Search results for: rain harvesting
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 742

Search results for: rain harvesting

592 Development and Characterization of Acoustic Energy Harvesters for Low Power Wireless Sensor Network

Authors: Waheed Gul, Muhammad Zeeshan, Ahmad Raza Khan, Muhammad Khurram

Abstract:

Wireless Sensor Nodes (WSNs) have developed significantly over the years and have significant potential in diverse applications in the fields of science and technology. The inadequate energy accompanying WSNs is a key constraint of WSN skills. To overcome this main restraint, the development and expansion of effective and reliable energy harvesting systems for WSN atmospheres are being discovered. In this research, low-power acoustic energy harvesters are designed and developed by applying different techniques of energy transduction from the sound available in the surroundings. Three acoustic energy harvesters were developed based on the piezoelectric phenomenon, electromagnetic transduction, and hybrid, respectively. The CAD modelling, lumped modelling and Finite Element Analysis of the harvesters were carried out. The voltages were obtained using FEA for each Acoustic Harvester. Characterization of all three harvesters was carried out and the power generated by the piezoelectric harvester, electromagnetic harvester and Hybrid Acoustic Energy harvester are 2.25x10-9W, 0.0533W and 0.0232W, respectively.

Keywords: energy harvesting, WSNs, piezoelectric, electromagnetic, power

Procedia PDF Downloads 38
591 Investigation of Boll Properties on Cotton Picker Machine Performance

Authors: Shahram Nowrouzieh, Abbas Rezaei Asl, Mohamad Ali Jafari

Abstract:

Cotton, as a strategic crop, plays an important role in providing human food and clothing need, because of its oil, protein, and fiber. Iran has been one of the largest cotton producers in the world in the past, but unfortunately, for economic reasons, its production is reduced now. One of the ways to reduce the cost of cotton production is to expand the mechanization of cotton harvesting. Iranian farmers do not accept the function of cotton harvesters. One reason for this lack of acceptance of cotton harvesting machines is the number of field losses on these machines. So, the majority of cotton fields are harvested by hand. Although the correct setting of the harvesting machine is very important in the cotton losses, the morphological properties of the cotton plant also affect the performance of cotton harvesters. In this study, the effect of some cotton morphological properties such as the height of the cotton plant, number, and length of sympodial and monopodial branches, boll dimensions, boll weight, number of carpels and bracts angle were evaluated on the performance of cotton picker. In this research, the efficiency of John Deere 9920 spindle Cotton picker is investigated on five different Iranian cotton cultivars. The results indicate that there was a significant difference between the five cultivars in terms of machine harvest efficiency. Golestan cultivar showed the best cotton harvester performance with an average of 87.6% of total harvestable seed cotton and Khorshid cultivar had the least cotton harvester performance. The principal component analysis showed that, at 50.76% probability, the cotton picker efficiency is affected by the bracts angle positively and by boll dimensions, the number of carpels and the height of cotton plants negatively. The seed cotton remains (in the plant and on the ground) after harvester in PCA scatter plot were in the same zone with boll dimensions and several carpels.

Keywords: cotton, bract, harvester, carpel

Procedia PDF Downloads 116
590 Decision Support Tool for Selecting Appropriate Sustainable Rainwater Harvesting Based System in Ibadan, Nigeria

Authors: Omolara Lade, David Oloke

Abstract:

The approach to water management worldwide is currently in transition, with a shift from centralised infrastructures to greater consideration of decentralised technologies, such as rainwater harvesting (RWH). However, in Nigeria, implementation of sustainable water management, such as RWH systems, is inefficient and social, environmental and technical barriers, concerns and knowledge gaps exist, which currently restrict its widespread utilisation. This inefficiency contributes to water scarcity, water-borne diseases, and loss of lives and property due to flooding. Meanwhile, several RWH technologies have been developed to improve SWM through both demand and storm-water management. Such technologies involve the use of reinforced concrete cement (RCC) storage tanks, surface water reservoirs and ground-water recharge pits as storage systems. A framework was developed to assess the significance and extent of water management problems, match the problems with existing RWH-based solutions and develop a robust ready-to-use decision support tool that can quantify the costs and benefits of implementing several RWH-based storage systems. The methodology adopted was the mixed method approach, involving a detailed literature review, followed by a questionnaire survey of household respondents, Nigerian Architects and Civil Engineers and focus group discussion with stakeholders. 18 selection attributes have been defined and three alternatives have been identified in this research. The questionnaires were analysed using SPSS, excel and selected statistical methods to derive weightings of the attributes for the tool. Following this, three case studies were modelled using RainCycle software. From the results, the MDA model chose RCC tank as the most appropriate storage system for RWH.

Keywords: rainwater harvesting, modelling, hydraulic assessment, whole life cost, decision support system

Procedia PDF Downloads 353
589 Investigating Flutter Energy Harvesting through Piezoelectric Materials in Both Experimental and Theoretical Modes

Authors: Hassan Mohammad Karimi, Ali Salehzade Nobari, Hosein Shahverdi

Abstract:

With the advancement of technology and the decreasing weight of aerial structures, there is a growing demand for alternative energy sources. Structural vibrations can now be utilized to power low-power sensors for monitoring structural health and charging small batteries in drones. Research on extracting energy from flutter using piezoelectric has been extensive in recent years. This article specifically examines the use of a single-jointed beam with a free surface attached to its free end and a bimorph piezoelectric patch connected to the joint, providing two degrees of torsional and bending freedom. The study investigates the voltage harvested at various wind speeds and bending and twisting stiffness in a wind tunnel. The results indicate that as flutter speed increases, the output voltage also increases to some extent. However, at high wind speeds, the limited cycle created becomes unstable, negatively impacting the harvester's performance. These findings align with other research published in reputable scientific journals.

