sustaining reaction, melamine

Procedia PDF Downloads 123
749 Eco-Efficient Self-Compacting Concrete for Sustainable Building

Authors: Valeria Corinaldesi

Abstract:

In general, for self-compacting concrete production, a high volume of very fine materials is necessary in order to make the concrete more fluid and cohesive. For this purpose, either rubble powder (which is a powder obtained from suitable treatment of rubble from building demolition) or ash from municipal solid waste incineration was used as mineral addition in order to ensure adequate rheological properties of the self-compacting concrete in the absence of any viscosity modifying admixture. Recycled instead of natural aggregates were used by completely substituting the coarse aggregate fraction. The fresh concrete properties were evaluated through the slump flow, the V-funnel and the L-box test. Compressive strength and segregation resistance were also determined. The results obtained showed that self-compacting concrete could be successfully developed by incorporating both recycled aggregates and waste powders with an improved quality of the concrete surface finishing. This encouraging goal, beyond technical performance, matches with the more and more widely accepted sustainable development issues.

Keywords: sustainable concrete, self compacting concrete, municipal solid waste, recycled aggregate, sustainable building

Procedia PDF Downloads 53
748 Macroscopic Support Structure Design for the Tool-Free Support Removal of Laser Powder Bed Fusion-Manufactured Parts Made of AlSi10Mg

Authors: Tobias Schmithuesen, Johannes Henrich Schleifenbaum

Abstract:

The additive manufacturing process laser powder bed fusion offers many advantages over conventional manufacturing processes. For example, almost any complex part can be produced, such as topologically optimized lightweight parts, which would be inconceivable with conventional manufacturing processes. A major challenge posed by the LPBF process, however, is, in most cases, the need to use and remove support structures on critically inclined part surfaces (α < 45 ° regarding substrate plate). These are mainly used for dimensionally accurate mapping of part contours and to reduce distortion by absorbing process-related internal stresses. Furthermore, they serve to transfer the process heat to the substrate plate and are, therefore, indispensable for the LPBF process. A major challenge for the economical use of the LPBF process in industrial process chains is currently still the high manual effort involved in removing support structures. According to the state of the art (SoA), the parts are usually treated by simple hand tools (e.g., pliers, chisels) or by machining (e.g., milling, turning). New automatable approaches are the removal of support structures by means of wet chemical ablation and thermal deburring. According to the state of the art, the support structures are essentially adapted to the LPBF process and not to potential post-processing steps. The aim of this study is the determination of support structure designs that are adapted to the mentioned post-processing approaches. In the first step, the essential boundary conditions for complete removal by means of the respective approaches are identified. Afterward, a representative demonstrator part with various macroscopic support structure designs will be LPBF-manufactured and tested with regard to a complete powder and support removability. Finally, based on the results, potentially suitable support structure designs for the respective approaches will be derived. The investigations are carried out on the example of the aluminum alloy AlSi10Mg.

Keywords: additive manufacturing, laser powder bed fusion, laser beam melting, selective laser melting, post processing, tool-free, wet chemical ablation, thermal deburring, aluminum alloy, AlSi10Mg

Procedia PDF Downloads 68
747 Production of Composite Materials by Mixing Chromium-Rich Ash and Soda-Lime Glass Powder: Mechanical Properties and Microstructure

Authors: Savvas Varitis, Panagiotis Kavouras, George Vourlias, Eleni Pavlidou, Theodoros Karakostas, Philomela Komninou

Abstract:

A chromium-loaded ash originating from incineration of tannery sludge under anoxic conditions was mixed with low grade soda-lime glass powder coming from commercial glass bottles. The relative weight proportions of ash over glass powder tested were 30/70, 40/60 and 50/50. The solid mixtures, formed in green state compacts, were sintered at the temperature range of 800oC up to 1200oC. The resulting products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDXS) and micro-indentation. The above methods were employed to characterize the various phases, microstructure and hardness of the produced materials. Thermal treatment at 800oC and 1000oC produced opaque ceramic products composed of a variety of chromium-containing and chromium-free crystalline phases. Thermal treatment at 1200oC gave rise to composite products, where only chromium-containing crystalline phases were detected. Hardness results suggest that specific products are serious candidates for structural applications. Acknowledgement: This research has been co-financed by the European Union (European Social Fund – ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF) – Research Funding Program: THALES “WasteVal”: Reinforcement of the interdisciplinary and/or inter-institutional research and innovation.

Keywords: chromium-rich tannery residues, glass-ceramic materials, mechanical properties, microstructure

Procedia PDF Downloads 318
746 The Use of Food Industry Bio-Products for Sustainable Lactic Acid Bacteria Encapsulation

Authors: Paulina Zavistanaviciute, Vita Krungleviciute, Elena Bartkiene

Abstract:

