Search results for: public’s climate change concern
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14084

Search results for: public’s climate change concern

13844 Climate Change and Dengue Transmission in Lahore, Pakistan

Authors: Sadia Imran, Zenab Naseem

Abstract:

Dengue fever is one of the most alarming mosquito-borne viral diseases. Dengue virus has been distributed over the years exponentially throughout the world be it tropical or sub-tropical regions of the world, particularly in the last ten years. Changing topography, climate change in terms of erratic seasonal trends, rainfall, untimely monsoon early or late and longer or shorter incidences of either summer or winter. Globalization, frequent travel throughout the world and viral evolution has lead to more severe forms of Dengue. Global incidence of dengue infections per year have ranged between 50 million and 200 million; however, recent estimates using cartographic approaches suggest this number is closer to almost 400 million. In recent years, Pakistan experienced a deadly outbreak of the disease. The reason could be that they have the maximum exposure outdoors. Public organizations have observed that changing climate, especially lower average summer temperature, and increased vegetation have created tropical-like conditions in the city, which are suitable for Dengue virus growth. We will conduct a time-series analysis to study the interrelationship between dengue incidence and diurnal ranges of temperature and humidity in Pakistan, Lahore being the main focus of our study. We have used annual data from 2005 to 2015. We have investigated the relationship between climatic variables and dengue incidence. We used time series analysis to describe temporal trends. The result shows rising trends of Dengue over the past 10 years along with the rise in temperature & rainfall in Lahore. Hence this seconds the popular statement that the world is suffering due to Climate change and Global warming at different levels. Disease outbreak is one of the most alarming indications of mankind heading towards destruction and we need to think of mitigating measures to control epidemic from spreading and enveloping the cities, countries and regions.

Keywords: Dengue, epidemic, globalization, climate change

Procedia PDF Downloads 207
13843 Potential Climate Change Impacts on the Hydrological System of the Harvey River Catchment

Authors: Hashim Isam Jameel Al-Safi, P. Ranjan Sarukkalige

Abstract:

Climate change is likely to impact the Australian continent by changing the trends of rainfall, increasing temperature, and affecting the accessibility of water quantity and quality. This study investigates the possible impacts of future climate change on the hydrological system of the Harvey River catchment in Western Australia by using the conceptual modelling approach (HBV mode). Daily observations of rainfall and temperature and the long-term monthly mean potential evapotranspiration, from six weather stations, were available for the period (1961-2015). The observed streamflow data at Clifton Park gauging station for 33 years (1983-2015) in line with the observed climate variables were used to run, calibrate and validate the HBV-model prior to the simulation process. The calibrated model was then forced with the downscaled future climate signals from a multi-model ensemble of fifteen GCMs of the CMIP3 model under three emission scenarios (A2, A1B and B1) to simulate the future runoff at the catchment outlet. Two periods were selected to represent the future climate conditions including the mid (2046-2065) and late (2080-2099) of the 21st century. A control run, with the reference climate period (1981-2000), was used to represent the current climate status. The modelling outcomes show an evident reduction in the mean annual streamflow during the mid of this century particularly for the A1B scenario relative to the control run. Toward the end of the century, all scenarios show a relatively high reduction trends in the mean annual streamflow, especially the A1B scenario, compared to the control run. The decline in the mean annual streamflow ranged between 4-15% during the mid of the current century and 9-42% by the end of the century.

Keywords: climate change impact, Harvey catchment, HBV model, hydrological modelling, GCMs, LARS-WG

Procedia PDF Downloads 228
13842 Characterization and Modelling of Groundwater Flow towards a Public Drinking Water Well Field: A Case Study of Ter Kamerenbos Well Field

Authors: Buruk Kitachew Wossenyeleh

Abstract:

Groundwater is the largest freshwater reservoir in the world. Like the other reservoirs of the hydrologic cycle, it is a finite resource. This study focused on the groundwater modeling of the Ter Kamerenbos well field to understand the groundwater flow system and the impact of different scenarios. The study area covers 68.9Km2 in the Brussels Capital Region and is situated in two river catchments, i.e., Zenne River and Woluwe Stream. The aquifer system has three layers, but in the modeling, they are considered as one layer due to their hydrogeological properties. The catchment aquifer system is replenished by direct recharge from rainfall. The groundwater recharge of the catchment is determined using the spatially distributed water balance model called WetSpass, and it varies annually from zero to 340mm. This groundwater recharge is used as the top boundary condition for the groundwater modeling of the study area. During the groundwater modeling using Processing MODFLOW, constant head boundary conditions are used in the north and south boundaries of the study area. For the east and west boundaries of the study area, head-dependent flow boundary conditions are used. The groundwater model is calibrated manually and automatically using observed hydraulic heads in 12 observation wells. The model performance evaluation showed that the root means the square error is 1.89m and that the NSE is 0.98. The head contour map of the simulated hydraulic heads indicates the flow direction in the catchment, mainly from the Woluwe to Zenne catchment. The simulated head in the study area varies from 13m to 78m. The higher hydraulic heads are found in the southwest of the study area, which has the forest as a land-use type. This calibrated model was run for the climate change scenario and well operation scenario. Climate change may cause the groundwater recharge to increase by 43% and decrease by 30% in 2100 from current conditions for the high and low climate change scenario, respectively. The groundwater head varies for a high climate change scenario from 13m to 82m, whereas for a low climate change scenario, it varies from 13m to 76m. If doubling of the pumping discharge assumed, the groundwater head varies from 13m to 76.5m. However, if the shutdown of the pumps is assumed, the head varies in the range of 13m to 79m. It is concluded that the groundwater model is done in a satisfactory way with some limitations, and the model output can be used to understand the aquifer system under steady-state conditions. Finally, some recommendations are made for the future use and improvement of the model.

Keywords: Ter Kamerenbos, groundwater modelling, WetSpass, climate change, well operation

Procedia PDF Downloads 129
13841 Rainfall Analysis in the Contest of Climate Change for Jeddah Area, Western Saudi Arabia

Authors: Ali M. Subyani

Abstract:

The increase in the greenhouse gas emission has had a severe impact on global climate change and is bound to affect the weather patterns worldwide. This climate change impacts are among the future significant effects on any society. Rainfall levels are drastically increasing with flash floods in some places and long periods of droughts in others, especially in arid regions. These extreme events are causes of interactions concerning environmental, socio-economic and cultural life and their implementation. This paper presents the detailed features of dry and wet spell durations and rainfall intensity series available (1971-2012) on daily basis for the Jeddah area, Western, Saudi Arabia. It also presents significant articles for combating the climate change impacts on this area. Results show trend changes in dry and wet spell durations and rainfall amount on daily, monthly and annual time series. Three rain seasons were proposed in this investigation: high rain, low rain, and dry seasons. It shows that the overall average dry spell durations is about 80 continuous days while the average wet spell durations is 1.39 days with an average rainfall intensity of 8.2 mm/day. Annual and seasonal autorun analyses confirm that the rainy seasons are tending to have more intense rainfall while the seasons are becoming drier. This study would help decision makers in future for water resources management and flood risk analysis.

Keywords: climate change, daily rainfall, dry and wet spill, Jeddah, Saudi Arabia

Procedia PDF Downloads 309
13840 Effect of Anion Variation on the CO2 Capture Performance of Pyridinium Containing Poly(ionic liquid)s

Authors: Sonia Zulfiqar, Daniele Mantione, Muhammad Ilyas Sarwar, Alexander Rothenberger, David Mecerreyes

Abstract:

Climate change due to escalating carbon dioxide concentration in the atmosphere is an issue of paramount importance that needs immediate attention. CO2 capture and sequestration (CCS) is a promising route to mitigate climate change and adsorption is the most widely recognized technology owing to possible energy savings relative to the conventional absorption techniques. In this conference, the potential of a new family of solid sorbents for CO2 capture and separation will be presented. Novel pyridinium containing poly(ionic liquid)s (PILs) were synthesized with varying anions i.e bis(trifluoromethylsulfonyl)imide and hexafluorophosphate. The resulting polymers were characterized using NMR, XRD, TGA, BET surface area and microscopic techniques. Furthermore, CO2 adsorption measurements at two different temperatures were also carried out and revealed great potential of these PILs as CO2 scavengers.

Keywords: climate change, CO2 capture, poly(ionic liquid)s, CO2/N2 selectivity

Procedia PDF Downloads 334
13839 Did Chilling Injury of Rice Decrease under Climate Warming? A Case Study in Northeast China

Authors: Fengmei Yao, Pengcheng Qin, Jiahua Zhang, Min Liu

Abstract:

Global warming is expected to reduce the risk of low temperature stress in rice grown in temperate regions, but this impact has not been well verified by empirical studies directly on chilling injury in rice. In this study, a case study in Northeast China was presented to investigate whether the frequencies of chilling injury declined as a result of climate change, in comprehensive consideration of the potential effects from autonomous adaptation of rice production in response to climate change, such as shifts in cultivation timing and rice cultivars. It was found that frequency of total chilling injury (either delayed-growth type or sterile-type in a year) decreased but only to a limit extent in the context of climate change, mainly owing to a pronounced decrease in frequency of the delayed-growth chilling injury, while there was no overwhelming decreasing tendency for frequency of the sterile-type chilling injury, rather, it even increased considerably for some regions. If changes in cultivars had not occurred, risks of chilling injury of both types would have been much lower, specifically for the sterile-type chilling injury for avoiding deterioration in chilling sensitivity of rice cultivars. In addition, earlier planting helped lower the risk of chilling injury but still can not overweight the effects of introduction of new cultivars. It was concluded that risks of chilling injury in rice would not necessarily decrease as a result of climate change, considering the accompanying adaptation process may increase the chilling sensitivity of rice production system in a warmer climate conditions, and thus precautions should still be taken.

Keywords: chilling injury, rice, CERES-rice model, climate warming, North east China

Procedia PDF Downloads 303
13838 Using Flow Line Modelling, Remote Sensing for Reconstructing Glacier Volume Loss Model for Athabasca Glacier, Canadian Rockies

Authors: Rituparna Nath, Shawn J. Marshall

Abstract:

Glaciers are one of the main sensitive climatic indicators, as they respond strongly to small climatic shifts. We develop a flow line model of glacier dynamics to simulate the past and future extent of glaciers in the Canadian Rocky Mountains, with the aim of coupling this model within larger scale regional climate models of glacier response to climate change. This paper will focus on glacier-climate modeling and reconstructions of glacier volume from the Little Ice Age (LIA) to present for Athabasca Glacier, Alberta, Canada. Glacier thickness, volume and mass change will be constructed using flow line modelling and examination of different climate scenarios that are able to give good reconstructions of LIA ice extent. With the availability of SPOT 5 imagery, Digital elevation models and GIS Arc Hydro tool, ice catchment properties-glacier width and LIA moraines have been extracted using automated procedures. Simulation of glacier mass change will inform estimates of meltwater run off over the historical period and model calibration from the LIA reconstruction will aid in future projections of the effects of climate change on glacier recession. Furthermore, the model developed will be effective for further future studies with ensembles of glaciers.

Keywords: flow line modeling, Athabasca Glacier, glacier mass balance, Remote Sensing, Arc hydro tool, little ice age

Procedia PDF Downloads 245
13837 Climate Change and Health: Scoping Review of Scientific Literature 1990-2015

Authors: Niamh Herlihy, Helen Fischer, Rainer Sauerborn, Anneliese Depoux, Avner Bar-Hen, Antoine Flauhault, Stefanie Schütte

Abstract:

In the recent decades, there has been an increase in the number of publications both in the scientific and grey literature on the potential health risks associated with climate change. Though interest in climate change and health is growing, there are still many gaps to adequately assess our future health needs in a warmer world. Generating a greater understanding of the health impacts of climate change could be a key step in inciting the changes necessary to decelerate global warming and to target new strategies to mitigate the consequences on health systems. A long term and broad overview of existing scientific literature in the field of climate change and health is currently missing in order to ensure that all priority areas are being adequately addressed. We conducted a scoping review of published peer-reviewed literature on climate change and health from two large databases, PubMed and Web of Science, between 1990 and 2015. A scoping review allowed for a broad analysis of this complex topic on a meta-level as opposed to a thematically refined literature review. A detailed search strategy including specific climate and health terminology was used to search the two databases. Inclusion and exclusion criteria were applied in order to capture the most relevant literature on the human health impact of climate change within the chosen timeframe. Two reviewers screened the papers independently and any differences arising were resolved by a third party. Data was extracted, categorized and coded both manually and using R software. Analytics and infographics were developed from results. There were 7269 articles identified between the two databases following the removal of duplicates. After screening of the articles by both reviewers 3751 were included. As expected, preliminary results indicate that the number of publications on the topic has increased over time. Geographically, the majority of publications address the impact of climate change and health in Europe and North America, This is particularly alarming given that countries in the Global South will bear the greatest health burden. Concerning health outcomes, infectious diseases, particularly dengue fever and other mosquito transmitted infections are the most frequently cited. We highlight research gaps in certain areas e.g climate migration and mental health issues. We are developing a database of the identified climate change and health publications and are compiling a report for publication and dissemination of the findings. As health is a major co-beneficiary to climate change mitigation strategies, our results may serve as a useful source of information for research funders and investors when considering future research needs as well as the cost-effectiveness of climate change strategies. This study is part of an interdisciplinary project called 4CHealth that confronts results of the research done on scientific, political and press literature to better understand how the knowledge on climate change and health circulates within those different fields and whether and how it is translated to real world change.