Keywords: energy harvesting, piezoelectric, flutter, wind tunnel

Procedia PDF Downloads 32
588 Empirical Investigation into Climate Change and Climate-Smart Agriculture for Food Security in Nigeria

Authors: J. Julius Adebayo

Abstract:

The objective of this paper is to assess the agro-climatic condition of Ibadan in the rain forest ecological zone of Nigeria, using rainfall pattern and temperature between 1978-2018. Data on rainfall and temperature in Ibadan, Oyo State for a period of 40 years were obtained from Meteorological Section of Forestry Research Institute of Nigeria, Ibadan and Oyo State Meteorology Centre. Time series analysis was employed to analyze the data. The trend revealed that rainfall is decreasing slowly and temperature is averagely increasing year after year. The model for rainfall and temperature are Yₜ = 1454.11-8*t and Yₜ = 31.5995 + 2.54 E-02*t respectively, where t is the time. On this basis, a forecast of 20 years (2019-2038) was generated, and the results showed a further downward trend on rainfall and upward trend in temperature, this indicates persistence rainfall shortage and very hot weather for agricultural practices in the southwest rain forest ecological zone. Suggestions on possible solutions to avert climate change crisis and also promote climate-smart agriculture for sustainable food and nutrition security were also discussed.

Keywords: climate change, rainfall pattern, temperature, time series analysis, food and nutrition security

Procedia PDF Downloads 110
587 Compilation of Load Spectrum of Loader Drive Axle

Authors: Wei Yongxiang, Zhu Haoyue, Tang Heng, Yuan Qunwei

Abstract:

In order to study the preparation method of gear fatigue load spectrum for loaders, the load signal of four typical working conditions of loader is collected. The signal that reflects the law of load change is obtained by preprocessing the original signal. The torque of the drive axle is calculated by using the rain flow counting method. According to the operating time ratio of each working condition, the two-dimensional load spectrum based on the real working conditions of the drive axle of loader is established by the cycle extrapolation and synthesis method. The two-dimensional load spectrum is converted into one-dimensional load spectrum by means of the mean of torque equal damage method. Torque amplification includes the maximum load torque of the main reduction gear. Based on the theory of equal damage, the accelerated cycles are calculated. In this way, the load spectrum of the loading condition of the drive axle is prepared to reflect loading condition of the loader. The load spectrum can provide reference for fatigue life test and life prediction of loader drive axle.

Keywords: load spectrum, axle, torque, rain-flow counting method, extrapolation

Procedia PDF Downloads 335
586 Functionally Graded MEMS Piezoelectric Energy Harvester with Magnetic Tip Mass

Authors: M. Derayatifar, M. Packirisamy, R.B. Bhat

Abstract:

Role of piezoelectric energy harvesters has gained interest in supplying power for micro devices such as health monitoring sensors. In this study, in order to enhance the piezoelectric energy harvesting in capturing energy from broader range of excitation and to improve the mechanical and electrical responses, bimorph piezoelectric energy harvester beam with magnetic mass attached at the end is presented. In view of overcoming the brittleness of piezo-ceramics, functionally graded piezoelectric layers comprising of both piezo-ceramic and piezo-polymer is employed. The nonlinear equations of motions are derived using energy method and then solved analytically using perturbation scheme. The frequency responses of the forced vibration case are obtained for the near resonance case. The nonlinear dynamic responses of the MEMS scaled functionally graded piezoelectric energy harvester in this paper may be utilized in different design scenarios to increase the efficiency of the harvester.

Keywords: energy harvesting, functionally graded piezoelectric material, magnetic force, MEMS (micro-electro-mechanical systems) piezoelectric, perturbation method

Procedia PDF Downloads 163
585 Efficacy of Defender 2% WS (Tebuconazole) and Imidal 70 WS (Imidacloprid) to Control Damping-Off Diseases and Early Insect Pests in Sesame in Rain Fed Areas, Sudan

Authors: Anas Fadlelmula, Elsafi M. M. Ahmed

Abstract:

The efficacy of Defender 2% WS (tebuconazole) and Imidal 70 WS (imidacloprid) to control damping-off diseases and early insect pests in sesame crop under rain fed conditions at Damazine and Gedarif areas was evaluated. Defender 2% WS with dosage rates 0.5, 0.75, 1.0 and 1.25 g/kg of seeds and Imidal 70 WS at 2.25, 3.0, and 3.75 g/ kg of seeds were tested singly and as a mixture during 2010/2011 and 2012/013. Sesame seeds treated with Defender at the rates of 0.5 g and 0.75 g/ kg of seeds gave a high significant increase in percent seedlings emergence (84% and 85%) respectively. Imidal 70 WS at rate of 3g/kg seed showed the least percent damaged leaves by sesame webworm (1.7%). However, the mixed Defender at rate 0.75g with Imidal at 3 g/kg seed, significantly gave a highest percentage of sesame seedling emergence (85.1%) and reduced the incidence of post-emergence damping off and percent damaged leaves to the least per cent (2.1% and 0.4% ) respectively, compared to other treatments. Consequently, the mixed treatment of 0.75 g of Defender + 3 g of Imidal improved the crop stand and significantly gave the highest yield (405.2 kg and 418.8 kg/fed) respectively in both sites compared to the other treatments.

Keywords: seed dressers, damage, daming off, insects

Procedia PDF Downloads 234
584 Perovskite Nanocrystals and Quantum Dots: Advancements in Light-Harvesting Capabilities for Photovoltaic Technologies

Authors: Mehrnaz Mostafavi

Abstract:

Perovskite nanocrystals and quantum dots have emerged as leaders in the field of photovoltaic technologies, demonstrating exceptional light-harvesting abilities and stability. This study investigates the substantial progress and potential of these nano-sized materials in transforming solar energy conversion. The research delves into the foundational characteristics and production methods of perovskite nanocrystals and quantum dots, elucidating their distinct optical and electronic properties that render them well-suited for photovoltaic applications. Specifically, it examines their outstanding light absorption capabilities, enabling more effective utilization of a wider solar spectrum compared to traditional silicon-based solar cells. Furthermore, this paper explores the improved durability achieved in perovskite nanocrystals and quantum dots, overcoming previous challenges related to degradation and inconsistent performance. Recent advancements in material engineering and techniques for surface passivation have significantly contributed to enhancing the long-term stability of these nanomaterials, making them more commercially feasible for solar cell usage. The study also delves into the advancements in device designs that incorporate perovskite nanocrystals and quantum dots. Innovative strategies, such as tandem solar cells and hybrid structures integrating these nanomaterials with conventional photovoltaic technologies, are discussed. These approaches highlight synergistic effects that boost efficiency and performance. Additionally, this paper addresses ongoing challenges and research endeavors aimed at further improving the efficiency, stability, and scalability of perovskite nanocrystals and quantum dots in photovoltaics. Efforts to mitigate concerns related to material degradation, toxicity, and large-scale production are actively pursued, paving the way for broader commercial application. In conclusion, this paper emphasizes the significant role played by perovskite nanocrystals and quantum dots in advancing photovoltaic technologies. Their exceptional light-harvesting capabilities, combined with increased stability, promise a bright future for next-generation solar cells, ushering in an era of highly efficient and cost-effective solar energy conversion systems.

Keywords: perovskite nanocrystals, quantum dots, photovoltaic technologies, light-harvesting, solar energy conversion, stability, device designs

Procedia PDF Downloads 39
583 Design of an Ultra High Frequency Rectifier for Wireless Power Systems by Using Finite-Difference Time-Domain

Authors: Felipe M. de Freitas, Ícaro V. Soares, Lucas L. L. Fortes, Sandro T. M. Gonçalves, Úrsula D. C. Resende

Abstract:

There is a dispersed energy in Radio Frequencies (RF) that can be reused to power electronics circuits such as: sensors, actuators, identification devices, among other systems, without wire connections or a battery supply requirement. In this context, there are different types of energy harvesting systems, including rectennas, coil systems, graphene and new materials. A secondary step of an energy harvesting system is the rectification of the collected signal which may be carried out, for example, by the combination of one or more Schottky diodes connected in series or shunt. In the case of a rectenna-based system, for instance, the diode used must be able to receive low power signals at ultra-high frequencies. Therefore, it is required low values of series resistance, junction capacitance and potential barrier voltage. Due to this low-power condition, voltage multiplier configurations are used such as voltage doublers or modified bridge converters. Lowpass filter (LPF) at the input, DC output filter, and a resistive load are also commonly used in the rectifier design. The electronic circuits projects are commonly analyzed through simulation in SPICE (Simulation Program with Integrated Circuit Emphasis) environment. Despite the remarkable potential of SPICE-based simulators for complex circuit modeling and analysis of quasi-static electromagnetic fields interaction, i.e., at low frequency, these simulators are limited and they cannot model properly applications of microwave hybrid circuits in which there are both, lumped elements as well as distributed elements. This work proposes, therefore, the electromagnetic modelling of electronic components in order to create models that satisfy the needs for simulations of circuits in ultra-high frequencies, with application in rectifiers coupled to antennas, as in energy harvesting systems, that is, in rectennas. For this purpose, the numerical method FDTD (Finite-Difference Time-Domain) is applied and SPICE computational tools are used for comparison. In the present work, initially the Ampere-Maxwell equation is applied to the equations of current density and electric field within the FDTD method and its circuital relation with the voltage drop in the modeled component for the case of lumped parameter using the FDTD (Lumped-Element Finite-Difference Time-Domain) proposed in for the passive components and the one proposed in for the diode. Next, a rectifier is built with the essential requirements for operating rectenna energy harvesting systems and the FDTD results are compared with experimental measurements.

Keywords: energy harvesting system, LE-FDTD, rectenna, rectifier, wireless power systems

Procedia PDF Downloads 101
582 Disaggregation the Daily Rainfall Dataset into Sub-Daily Resolution in the Temperate Oceanic Climate Region

Authors: Mohammad Bakhshi, Firas Al Janabi

Abstract:

High resolution rain data are very important to fulfill the input of hydrological models. Among models of high-resolution rainfall data generation, the temporal disaggregation was chosen for this study. The paper attempts to generate three different rainfall resolutions (4-hourly, hourly and 10-minutes) from daily for around 20-year record period. The process was done by DiMoN tool which is based on random cascade model and method of fragment. Differences between observed and simulated rain dataset are evaluated with variety of statistical and empirical methods: Kolmogorov-Smirnov test (K-S), usual statistics, and Exceedance probability. The tool worked well at preserving the daily rainfall values in wet days, however, the generated data are cumulated in a shorter time period and made stronger storms. It is demonstrated that the difference between generated and observed cumulative distribution function curve of 4-hourly datasets is passed the K-S test criteria while in hourly and 10-minutes datasets the P-value should be employed to prove that their differences were reasonable. The results are encouraging considering the overestimation of generated high-resolution rainfall data.

Keywords: DiMoN Tool, disaggregation, exceedance probability, Kolmogorov-Smirnov test, rainfall

Procedia PDF Downloads 178
581 A Study on Characteristics of Runoff Analysis Methods at the Time of Rainfall in Rural Area, Okinawa Prefecture Part 2: A Case of Kohatu River in South Central Part of Okinawa Pref

Authors: Kazuki Kohama, Hiroko Ono

Abstract:

The rainfall in Japan is gradually increasing every year according to Japan Meteorological Agency and Intergovernmental Panel on Climate Change Fifth Assessment Report. It means that the rainfall difference between rainy season and non-rainfall is increasing. In addition, the increasing trend of strong rain for a short time clearly appears. In recent years, natural disasters have caused enormous human injuries in various parts of Japan. Regarding water disaster, local heavy rain and floods of large rivers occur frequently, and it was decided on a policy to promote hard and soft sides as emergency disaster prevention measures with water disaster prevention awareness social reconstruction vision. Okinawa prefecture in subtropical region has torrential rain and water disaster several times a year such as river flood, in which is caused in specific rivers from all 97 rivers. Also, the shortage of capacity and narrow width are characteristic of river in Okinawa and easily cause river flood in heavy rain. This study focuses on Kohatu River that is one of the specific rivers. In fact, the water level greatly rises over the river levee almost once a year but non-damage of buildings around. On the other hand in some case, the water level reaches to ground floor height of house and has happed nine times until today. The purpose of this research is to figure out relationship between precipitation, surface outflow and total treatment water quantity of Kohatu River. For the purpose, we perform hydrological analysis although is complicated and needs specific details or data so that, the method is mainly using Geographic Information System software and outflow analysis system. At first, we extract watershed and then divided to 23 catchment areas to understand how much surface outflow flows to runoff point in each 10 minutes. On second, we create Unit Hydrograph indicating the area of surface outflow with flow area and time. This index shows the maximum amount of surface outflow at 2400 to 3000 seconds. Lastly, we compare an estimated value from Unit Hydrograph to a measured value. However, we found that measure value is usually lower than measured value because of evaporation and transpiration. In this study, hydrograph analysis was performed using GIS software and outflow analysis system. Based on these, we could clarify the flood time and amount of surface outflow.

Keywords: disaster prevention, water disaster, river flood, GIS software

Procedia PDF Downloads 111
580 A Study on the Safety Evaluation of Pier According to the Water Level Change by the Monte-Carlo Method

Authors: Minho Kwon, Jeonghee Lim, Yeongseok Jeong, Donghoon Shin, Kiyoung Kim

Abstract:

Recently, global warming phenomenon has led to natural disasters caused by global environmental changes, and due to abnormal weather events, the frequency and intensity of heavy rain storm typhoons are increasing. Therefore, it is imperative to prepare for future heavy rain storms and typhoons. This study selects arbitrary target bridges and performs numerical analysis to evaluate the safety of bridge piers in the event that the water level changes. The numerical model is based on two-dimensional surface elements. Actual reinforced concrete was simulated by modeling concrete to include reinforcements, and a contact boundary model was applied between the ground and the concrete. The water level applied to the piers was considered at 18 levels between 7.5 m and 16.1 m. The elastic modulus, compressive strength, tensile strength, and yield strength of the reinforced concrete were calculated using 250 random combinations and numerical analysis was carried out for each water level. In the results of analysis, the bridge exceeded the stated limit at 15.0 m. At the maximum water level of 16.1m, the concrete’s failure rate was 35.2%, but the probability that the reinforcement would fail was 61.2%.

Keywords: Monte-Carlo method, pier, water level change, limit state

Procedia PDF Downloads 251
579 Groundwater Level Prediction Using hybrid Particle Swarm Optimization-Long-Short Term Memory Model and Performance Evaluation

Authors: Sneha Thakur, Sanjeev Karmakar

Abstract:

This paper proposed hybrid Particle Swarm Optimization (PSO) – Long-Short Term Memory (LSTM) model for groundwater level prediction. The evaluation of the performance is realized using the parameters: root mean square error (RMSE) and mean absolute error (MAE). Ground water level forecasting will be very effective for planning water harvesting. Proper calculation of water level forecasting can overcome the problem of drought and flood to some extent. The objective of this work is to develop a ground water level forecasting model using deep learning technique integrated with optimization technique PSO by applying 29 years data of Chhattisgarh state, In-dia. It is important to find the precise forecasting in case of ground water level so that various water resource planning and water harvesting can be managed effectively.

Keywords: long short-term memory, particle swarm optimization, prediction, deep learning, groundwater level

Procedia PDF Downloads 44
578 Metagenomics Composition During and After Wet Deposition and the Presence of Airborne Microplastics

Authors: Yee Hui Lim, Elena Gusareva, Irvan Luhung, Yulia Frank, Stephan Christoph Schuster

Abstract:

Environmental pollution from microplastics (MPs) is an emerging concern worldwide. While the presence of microplastics has been well established in the marine and terrestrial environments, the prevalence of microplastics in the atmosphere is still poorly understood. Wet depositions such as rain or snow scavenge impurities from the atmosphere as it falls to the ground. These wet depositions serve as a useful tool in the removal of airborne particles that are suspended in the air. Therefore, the aim of this study is to investigate the presence of atmospheric microplastics and fibres through the analysis of air, rainwater and snow samples. Air samples were collected with filter-based air samplers from outdoor locations in Singapore. The sampling campaigns were conducted during and after each rain event. Rainwater samples from Singapore and Siberia were collected as well. Snow samples were also collected from Siberia as part of the ongoing study. Genomic DNA was then extracted from the samples and sequenced with shotgun metagenomics approach. qPCR analysis was conducted to quantify the total bacteria and fungi in the air, rainwater and snow samples. The results compared the bioaerosol profiles of all the samples. To observe the presence of microplastics, scanning electron microscope (SEM) was used. From the preliminary results, microplastics were detected. It can be concluded that there is a significant amount of atmospheric microplastics present, and its occurrence should be investigated in greater detail.

Keywords: atmospheric microplastics, metagenomics, scanning electron microscope, wet deposition

Procedia PDF Downloads 55
577 Urbanization and House Water Supply in Nigeria

Authors: Oluronke Odunjo

Abstract:

The world is becoming increasingly urbanized and Nigeria is not left out. One of the indicators of human developments is housing and as such, water is needed by households for survival. This Paper assesses sources of water being used by residents in the newly urbanized areas of Ogbomoso, Southwest, Nigeria. Multistage sampling technique was used and Oke-Adunin Community was purposively selected for the study as it has large concentration of staff and students of Ladoke Akintola University of Technology. The area was captured with Google earth and two hundred and twenty two inhabited houses were found. Questionnaire was the instrument for data collection which was administered using total enumeration technique. Data obtained however, were analyzed with descriptive and inferential statistical analyses. Findings revealed that most of the respondents were male, while 36.03% house owners were between the ages of 46 and 55 years. Sources of water used by residents include well (56.94%), water vendors (17.77%), rain (15.29%) and borehole (3.72%). Distance travelled by house owners to sources of water was as high as 5.06 metres, resulting into stress (30.00 %), depression (25.00%) and aggressiveness (18.75%). Result of correlation analysis between the sources of water of respondents and disease prevalence showed that both rain water and water vendor had very strong positive correlation with typhoid, diarrhea and dysentery, while well water only had positive correlation with dysentery. Recommendations were therefore, proffered towards solving the problems associated with water in the area.