Lactic acid bacteria (LAB) are microbial supplements that increase the nutritional, therapeutic, and safety value of food and feed. Often LAB strains are incubated in an expensive commercially available de Man-Rogosa-Sharpe (MRS) medium; the cultures are centrifuged, and the cells are washing with sterile water. Potato juice and apple juice industry bio-products are industrial wastes which may constitute a source of digestible nutrients for microorganisms. Due to their low cost and good chemical composition, potato juice and apple juice production bio- products could have a potential application in LAB encapsulation. In this study, pure LAB (P. acidilactici and P. pentosaceus) were multiplied in a crushed potato juice and apple juice industry bio-products medium. Before using, bio-products were sterilized and filtered. No additives were added to mass, except apple juice industry bioproducts were diluted with sterile water (1/5; v/v). The tap of sterilised mass, and LAB cell suspension (5 mL), containing of 8.9 log10 colony-forming units (cfu) per mL of the P. acidilactici and P. pentosaceus was used to multiply the LAB for 72 h. The final colony number in the potato juice and apple juice bio- products substrate was on average 9.60 log10 cfu/g. In order to stabilize the LAB, several methods of dehydration have been tested: lyophilisation (MilrockKieffer Lane, Kingston, USA) and dehydration in spray drying system (SD-06, Keison, Great Britain). Into the spray drying system multiplied LAB in a crushed potato juice and apple juice bio-products medium was injected in peristaltic way (inlet temperature +60 °C, inlet air temperature +150° C, outgoing air temperature +80 °C, air flow 200 m3/h). After lyophilisation (-48 °C) and spray drying (+150 °C) the viable cell concentration in the fermented potato juice powder was 9.18 ± 0.09 log10 cfu/g and 9.04 ± 0.07 log10 cfu/g, respectively, and in apple mass powder 8.03 ± 0.04 log10 cfu/g and 7.03 ± 0.03 log10 cfu/g, respectively. Results indicated that during the storage (after 12 months) at room temperature (22 +/- 2 ºC) LAB count in dehydrated products was 5.18 log10 cfu/g and 7.00 log10 cfu/g (in spray dried and lyophilized potato juice powder, respectively), and 3.05 log10 cfu/g and 4.10 log10 cfu/g (in spray dried and lyophilized apple juice industry bio-products powder, respectively). According to obtained results, potato juice could be used as alternative substrate for P. acidilactici and P. pentosaceus cultivation, and by drying received powders can be used in food/feed industry as the LAB starters. Therefore, apple juice industry by- products before spray drying and lyophilisation should be modified (i. e. by using different starches) in order to improve its encapsulation.

Keywords: bio-products, encapsulation, lactic acid bacteria, sustainability

Procedia PDF Downloads 255
745 The Effect of Filter Cake Powder on Soil Stability Enhancement in Active Sand Dunes, In the Long and Short Term

Authors: Irit Rutman Halili, Tehila Zvulun, Natali Elgabsi, Revaya Cohen, Shlomo Sarig

Abstract:

Active sand dunes (ASD) may cause significant damage to field crops and livelihood, and therefore, it is necessary to find a treatment that would enhance ADS soil stability. Biological soil crusts (biocrusts) contain microorganisms on the soil surface. Metabolic polysaccharides secreted by biocrust cyanobacteria glue the soil particles into aggregates, thereby stabilizing the soil surface. Filter cake powder (FCP) is a waste by-product in the final stages of the production of sugar from sugarcane, and its disposal causes significant environmental pollution. FCP contains high concentrations of polysaccharides and has recently been shown to be soil stability enhancing agent in ASD. It has been reported that adding FCP to the ASD soil surface by dispersal significantly increases the level of penetration resistance of soil biocrust (PRSB) nine weeks after a single treatment. However, it was not known whether a similar effect could be obtained by administering the FCP in liquid form by means of spraying. It has now been found that spraying a water solution of FCP onto the ASD soil surface significantly increased the level of penetration resistance of soil biocrust (PRSB) three weeks after a single treatment. These results suggest that FCP spraying can be used as a short-term soil stability-enhancing agent for ASD, while administration by dispersal might be more efficient over the long term. Finally, an additional benefit of using FCP as a soil stabilizer, either by dispersal or by spraying, is the reduction in environmental pollution that would otherwise result from the disposal of FCP solid waste.

Keywords: active sand dunes, filter cake powder, biological soil crusts, penetration resistance of soil biocrust

Procedia PDF Downloads 133
744 The Effect of Arbutin Powder and Arctostaphylos uvaursi Aqueous Leaf Extract on Synthesis of Melanin by Madurella mycetomatis

Authors: Amina Omer, Ikram Elsiddig

Abstract:

Arctostaphylos uvaursi is a plant of the family Ericaceae, it’s used in skin care products mostly for its depigmenting action, due to the presence of hydroquinones that are well known inhibitors of tyrosinase, an enzyme involved in melanin biosynthesis in humans. The main hydroquinone found within the A. uvaursi is arbutin, which is found with varying percentage within the plant depending on the season, and area from which the plant is harvested. An in vitro experiment has shown that the arbutin found within the bearberry leaf extract inhibited the biosynthesis of melanin in human melanoma cells and in three-dimensional human skin model. Madurella mycetomatis is filamentous fungus that causes the fungal form of mycetoma known as eumycetoma, with existing anti-fungals and surgery, only 35% of people living eumycetoma are treated, M. mycetomatis has been found to shield itself against the antifungal therapy through the production of melanin decreasing the effectiveness of the therapy, therefore there is a need for a new and more effective therapy. The aim of the study was to investigate and compare the effect of arbutin powder and aqueous extract of A. uvaursi containing arbutin on the biosynthesis of melanin by M. mycetomatis. The experiment was carried out by culturing M. mycetomatis on minimal media composed of 2% agar, 15 mM glucose, 10 mM MgSO4, 29.4 mM KH2PO4, 13 mM glycin and 80mg/l gentamicin, the media was supplied with different concentration of arbutin solution (5, 25 50,and 75mg) and aqueous extract of A. uvaursi to contain arbutin with concentrations (5, 25 50,and 75mg), the plates were incubated for two month and the result was observed by the naked eye. The results revealed that the arbutin powder had an inhibitory effect on melanin synthesis by M. mycetomatis that correlated with its established inhibitory effect on melanin synthesis in humans. The inhibitory effect of arbutin on melanin synthesis by M. mycetomatis was found to be dose dependent. A. uvaursi aqueous leaf extract containing arbutin was also found to decrease melanin production by M. mycetomatis, however plates containing high concentrations of aqueous extract couldn’t be assessed for its melanin inhibitory effect due to the high content of carbohydrates in the extract that promoted the growth of fungi Asperigullus niger rendering the plates unsuitable for visual inspection. In conclusion inhibition of melanin synthesis was observed on the arbutin powder as well as the aqueous extract containing arbutin. A. uvaursi is known to exhibit anti-inflammatory activity, which can aid in wound healing that is beneficial in the chronic inflammation caused by M. mycetomatis.

Keywords: arbutin, arctostaphylos, Madurella, melanin

Procedia PDF Downloads 147
743 Chemical, Physical and Microbiological Characteristics of a Texture-Modified Beef- Based 3D Printed Functional Product

Authors: Elvan G. Bulut, Betul Goksun, Tugba G. Gun, Ozge Sakiyan Demirkol, Kamuran Ayhan, Kezban Candogan

Abstract:

Dysphagia, difficulty in swallowing solid foods and thin liquids, is one of the common health threats among the elderly who require foods with modified texture in their diet. Although there are some commercial food formulations or hydrocolloids to thicken the liquid foods for dysphagic individuals, there is still a need for developing and offering new food products with enriched nutritional, textural and sensory characteristics to safely nourish these patients. 3D food printing is an appealing alternative in creating personalized foods for this purpose with attractive shape, soft and homogenous texture. In order to modify texture and prevent phase separation, hydrocolloids are generally used. In our laboratory, an optimized 3D printed beef-based formulation specifically for people with swallowing difficulties was developed based on the research project supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK Project # 218O017). The optimized formulation obtained from response surface methodology was 60% beef powder, 5.88% gelatin, and 0.74% kappa-carrageenan (all in a dry basis). This product was enriched with powders of freeze-dried beet, celery, and red capia pepper, butter, and whole milk. Proximate composition (moisture, fat, protein, and ash contents), pH value, CIE lightness (L*), redness (a*) and yellowness (b*), and color difference (ΔE*) values were determined. Counts of total mesophilic aerobic bacteria (TMAB), lactic acid bacteria (LAB), mold and yeast, total coliforms were conducted, and detection of coagulase positive S. aureus, E. coli, and Salmonella spp. were performed. The 3D printed products had 60.11% moisture, 16.51% fat, 13.68% protein, and 1.65% ash, and the pH value was 6.19, whereas the ΔE* value was 3.04. Counts of TMAB, LAB, mold and yeast and total coliforms before and after 3D printing were 5.23-5.41 log cfu/g, < 1 log cfu/g, < 1 log cfu/g, 2.39-2.15 log EMS/g, respectively. Coagulase positive S. aureus, E. coli, and Salmonella spp. were not detected in the products. The data obtained from this study based on determining some important product characteristics of functional beef-based formulation provides an encouraging basis for future research on the subject and should be useful in designing mass production of 3D printed products of similar composition.

Keywords: beef, dysphagia, product characteristics, texture-modified foods, 3D food printing

Procedia PDF Downloads 87
742 Valorization of Plastic and Cork Wastes in Design of Composite Materials

Authors: Svetlana Petlitckaia, Toussaint Barboni, Paul-Antoine Santoni

Abstract:

Plastic is a revolutionary material. However, the pollution caused by plastics damages the environment, human health and the economy of different countries. It is important to find new ways to recycle and reuse plastic material. The use of waste materials as filler and as a matrix for composite materials is receiving increasing attention as an approach to increasing the economic value of streams. In this study, a new composite material based on high-density polyethylene (HDPE) and polypropylene (PP) wastes from bottle caps and cork powder from unused cork (virgin cork), which has a high capacity for thermal insulation, was developed. The composites were prepared with virgin and modified cork. The composite materials were obtained through twin-screw extrusion and injection molding. The composites were produced with proportions of 0 %, 5 %, 10 %, 15 %, and 20 % of cork powder in a polymer matrix with and without coupling agent and flame retardant. These composites were investigated in terms of mechanical, structural and thermal properties. The effect of cork fraction, particle size and the use of flame retardant on the properties of composites were investigated. The properties of samples elaborated with the polymer and the cork were compared to them with the coupling agent and commercial flame retardant. It was observed that the morphology of HDPE/cork and PP/cork composites revealed good distribution and dispersion of cork particles without agglomeration. The results showed that the addition of cork powder in the polymer matrix reduced the density of the composites. However, the incorporation of natural additives doesn’t have a significant effect on water adsorption. Regarding the mechanical properties, the value of tensile strength decreases with the addition of cork powder, ranging from 30 MPa to 19 MPa for PP composites and from 19 MPa to 17 MPa for HDPE composites. The value of thermal conductivity of composites HDPE/cork and PP/ cork is about 0.230 W/mK and 0.170 W/mK, respectively. Evaluation of the flammability of the composites was performed using a cone calorimeter. The results of thermal analysis and fire tests show that it is important to add flame retardants to improve fire resistance. The samples elaborated with the coupling agent and flame retardant have better mechanical properties and fire resistance. The feasibility of the composites based on cork and PP and HDPE wastes opens new ways of valorizing plastic waste and virgin cork. The formulation of composite materials must be optimized.