Keywords: newly urbanized area, Ogbomoso, sources of water, residents

Procedia PDF Downloads 174
576 An Experimental Study of Downstream Structures on the Flow-Induced Vibrations Energy Harvester Performances

Authors: Pakorn Uttayopas, Chawalit Kittichaikarn

Abstract:

This paper presents an experimental investigation for the characteristics of an energy harvesting device exploiting flow-induced vibration in a wind tunnel. A stationary bluff body is connected with a downstream tip body via an aluminium cantilever beam. Various lengths of aluminium cantilever beam and different shapes of downstream tip body are considered. The results show that the characteristics of the energy harvester’s vibration depend on both the length of the aluminium cantilever beam and the shape of the downstream tip body. The highest ratio between vibration amplitude and bluff body diameter was found to be 1.39 for an energy harvester with a symmetrical triangular tip body and L/D1 = 5 at 9.8 m/s of flow speed (Re = 20077). Using this configuration, the electrical energy was extracted with a polyvinylidene fluoride (PVDF) piezoelectric beam with different load resistances, of which the optimal value could be found on each Reynolds number. The highest power output was found to be 3.19 µW, at 9.8 m/s of flow speed (Re = 20077) and 27 MΩ of load resistance.

Keywords: downstream structures, energy harvesting, flow-induced vibration, piezoelectric material, wind tunnel

Procedia PDF Downloads 208
575 Stochastic Nuisance Flood Risk for Coastal Areas

Authors: Eva L. Suarez, Daniel E. Meeroff, Yan Yong

Abstract:

The U.S. Federal Emergency Management Agency (FEMA) developed flood maps based on experts’ experience and estimates of the probability of flooding. Current flood-risk models evaluate flood risk with regional and subjective measures without impact from torrential rain and nuisance flooding at the neighborhood level. Nuisance flooding occurs in small areas in the community, where a few streets or blocks are routinely impacted. This type of flooding event occurs when torrential rainstorm combined with high tide and sea level rise temporarily exceeds a given threshold. In South Florida, this threshold is 1.7 ft above Mean Higher High Water (MHHW). The National Weather Service defines torrential rain as rain deposition at a rate greater than 0.3-inches per hour or three inches in a single day. Data from the Florida Climate Center, 1970 to 2020, shows 371 events with more than 3-inches of rain in a day in 612 months. The purpose of this research is to develop a data-driven method to determine comprehensive analytical damage-avoidance criteria that account for nuisance flood events at the single-family home level. The method developed uses the Failure Mode and Effect Analysis (FMEA) method from the American Society of Quality (ASQ) to estimate the Damage Avoidance (DA) preparation for a 1-day 100-year storm. The Consequence of Nuisance Flooding (CoNF) is estimated from community mitigation efforts to prevent nuisance flooding damage. The Probability of Nuisance Flooding (PoNF) is derived from the frequency and duration of torrential rainfall causing delays and community disruptions to daily transportation, human illnesses, and property damage. Urbanization and population changes are related to the U.S. Census Bureau's annual population estimates. Data collected by the United States Department of Agriculture (USDA) Natural Resources Conservation Service’s National Resources Inventory (NRI) and locally by the South Florida Water Management District (SFWMD) track the development and land use/land cover changes with time. The intent is to include temporal trends in population density growth and the impact on land development. Results from this investigation provide the risk of nuisance flooding as a function of CoNF and PoNF for coastal areas of South Florida. The data-based criterion provides awareness to local municipalities on their flood-risk assessment and gives insight into flood management actions and watershed development.

Keywords: flood risk, nuisance flooding, urban flooding, FMEA

Procedia PDF Downloads 63
574 A Study on Long Life Hybrid Battery System Consists of Ni-63 Betavoltaic Battery and All Solid Battery

Authors: Bosung Kim, Youngmok Yun, Sungho Lee, Chanseok Park

Abstract:

There is a limitation to power supply and operation by the chemical or physical battery in the space environment. Therefore, research for utilizing nuclear energy in the universe has been in progress since the 1950s, around the major industrialized countries. In this study, the self-rechargeable battery having a long life relative to the half-life of the radioisotope is suggested. The hybrid system is composed of betavoltaic battery, all solid battery and energy harvesting board. Betavoltaic battery can produce electrical power at least 10 years over using the radioisotope from Ni-63 and the silicon-based semiconductor. The electrical power generated from the betavoltaic battery is stored in the all-solid battery and stored power is used if necessary. The hybrid system board is composed of input terminals, boost circuit, charging terminals and output terminals. Betavoltaic and all solid batteries are connected to the input and output terminal, respectively. The electric current of 10 µA is applied to the system board by using the high-resolution power simulator. The system efficiencies are measured from a boost up voltage of 1.8 V, 2.4 V and 3 V, respectively. As a result, the efficiency of system board is about 75% after boosting up the voltage from 1V to 3V.

Keywords: isotope, betavoltaic, nuclear, battery, energy harvesting

Procedia PDF Downloads 295
573 Measuring the Amount of Eroded Soil and Surface Runoff Water in the Field

Authors: Abdulfatah Faraj Aboufayed

Abstract:

Water erosion is the most important problems of the soil in the Jebel Nefusa area located in north west of Libya, therefore erosion station had been established in the Faculty of Veterinary and rainfed agriculture research Station, University of the Jepel Algherbee in Zentan. The length of the station is 72.6 feet, 6 feet width, and the percentage of it's slope is 3%. The station was established to measure the mount of soil eroded and amount of surface water produced during the seasons 95/96 and 96/97 from each rain storms. The Monitoring shows that there was a difference between the two seasons in the number of rainstorms which made differences in the amount of surface runoff water and the amount of soil eroded between the two seasons. Although the slope is low (3%), the soil texture is sandy and the land ploughed twice during each season surface runoff and soil eroded occurred. The average amount of eroded soil was 3792 grams (gr) per season and the average amount of surface runoff water was 410 litter (L) per season. The amount of surface runoff water would be much greater from Jebel Nefusa upland with steep slopes and collecting of them will save a valuable amount of water which lost as a runoff while this area is in desperate of this water. The regression analysis of variance show strong correlation between rainfall depth and the other two depended variable (the amount of surface runoff water and the amount of eroded soil). It shows also strong correlation between amount of surface runoff water and amount of eroded soil.

Keywords: rain, surface runoff water, soil, water erosion, soil erosion

Procedia PDF Downloads 363
572 On Stochastic Models for Fine-Scale Rainfall Based on Doubly Stochastic Poisson Processes

Authors: Nadarajah I. Ramesh

Abstract:

Much of the research on stochastic point process models for rainfall has focused on Poisson cluster models constructed from either the Neyman-Scott or Bartlett-Lewis processes. The doubly stochastic Poisson process provides a rich class of point process models, especially for fine-scale rainfall modelling. This paper provides an account of recent development on this topic and presents the results based on some of the fine-scale rainfall models constructed from this class of stochastic point processes. Amongst the literature on stochastic models for rainfall, greater emphasis has been placed on modelling rainfall data recorded at hourly or daily aggregation levels. Stochastic models for sub-hourly rainfall are equally important, as there is a need to reproduce rainfall time series at fine temporal resolutions in some hydrological applications. For example, the study of climate change impacts on hydrology and water management initiatives requires the availability of data at fine temporal resolutions. One approach to generating such rainfall data relies on the combination of an hourly stochastic rainfall simulator, together with a disaggregator making use of downscaling techniques. Recent work on this topic adopted a different approach by developing specialist stochastic point process models for fine-scale rainfall aimed at generating synthetic precipitation time series directly from the proposed stochastic model. One strand of this approach focused on developing a class of doubly stochastic Poisson process (DSPP) models for fine-scale rainfall to analyse data collected in the form of rainfall bucket tip time series. In this context, the arrival pattern of rain gauge bucket tip times N(t) is viewed as a DSPP whose rate of occurrence varies according to an unobserved finite state irreducible Markov process X(t). Since the likelihood function of this process can be obtained, by conditioning on the underlying Markov process X(t), the models were fitted with maximum likelihood methods. The proposed models were applied directly to the raw data collected by tipping-bucket rain gauges, thus avoiding the need to convert tip-times to rainfall depths prior to fitting the models. One advantage of this approach was that the use of maximum likelihood methods enables a more straightforward estimation of parameter uncertainty and comparison of sub-models of interest. Another strand of this approach employed the DSPP model for the arrivals of rain cells and attached a pulse or a cluster of pulses to each rain cell. Different mechanisms for the pattern of the pulse process were used to construct variants of this model. We present the results of these models when they were fitted to hourly and sub-hourly rainfall data. The results of our analysis suggest that the proposed class of stochastic models is capable of reproducing the fine-scale structure of the rainfall process, and hence provides a useful tool in hydrological modelling.

Keywords: fine-scale rainfall, maximum likelihood, point process, stochastic model

Procedia PDF Downloads 251
571 Strategy Management of Soybean (Glycine max L.) for Dealing with Extreme Climate through the Use of Cropsyst Model

Authors: Aminah Muchdar, Nuraeni, Eddy

Abstract:

The aims of the research are: (1) to verify the cropsyst plant model of experimental data in the field of soybean plants and (2) to predict planting time and potential yield soybean plant with the use of cropsyst model. This research is divided into several stages: (1) first calibration stage which conducted in the field from June until September 2015.(2) application models stage, where the data obtained from calibration in the field will be included in cropsyst models. The required data models are climate data, ground data/soil data,also crop genetic data. The relationship between the obtained result in field with simulation cropsyst model indicated by Efficiency Index (EF) which the value is 0,939.That is showing that cropsyst model is well used. From the calculation result RRMSE which the value is 1,922%.That is showing that comparative fault prediction results from simulation with result obtained in the field is 1,92%. The conclusion has obtained that the prediction of soybean planting time cropsyst based models that have been made valid for use. and the appropriate planting time for planting soybeans mainly on rain-fed land is at the end of the rainy season, in which the above study first planting time (June 2, 2015) which gives the highest production, because at that time there was still some rain. Tanggamus varieties more resistant to slow planting time cause the percentage decrease in the yield of each decade is lower than the average of all varieties.

Keywords: soybean, Cropsyst, calibration, efficiency Index, RRMSE

Procedia PDF Downloads 153
570 Hemp Defoliation Technology and Management before Harvesting

Authors: Rataya Yanaphan, Saksiri Kuppatarat, Sarita Pinmanee

Abstract:

Hemp (Cannabis sativa L. ssp. Sativa) cultivation for fiber is limited by extremely high labor cost, especially for the removal of the leaves before harvest. This study evaluated chemical defoliants as a means to remove the leaves of hemp before harvest, in an effort to reduce labor expenditures in the production on hemp fiber. This study was conducted by spraying the leaves of hemp with five different treatments: saline solution, Urea (CH4N2O), Ethephon, copper Sulphate (CuSO4) and water (control) before harvesting. The largest percentage of leaf loss 6 days after spraying was with saline solution (43%), followed by Ethephon (32%). However, saline solution also caused drying of the stems but Ethephon did not. Thus, Ethephon was evaluated in the second experiment by spraying with Ethephon concentrations of 0, 10, 15 and 20 ml per 1 liter of water at 7 days before harvest. Spraying with 0.5% Ethephon resulted in 13.6% leaf fall. Spraying with 1.5% and 2% Ethephon resulted in 82.2% and 82.3 % leaf fall, respectively. In addition, using Ethephon to defoliate hemp had no detrimental effect the yield. Therefore, Ethephon concentration at 15 ml per 1 liter of water will be recommended for use in removing hemp leaves by spraying at 7 days before harvest to lower labor cost.