Keywords: composite materials, cork and polymer wastes, flammability, modificated cork

Procedia PDF Downloads 50
741 Experimental Study on Strength Development of Low Cement Concrete Using Mix Design for Both Binary and Ternary Mixes

Authors: Mulubrhan Berihu, Supratic Gupta, Zena Gebriel

Abstract:

Due to the design versatility, availability, and cost efficiency, concrete is continuing to be the most used construction material on earth. However, the production of Portland cement, the primary component of concrete mix is causing to have a serious effect on environmental and economic impacts. This shows there is a need to study using of supplementary cementitious materials (SCMs). The most commonly used supplementary cementitious materials are wastes and the use of these industrial waste products has technical, economical and environmental benefits besides the reduction of CO2 emission from cement production. The study aims to document the effect on strength property of concrete due to use of low cement by maximizing supplementary cementitious materials like fly ash or marble powder. Based on the different mix proportion of pozzolana and marble powder a range of mix design was formulated. The first part of the project is to study the strength of low cement concrete using fly ash replacement experimentally. The test results showed that using up to 85 kg/m3 of cement is possible for plain concrete works like hollow block concrete to achieve 9.8 Mpa and the experimental results indicates that strength is a function of w/b. In the second part a new set of mix design has been carried out with fly ash and marble powder to study the strength of both binary and ternary mixes. In this experimental study, three groups of mix design (c+FA, c+FA+m and c+m), four sets of mixes for each group were taken up. Experimental results show that c+FA has maintained the best strength and impermeability whereas c+m obtained less compressive strength, poorer permeability and split tensile strength. c+FA shows a big difference in gaining of compressive strength from 7 days to 28 days compression strength compared to others and this obviously shows the slow rate of hydration of fly ash concrete. As the w/b ratio increases the strength decreases significantly. At the same time higher permeability has been seen in the specimens which were tested for three hours than one hour.

Keywords: efficiency factor, cement content, compressive strength, mix proportion, w/c ratio, water permeability, SCMs

Procedia PDF Downloads 182
740 Postprandial Glycemic and Appetite Responses of Muffins Supplemented with Different Vegetables in Young Males

Authors: Muhammad Umair Arshad

Abstract:

Background and Objectives: Different vegetables have been reported to possess diabetic potential in in-vitro studies; however, the same role of these vegetables has not been much explored through human intervention. Therefore, the present study was conducted to examine the comparative effects of muffins supplemented with bitter gourd (BGM), and other vegetables like spinach (SPM) and eggplant (EPM) on subjective appetite, blood glucose (BG), gut hormones and food intake in healthy young males through a randomized, cross over experiment. Methods and Study Design: After 12 hours fasting, twenty-four healthy young males (18-30 Y) were fed 250ml of plain muffins (control) or supplemented with bitter gourd powder, BGM (10g/100g flour), or spinach powder, SPM (10g/100g flour), or eggplant powder, EPM (10g/100g flour). An ad libitum pizza meal was served at 120min to measure the food intake. Subjective appetite, blood glucose, and gut hormones (insulin, GLP-1, active ghrelin) were measured at intervals from baseline to 120min. Results: Post-treatment (0-120min) glucose, but not insulin, decreased following all the vegetables supplemented muffins compared to the control (p < 0.0001) with a more pronounced effect of BGM. However, post-treatment avg. subjective appetite (p=0.0017) and food intake (p=0.0021) were reduced following BGM but not SPM and EPM. BGM further improved GLP-1 concentration (p < 0.0001), and reduced active ghrelin (p=0.0022), compared with control. Conclusions: The bitter gourd supplemented baked foods possess potential more than other vegetables to regulate postprandial appetite and glycemic responses, without a disproportionate increase in insulin concentration.

Keywords: vegetables, muffins, glucose homeostasis, subjective appetite, food intake

Procedia PDF Downloads 84
739 The shaping of Metal-Organic Frameworks for Water Vapor Adsorption

Authors: Tsung-Lin Hsieh, Jiun-Jen Chen, Yuhao Kang

Abstract:

Metal-organic frameworks (MOFs) have drawn scientists’ attention for decades due to its high specific surface area, tunable pore size, and relatively low temperature for regeneration. Bearing with those mentioned properties, MOFs has been widely used in various applications, such as adsorption/separation and catalysis. However, the current challenge for practical use of MOFs is to effectively shape these crystalline powder material into controllable forms such as pellets, granules, and monoliths with sufficient mechanical and chemical stability, while maintaining the excellent properties of MOFs powders. Herein, we have successfully synthesized an Al-based MOF powder which exhibits a high water capacity at relatively low humidity conditions and relatively low temperature for regeneration. Then the synthesized Al-MOF was shaped into granules with particle size of 2-4 mm by (1) tumbling granulation, (2) High shear mixing granulation, and (3) Extrusion techniques. Finally, the water vapor adsorption rate and crush strength of Al-MOF granules by different shaping techniques were measured and compared.

Keywords: granulation, granules, metal-organic frameworks, water vapor adsorption

Procedia PDF Downloads 131
738 Laser Powder Bed Fusion Awareness for Engineering Students in France and Qatar

Authors: Hiba Naccache, Rima Hleiss

Abstract:

Additive manufacturing AM or 3D printing is one of the pillars of Industry 4.0. Compared to traditional manufacturing, AM provides a prototype before production in order to optimize the design and avoid the stock market and uses strictly necessary material which can be recyclable, for the benefit of leaning towards local production, saving money, time and resources. Different types of AM exist and it has a broad range of applications across several industries like aerospace, automotive, medicine, education and else. The Laser Powder Bed Fusion (LPBF) is a metal AM technique that uses a laser to liquefy metal powder, layer by layer, to build a three-dimensional (3D) object. In industry 4.0 and aligned with the numbers 9 (Industry, Innovation and Infrastructure) and 12 (Responsible Production and Consumption) of the Sustainable Development Goals of the UNESCO 2030 Agenda, the AM’s manufacturers committed to minimizing the environmental impact by being sustainable in every production. The LPBF has several environmental advantages, like reduced waste production, lower energy consumption, and greater flexibility in creating components with lightweight and complex geometries. However, LPBF also have environmental drawbacks, like energy consumption, gas consumption and emissions. It is critical to recognize the environmental impacts of LPBF in order to mitigate them. To increase awareness and promote sustainable practices regarding LPBF, the researchers use the Elaboration Likelihood Model (ELM) theory where people from multiple universities in France and Qatar process information in two ways: peripherally and centrally. The peripheral campaigns use superficial cues to get attention, and the central campaigns provide clear and concise information. The authors created a seminar including a video showing LPBF production and a website with educational resources. The data is collected using questionnaire to test attitude about the public awareness before and after the seminar. The results reflected a great shift on the awareness toward LPBF and its impact on the environment. With no presence of similar research, to our best knowledge, this study will add to the literature on the sustainability of the LPBF production technique.

Keywords: additive manufacturing, laser powder bed fusion, elaboration likelihood model theory, sustainable development goals, education-awareness, France, Qatar, specific energy consumption, environmental impact, lightweight components

Procedia PDF Downloads 49
737 Tribological Study of TiC Powder Cladding on 6061 Aluminum Alloy

Authors: Yuan-Ching Lin, Sin-Yu Chen, Pei-Yu Wu

Abstract:

This study reports the improvement in the wear performance of A6061 aluminum alloy clad with mixed powders of titanium carbide (TiC), copper (Cu) and aluminum (Al) using the gas tungsten arc welding (GTAW) method. The wear performance of the A6061 clad layers was evaluated by performing pin-on-disc mode wear test. Experimental results clearly indicate an enhancement in the hardness of the clad layer by about two times that of the A6061 substrate without cladding. Wear test demonstrated a significant improvement in the wear performance of the clad layer when compared with the A6061 substrate without cladding. Moreover, the interface between the clad layer and the A6061 substrate exhibited superior metallurgical bonding. Due to this bonding, the clad layer did not spall during the wear test; as such, massive wear loss was prevented. Additionally, massive oxidized particulate debris was generated on the worn surface during the wear test; this resulted in three-body abrasive wear and reduced the wear behavior of the clad surface.

Keywords: GTAW、A6061 aluminum alloy, 、surface modification, tribological study, TiC powder cladding

Procedia PDF Downloads 438
736 Key Aroma Compounds as Predictors of Pineapple Sensory Quality

Authors: Jenson George, Thoa Nguyen, Garth Sanewski, Craig Hardner, Heather Eunice Smyth

Abstract:

Pineapple (Ananas comosus), with its unique sweet flavour, is one of the most popular tropical, non-climacteric fruits consumed worldwide. It is also the third most important tropical fruit in world production. In Australia, 99% of the pineapple production is from the Queensland state due to the favourable subtropical climatic conditions. The flavourful fruit is known to contain around 500 volatile organic compounds (VOC) at varying concentrations and greatly contribute to the flavour quality of pineapple fruit by providing distinct aroma sensory properties that are sweet, fruity, tropical, pineapple-like, caramel-like, coconut-like, etc. The aroma of pineapple is one of the important factors attracting consumers and strengthening the marketplace. To better understand the aroma of Australian-grown pineapples, the matrix-matched Gas chromatography–mass spectrometry (GC-MS), Head Space - Solid-phase microextraction (HS-SPME), Stable-isotope dilution analysis (SIDA) method was developed and validated. The developed method represents a significant improvement over current methods with the incorporation of multiple external reference standards, multiple isotopes labeled internal standards, and a matching model system of pineapple fruit matrix. This method was employed to quantify 28 key aroma compounds in more than 200 genetically diverse pineapple varieties from a breeding program. The Australian pineapple cultivars varied in content and composition of free volatile compounds, which were predominantly comprised of esters, followed by terpenes, alcohols, aldehydes, and ketones. Using selected commercial cultivars grown in Australia, and by employing the sensorial analysis, the appearance (colour), aroma (intensity, sweet, vinegar/tang, tropical fruits, floral, coconut, green, metallic, vegetal, fresh, peppery, fermented, eggy/sulphurous) and texture (crunchiness, fibrousness, and juiciness) were obtained. Relationships between sensory descriptors and volatiles were explored by applying multivariate analysis (PCA) to the sensorial and chemical data. The key aroma compounds of pineapple exhibited a positive correlation with corresponding sensory properties. The sensory and volatile data were also used to explore genetic diversity in the breeding population. GWAS was employed to unravel the genetic control of the pineapple volatilome and its interplay with fruit sensory characteristics. This study enhances our understanding of pineapple aroma (flavour) compounds, their biosynthetic pathways and expands breeding option for pineapple cultivars. This research provides foundational knowledge to support breeding programs, post-harvest and target market studies, and efforts to optimise the flavour of commercial pineapple varieties and their parent lines to produce better tasting fruits for consumers.

Keywords: Ananas comosus, pineapple, flavour, volatile organic compounds, aroma, Gas chromatography–mass spectrometry (GC-MS), Head Space - Solid-phase microextraction (HS-SPME), Stable-isotope dilution analysis (SIDA).

Procedia PDF Downloads 18
735 Extraction of Colorant and Dyeing of Gamma Irradiated Viscose Using Cordyline terminalis Leaves Extract

Authors: Urvah-Til-Vusqa, Unsa Noreen, Ayesha Hussain, Abdul Hafeez, Rafia Asghar, Sidrat Nasir

Abstract:

Natural dyes offer an alternative better application in textiles than synthetic ones. The present study will be aimed to employ natural dye extracted from Cordyline terminalis plant and its application into viscose under the influence of gamma radiations. The colorant extraction will be done by boiling dracaena leaves powder in aqueous, alkaline and ethyl acetate mediums. Both dye powder and fabric will be treated with different doses (5-20 kGy) of gamma radiations. The antioxidant, antimicrobial and hemolytic activities of the extracts will also be determined. Different tests of fabric characterization (before and after radiations treatment) will be employed. Dyeing variables just as time, temperature and M: L will be applied for optimization. Standard methods for ISO to evaluate color fastness to light, washing and rubbing will be employed for improvement of color strength 1.5-15.5% of Al, Fe, Cr, and Cu as mordants will be employed through pre, post and meta mordanting. Color depth % & L*, a*, b* and L*, C*, h values will be recorded using spectra flash SF650.

Keywords: natural dyes, gamma radiations, Cordyline terminalis, ecofriendly dyes

Procedia PDF Downloads 570
734 Co2e Sequestration via High Yield Crops and Methane Capture for ZEV Sustainable Aviation Fuel

Authors: Bill Wason

Abstract:

143 Crude Palm Oil Coop mills on Sumatra Island are participating in a program to transfer land from defaulted estates to small farmers while improving the sustainability of palm production to allow for biofuel & food production. GCarbon will be working with farmers to transfer technology, fertilizer, and trees to double the yield from the current baseline of 3.5 tons to at least 7 tons of oil per ha (25 tons of fruit bunches). This will be measured via evaluation of yield comparisons between participant and non-participant farms. We will also capture methane from Palm Oil Mill Effluent (POME)throughbelt press filtering. Residues will be weighed and a formula used to estimate methane emission reductions based on methodologies developed by other researchers. GCarbon will also cover mill ponds with a non-permeable membrane and collect methane for energy or steam production. A system for accelerating methane production involving ozone and electro-flocculation will be tested to intensifymethane generation and reduce the time for wastewater treatment. A meta-analysis of research on sweet potatoes and sorghum as rotation crops will look at work in the Rio Grande do Sul, Brazil where5 ha. oftest plots of industrial sweet potato have achieved yields of 60 tons and 40 tons per ha. from 2 harvests in one year (100 MT/ha./year). Field trials will be duplicated in Bom Jesus Das Selvas, Maranhaothat will test varieties of sweet potatoes to measure yields and evaluate disease risks in a very different soil and climate of NE Brazil. Hog methane will also be captured. GCarbon Brazil, Coop Sisal, and an Australian research partner will plant several varieties of agave and use agronomic procedures to get yields of 880 MT per ha. over 5 years. They will also plant new varieties expected to get 3500 MT of biomass after 5 years (176-700 MT per ha. per year). The goal is to show that the agave can adapt to Brazil’s climate without disease problems. The study will include a field visit to growing sites in Australia where agave is being grown commercially for biofuels production. Researchers will measure the biomass per hectare at various stages in the growing cycle, sugar content at harvest, and other metrics to confirm the yield of sugar per ha. is up to 10 times greater than sugar cane. The study will look at sequestration rates from measuring soil carbon and root accumulation in various plots in Australia to confirm carbon sequestered from 5 years of production. The agave developer estimates that 60-80 MT of sequestration per ha. per year occurs from agave. The three study efforts in 3 different countries will define a feedstock pathway for jet fuel that involves very high yield crops that can produce 2 to 10 times more biomass than current assumptions. This cost-effective and less land intensive strategy will meet global jet fuel demand and produce huge quantities of food for net zero aviation and feeding 9-10 billion people by 2050