Keywords: defoliation technology, ethephon, hemp cultivation, saline solution

Procedia PDF Downloads 189
569 Rooftop Rainwater Harvesting for Sustainable Organic Farming: Insights from Smart cities in India

Authors: Rajkumar Ghosh

Abstract:

India faces a critical task of water shortage, specifically during dry seasons, which adversely impacts agricultural productivity and food protection. Natural farming, specializing in sustainable practices, demands green water management in smart cities in India. This paper examines how rooftop rainwater harvesting (RRWH) can alleviate water scarcity and support sustainable organic farming practices in India. RRWH emerges as a promising way to increase water availability for the duration of dry intervals and decrease reliance on traditional water sources in smart cities. The look at explores the capacity of RRWH to enhance water use performance, help crop growth, enhance soil health, and promote ecological stability inside the farming ecosystem. The medical paper delves into the advantages, challenges, and implementation techniques of RRWH in organic farming. It addresses demanding situations, including seasonal variability of rainfall, limited rooftop vicinity, and monetary concerns. Moreover, it analyses broader environmental and socio-economic implications of RRWH for sustainable agriculture, emphasizing water conservation, biodiversity protection, and the social properly-being of farming communities. The belief underscores the importance of RRWH as a sustainable solution for reaching the aim of sustainable agriculture in natural farming in India. It emphasizes the want for further studies, policy advocacy, and capacity-building initiatives to promote RRWH adoption and assist the transformation in the direction of sustainable organic farming systems. The paper proposes adaptive strategies to triumph over demanding situations and optimize the advantages of RRWH in organic farming. By way of doing so, India can make vast development in addressing water scarcity issues and making sure a greater resilient and sustainable agricultural future in smart cities.

Keywords: rooftop rainwater harvesting, organic farming, green water management, food protection, ecological stabilty

Procedia PDF Downloads 62
568 Preparation of β-Polyvinylidene Fluoride Film for Self-Charging Lithium-Ion Battery

Authors: Nursultan Turdakyn, Alisher Medeubayev, Didar Meiramov, Zhibek Bekezhankyzy, Desmond Adair, Gulnur Kalimuldina

Abstract:

In recent years the development of sustainable energy sources is getting extensive research interest due to the ever-growing demand for energy. As an alternative energy source to power small electronic devices, ambient energy harvesting from vibration or human body motion is considered a potential candidate. Despite the enormous progress in the field of battery research in terms of safety, lifecycle and energy density in about three decades, it has not reached the level to conveniently power wearable electronic devices such as smartwatches, bands, hearing aids, etc. For this reason, the development of self-charging power units with excellent flexibility and integrated energy harvesting and storage is crucial. Self-powering is a key idea that makes it possible for the system to operate sustainably, which is now getting more acceptance in many fields in the area of sensor networks, the internet of things (IoT) and implantable in-vivo medical devices. For solving this energy harvesting issue, the self-powering nanogenerators (NGS) were proposed and proved their high effectiveness. Usually, sustainable power is delivered through energy harvesting and storage devices by connecting them to the power management circuit; as for energy storage, the Li-ion battery (LIB) is one of the most effective technologies. Through the movement of Li ions under the driving of an externally applied voltage source, the electrochemical reactions generate the anode and cathode, storing the electrical energy as the chemical energy. In this paper, we present a simultaneous process of converting the mechanical energy into chemical energy in a way that NG and LIB are combined as an all-in-one power system. The electrospinning method was used as an initial step for the development of such a system with a β-PVDF separator. The obtained film showed promising voltage output at different stress frequencies. X-ray diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR) analysis showed a high percentage of β phase of PVDF polymer material. Moreover, it was found that the addition of 1 wt.% of BTO (Barium Titanate) results in higher quality fibers. When comparing pure PVDF solution with 20 wt.% content and the one with BTO added the latter was more viscous. Hence, the sample was electrospun uniformly without any beads. Lastly, to test the sensor application of such film, a particular testing device has been developed. With this device, the force of a finger tap can be applied at different frequencies so that electrical signal generation is validated.

Keywords: electrospinning, nanogenerators, piezoelectric PVDF, self-charging li-ion batteries

Procedia PDF Downloads 137
567 Development of In Situ Permeability Test Using Constant Discharge Method for Sandy Soils

Authors: A. Rifa’i, Y. Takeshita, M. Komatsu

Abstract:

The post-rain puddles problem that occurs in the first yard of Prambanan Temple are often disturbing visitor activity. A poodle layer and a drainage system has ever built to avoid such a problem, but puddles still didn’t stop appearing after rain. Permeability parameter needs to be determined by using more simple procedure to find exact method of solution. The instrument modelling were proposed according to the development of field permeability testing instrument. This experiment used proposed Constant Discharge method. Constant Discharge method used a tube poured with constant water flow. The procedure were carried out from unsaturated until saturated soil condition. Volumetric water content (θ) were being monitored by soil moisture measurement device. The results were relationship between k and θ which drawn by numerical approach Van Genutchen model. Parameters θr optimum value obtained from the test was at very dry soil. Coefficient of permeability with a density of 19.8 kN/m3 for unsaturated conditions was in range of 3 x 10-6 cm/sec (Sr= 68 %) until 9.98 x 10-4 cm/sec (Sr= 82 %). The equipment and testing procedure developed in this research was quite effective, simple and easy to be implemented on determining field soil permeability coefficient value of sandy soil. Using constant discharge method in proposed permeability test, value of permeability coefficient under unsaturated condition can be obtained without establish soil water characteristic curve.