Keywords: zero emission SAF, methane capture, food-fuel integrated refining, new crops for SAF

Procedia PDF Downloads 75
733 The Effect of Geometrical Ratio and Nanoparticle Reinforcement on the Properties of Al-based Nanocomposite Hollow Sphere Structures

Authors: Mostafa Amirjan

Abstract:

In the present study, the properties of Al-Al2O3 nanocomposite hollow sphere structures were investigated. For this reason, the Al-based nanocomposite hollow spheres with different amounts of nano alumina reinforcement (0-10wt %) and different ratio of thickness to diameter (t/D: 0.06-0.3) were prepared via a powder metallurgy method. Then, the effect of mentioned parameters was studied on physical and quasi static mechanical properties of their related prepared structures (open/closed cell) such as density, hardness, strength and energy absorption. It was found that as the t/D ratio increases the relative density, compressive strength and energy absorption increase. The highest values of strength and energy absorption were obtained from the specimen with 5 wt. % of nanoparticle reinforcement, t/D of 0.3 (t=1 mm, D=400µm) as 22.88 MPa and 13.24 MJ/m3, respectively. The moderate specific strength of prepared composites in the present study showed the good consistency with the properties of others low carbon steel composite with similar structure.

Keywords: hollow sphere structure foam, nanocomposite, thickness and diameter (t/D ), powder metallurgy

Procedia PDF Downloads 430
732 Effect of Copper Ions Doped-Hydroxyapatite 3D Fiber Scaffold

Authors: Adil Elrayah, Jie Weng, Esra Suliman

Abstract:

The mineral in human bone is not pure stoichiometric calcium phosphate (Ca/P) as it is partially substituted by in organic elements. In this study, the copper ions (Cu2+) substituted hydroxyapatite (CuHA) powder has been synthesized by the co-precipitation method. The CuHA powder has been used to fabricate CuHA fiber scaffolds by sol-gel process and the following sinter process. The resulted CuHA fibers have slightly different microstructure (i.e. porosity) compared to HA fiber scaffold, which is denser. The mechanical properties test was used to evaluate CuHA, and the results showed decreases in both compression strength and hardness tests. Moreover, the in vitro used endothelial cells to evaluate the angiogenesis of CuHA. The result illustrated that the viability of endothelial cell on CuHA fiber scaffold surfaces tends to antigenic behavior. The results obtained with CuHA scaffold give this material benefit in biological applications such as antimicrobial, antitumor, antigens, compacts, filling cavities of the tooth and for the deposition of metal implants anti-tumor, anti-cancer, bone filler, and scaffold.

Keywords: fiber scaffold, copper ions, hydroxyapatite, in vitro, mechanical property

Procedia PDF Downloads 132
731 Role of Microplastics on Reducing Heavy Metal Pollution from Wastewater

Authors: Derin Ureten

Abstract:

Plastic pollution does not disappear, it gets smaller and smaller through photolysis which are caused mainly by sun’s radiation, thermal oxidation, thermal degradation, and biodegradation which is the action of organisms digesting larger plastics. All plastic pollutants have exceedingly harmful effects on the environment. Together with the COVID-19 pandemic, the number of plastic products such as masks and gloves flowing into the environment has increased more than ever. However, microplastics are not the only pollutants in water, one of the most tenacious and toxic pollutants are heavy metals. Heavy metal solutions are also capable of causing varieties of health problems in organisms such as cancer, organ damage, nervous system damage, and even death. The aim of this research is to prove that microplastics can be used in wastewater treatment systems by proving that they could adsorb heavy metals in solutions. Experiment for this research will include two heavy metal solutions; one including microplastics in a heavy metal contaminated water solution, and one that just includes heavy metal solution. After being sieved, absorbance of both mediums will be measured with the help of a spectrometer. Iron (III) chloride (FeCl3) will be used as the heavy metal solution since the solution becomes darker as the presence of this substance increases. The experiment will be supported by Pure Nile Red powder in order to observe if there are any visible differences under the microscope. Pure Nile Red powder is a chemical that binds to hydrophobic materials such as plastics and lipids. If proof of adsorbance could be observed by the rates of the solutions' final absorbance rates and visuals ensured by the Pure Nile Red powder, the experiment will be conducted with different temperature levels in order to analyze the most accurate temperature level to proceed with removal of heavy metals from water. New wastewater treatment systems could be generated with the help of microplastics, for water contaminated with heavy metals.

Keywords: microplastics, heavy metal, pollution, adsorbance, wastewater treatment

Procedia PDF Downloads 56
730 Comparative Isotherms Studies on Adsorptive Removal of Methyl Orange from Wastewater by Watermelon Rinds and Neem-Tree Leaves

Authors: Sadiq Sani, Muhammad B. Ibrahim

Abstract:

Watermelon rinds powder (WRP) and neem-tree leaves powder (NLP) were used as adsorbents for equilibrium adsorption isotherms studies for detoxification of methyl orange dye (MO) from simulated wastewater. The applicability of the process to various isotherm models was tested. All isotherms from the experimental data showed excellent linear reliability (R2: 0.9487-0.9992) but adsorptions onto WRP were more reliable (R2: 0.9724-0.9992) than onto NLP (R2: 0.9487-0.9989) except for Temkin’s Isotherm where reliability was better onto NLP (R2: 0.9937) than onto WRP (R2: 0.9935). Dubinin-Radushkevich’s monolayer adsorption capacities for both WRP and NLP (qD: 20.72 mg/g, 23.09 mg/g) were better than Langmuir’s (qm: 18.62 mg/g, 21.23 mg/g) with both capacities higher for adsorption onto NLP (qD: 23.09 mg/g; qm: 21.23 mg/g) than onto WRP (qD: 20.72 mg/g; qm: 18.62 mg/g). While values for Langmuir’s separation factor (RL) for both adsorbents suggested unfavourable adsorption processes (RL: -0.0461, -0.0250), Freundlich constant (nF) indicated favourable process onto both WRP (nF: 3.78) and NLP (nF: 5.47). Adsorption onto NLP had higher Dubinin-Radushkevich’s mean free energy of adsorption (E: 0.13 kJ/mol) than WRP (E: 0.08 kJ/mol) and Temkin’s heat of adsorption (bT) was better onto NLP (bT: -0.54 kJ/mol) than onto WRP (bT: -0.95 kJ/mol) all of which suggested physical adsorption.

Keywords: adsorption isotherms, methyl orange, neem leaves, watermelon rinds

Procedia PDF Downloads 244
729 Mass Rearing and Effects of Gamma Irradiation on the Pupal Mortality and Reproduction of Citrus Leaf Miner Phyllocnistis citrella Stainton (Lepidoptera: Gracillariidae)

Authors: Shiva Osouli, Maryam Atapour, Mehrdad Ahmadi, Shima Shokri

Abstract:

Citrus leaf miner (Phyllocnistis citrella Stainton) is native to Asia and one of the most serious pests of Iran’s citrus nursery stocks. In the present study, the possibility of insect mass rearing on four various citrus hosts and the effects of gamma irradiation on the pupal mortality and reproduction of this pest were studied. Trifoliate orange and grapefruit showed less infection, while the number of pupae in Valencia oranges and sweet lemons cages was so high. There was not any significant difference between weight of male and female pupae among different citrus hosts, but generally the weight of male pupae was less than females. Use of Valencia orange or sweet lemons seedlings in especial dark emergence and oviposition cages could be recommended for mass rearing of this pest. In this study, the effects of gamma radiation at doses 100 to 450 Gy on biological and reproductive parameters of the pest has been determined. The results show that mean percent of pupal mortality increased with increasing doses and reached to 28.67% at 450 Gy for male pupae and 38.367% for female pupae. Also, the mean values of this parameter were higher for irradiated female, which indicated the higher sensitivity of this sex. The gamma ray irradiation from 200 and 300 Gy caused decrease in male and female adult moth longevity, respectively. The eggs were laid by emerged females, and their hatchability was decreased by increasing gamma doses. The fecundity of females in both combinations of crosses (irradiated male × normal female and irradiated female × normal male) did not differ, but fertility of laid eggs by irradiated female × normal male affected seriously and the mean values of this parameter reached to zero at 300 Gy. The hatchability percentage of produced eggs by normal female × irradiated male at 300 Gy was 23.29% and reached to less than 2 % at 450 Gy as the highest tested dose. The results of this test show that females have more radio-sensitivity in comparison to males.

Keywords: citrus leaf miner, Phyllocnistis citrella, citrus hosts, mass rearing, Sterile Insect Technique (SIT)

Procedia PDF Downloads 150
728 Alternative Animal Feed Additive Obtain with Different Drying Methods from Carrot Unsuitable for Human Consumption

Authors: Rabia Göçmen, Gülşah Kanbur, Sinan Sefa Parlat

Abstract:

This study was conducted to determine that carrot powder obtain by different drying methods (oven and vacuum-freeze dryer) of carrot unfit for human consumption that whether feed additives in animal nutrition or not. Carrots randomly divided 2 groups. First group was dried by using oven, second group was by using vacuum freeze dryer methods. Dried carrot prepared from fresh carrot was analysed nutrient matter (energy, crude protein, crude oil, crude ash, beta carotene, mineral concentration and colour). The differences between groups in terms of energy, crude protein, ash, Ca and Mg was not significant (P> 0,05). Crude oil, P, beta carotene content and colour values (L, a, b) with vacuum-freeze dryer group was greater than oven group (P<0,05). Consequently, carrot powder obtained by drying the vacuum-freeze dryer method can be used as a source of carotene.

Keywords: carrot, vacuum freeze dryer, oven, beta carotene

Procedia PDF Downloads 297