Keywords: constant discharge method, in situ permeability test, sandy soil, unsaturated conditions

Procedia PDF Downloads 352
566 Identification of Suitable Rainwater Harvesting Sites Using Geospatial Techniques with AHP in Chacha Watershed, Jemma Sub-Basin Upper Blue Nile, Ethiopia

Authors: Abrha Ybeyn Gebremedhn, Yitea Seneshaw Getahun, Alebachew Shumye Moges, Fikrey Tesfay

Abstract:

Rainfed agriculture in Ethiopia has failed to produce enough food, to achieve the increasing demand for food. Pinpointing the appropriate site for rainwater harvesting (RWH) have a substantial contribution to increasing the available water and enhancing agricultural productivity. The current study related to the identification of the potential RWH sites was conducted at the Chacha watershed central highlands of Ethiopia which is endowed with rugged topography. The Geographic Information System with Analytical Hierarchy Process was used to generate the different maps for identifying appropriate sites for RWH. In this study, 11 factors that determine the RWH locations including slope, soil texture, runoff depth, land cover type, annual average rainfall, drainage density, lineament intensity, hydrologic soil group, antecedent moisture content, and distance to the roads were considered. The overall analyzed result shows that 10.50%, 71.10%, 17.90%, and 0.50% of the areas were found under highly, moderately, marginally suitable, and unsuitable areas for RWH, respectively. The RWH site selection was found highly dependent on a slope, soil texture, and runoff depth; moderately dependent on drainage density, annual average rainfall, and land use land cover; but less dependent on the other factors. The highly suitable areas for rainwater harvesting expansion are lands having a flat topography with a soil textural class of high-water holding capacity that can produce high runoff depth. The application of this study could be a baseline for planners and decision-makers and support any strategy adoption for appropriate RWH site selection.

Keywords: runoff depth, antecedent moisture condition, AHP, weighted overlay, water resource

Procedia PDF Downloads 18
565 Smart-Textile Containers for Urban Mobility

Authors: René Vieroth, Christian Dils, M. V. Krshiwoblozki, Christine Kallmayer, Martin Schneider-Ramelow, Klaus-Dieter Lang

Abstract:

Green urban mobility in commercial and private contexts is one of the great challenges for the continuously growing cities all over the world. Bicycle based solutions are already and since a long time the key to success. Modern developments like e-bikes and high-end cargo-bikes complement the portfolio. Weight, aerodynamic drag, and security for the transported goods are the key factors for working solutions. Recent achievements in the field of smart-textiles allowed the creation of a totally new generation of intelligent textile cargo containers, which fulfill those demands. The fusion of technical textiles, design and electrical engineering made it possible to create an ecological solution which is very near to become a product. This paper shows all the details of this solution that includes an especially developed sensor textile for cut detection, a protective textile layer for intrusion prevention, an universal-charging-unit for energy harvesting from diverse sources and a low-energy alarm system with GSM/GPRS connection, GPS location and RFID interface.

Keywords: cargo-bike, cut-detection, e-bike, energy-harvesting, green urban mobility, logistics, smart-textiles, textile-integrity sensor

Procedia PDF Downloads 289
564 Machine Learning in Agriculture: A Brief Review

Authors: Aishi Kundu, Elhan Raza

Abstract:

"Necessity is the mother of invention" - Rapid increase in the global human population has directed the agricultural domain toward machine learning. The basic need of human beings is considered to be food which can be satisfied through farming. Farming is one of the major revenue generators for the Indian economy. Agriculture is not only considered a source of employment but also fulfils humans’ basic needs. So, agriculture is considered to be the source of employment and a pillar of the economy in developing countries like India. This paper provides a brief review of the progress made in implementing Machine Learning in the agricultural sector. Accurate predictions are necessary at the right time to boost production and to aid the timely and systematic distribution of agricultural commodities to make their availability in the market faster and more effective. This paper includes a thorough analysis of various machine learning algorithms applied in different aspects of agriculture (crop management, soil management, water management, yield tracking, livestock management, etc.).Due to climate changes, crop production is affected. Machine learning can analyse the changing patterns and come up with a suitable approach to minimize loss and maximize yield. Machine Learning algorithms/ models (regression, support vector machines, bayesian models, artificial neural networks, decision trees, etc.) are used in smart agriculture to analyze and predict specific outcomes which can be vital in increasing the productivity of the Agricultural Food Industry. It is to demonstrate vividly agricultural works under machine learning to sensor data. Machine Learning is the ongoing technology benefitting farmers to improve gains in agriculture and minimize losses. This paper discusses how the irrigation and farming management systems evolve in real-time efficiently. Artificial Intelligence (AI) enabled programs to emerge with rich apprehension for the support of farmers with an immense examination of data.

Keywords: machine Learning, artificial intelligence, crop management, precision farming, smart farming, pre-harvesting, harvesting, post-harvesting

Procedia PDF Downloads 76
563 Multivariate Rainfall Disaggregation Using MuDRain Model: Malaysia Experience

Authors: Ibrahim Suliman Hanaish

Abstract:

Disaggregation daily rainfall using stochastic models formulated based on multivariate approach (MuDRain) is discussed in this paper. Seven rain gauge stations are considered in this study for different distances from the referred station starting from 4 km to 160 km in Peninsular Malaysia. The hourly rainfall data used are covered the period from 1973 to 2008 and July and November months are considered as an example of dry and wet periods. The cross-correlation among the rain gauges is considered for the available hourly rainfall information at the neighboring stations or not. This paper discussed the applicability of the MuDRain model for disaggregation daily rainfall to hourly rainfall for both sources of cross-correlation. The goodness of fit of the model was based on the reproduction of fitting statistics like the means, variances, coefficients of skewness, lag zero cross-correlation of coefficients and the lag one auto correlation of coefficients. It is found the correlation coefficients based on extracted correlations that was based on daily are slightly higher than correlations based on available hourly rainfall especially for neighboring stations not more than 28 km. The results showed also the MuDRain model did not reproduce statistics very well. In addition, a bad reproduction of the actual hyetographs comparing to the synthetic hourly rainfall data. Mean while, it is showed a good fit between the distribution function of the historical and synthetic hourly rainfall. These discrepancies are unavoidable because of the lowest cross correlation of hourly rainfall. The overall performance indicated that the MuDRain model would not be appropriate choice for disaggregation daily rainfall.

Keywords: rainfall disaggregation, multivariate disaggregation rainfall model, correlation, stochastic model

Procedia PDF Downloads 470