Keywords: climate change, health, review, mapping

Procedia PDF Downloads 291
13836 Organic Paddy Production as a Coping Strategy to the Adverse Impact of Climate Change

Authors: Thapa M., J.P. Dutta, K.R. Pandey, R.R. Kattel

Abstract:

Nepal is extremely vulnerable to the impact of climate change. To mitigate the climate change effects on agricultural production and productivity a range of adaptive strategies needs to be considered. The study was conducted to assess organic paddy production as a coping strategy to the adverse impact of climate change in Phulbari, VDC of Chitwan district. Altogether, 120 respondents (60 adopters of organic farming and 60 from non adopter) were selected using snowball technique of sampling. Pre- tested interview schedule, direct observation, focus group discussion, key informant interview as well as secondary data were used to collect the required information. Factors determining the adoption of organic farming were found to be age, year of schooling, training, frequency of extension contact, perception about climate change, economically active members and poor. A unit increase in these factors except poor would increase the probability of adoption by 4.1%, 7.5%, 7.8%, 43.1%, 41.8% and 7% respectively. However, for poor, it would decrease the probability of adoption of organic farming by 5.1%. Average organic matter content in the adopters' field was higher (2.7%) than the non-adopters' field (2.5%). The regression result showed that type of farmer, price and area under rice cultivation had positive and significant relationship with income; however dependency ratio had negative relationship. As the year of adoption of organic farming increases, the production of rice decline in the first two years then after goes on increasing but the cost of production goes on decreasing with the year of adoption. The respondents adapted to the changing climate through diversification of crops, use of resistance varieties and following good cropping pattern. Gradually growing consumers' awareness about health, preference towards quality food products are the strong points behind organic farming, whereas lacks of bio-fertilizers, lack of effective extension services, no price differentiation between organic and inorganic products were the weak points. There is need for more training and education to change the attitude of farmers and enhance their confidence about the role of organic farming to cope with climate change impact.

Keywords: Organic farming, climate change, sustainable development

Procedia PDF Downloads 430
13835 Determining the Spatial Vulnerability Levels and Typologies of Coastal Cities to Climate Change: Case of Turkey

Authors: Mediha B. Sılaydın Aydın, Emine D. Kahraman

Abstract:

One of the important impacts of climate change is the sea level rise. Turkey is a peninsula, so the coastal areas of the country are threatened by the problem of sea level rise. Therefore, the urbanized coastal areas are highly vulnerable to climate change. At the aim of enhancing spatial resilience of urbanized areas, this question arises: What should be the priority intervention subject in the urban planning process for a given city. To answer this question, by focusing on the problem of sea level rise, this study aims to determine spatial vulnerability typologies and levels of Turkey coastal cities based on morphological, physical and social characteristics. As a method, spatial vulnerability of coastal cities is determined by two steps as level and type. Firstly, physical structure, morphological structure and social structure were examined in determining spatial vulnerability levels. By determining these levels, most vulnerable areas were revealed as a priority in adaptation studies. Secondly, all parameters are also used to determine spatial typologies. Typologies are determined for coastal cities in order to use as a base for urban planning studies. Adaptation to climate change is crucial for developing countries like Turkey so, this methodology and created typologies could be a guide for urban planners as spatial directors and an example for other developing countries in the context of adaptation to climate change. The results demonstrate that the urban settlements located on the coasts of the Marmara Sea, the Aegean Sea and the Mediterranean respectively, are more vulnerable than the cities located on the Black Sea’s coasts to sea level rise.

Keywords: climate change, coastal cities, vulnerability, urban land use planning

Procedia PDF Downloads 283
13834 A Conceptual Framework for Vulnerability Assessment of Climate Change Impact on Oil and Gas Critical Infrastructures in the Niger Delta

Authors: Justin A. Udie, Subhes C. Bhatthacharyya, Leticia Ozawa-Meida

Abstract:

The impact of climate change is severe in the Niger Delta and critical oil and gas infrastructures are vulnerable. This is partly due to lack of specific impact assessment framework to assess impact indices on both existing and new infrastructures. The purpose of this paper is to develop a framework for the assessment of climate change impact on critical oil and gas infrastructure in the region. Comparative and documentary methods as well as analysis of frameworks were used to develop a flexible, integrated and conceptual four dimensional framework underpinning; 1. Scoping – the theoretical identification of inherent climate burdens, review of exposure, adaptive capacities and delineation of critical infrastructure; 2. Vulnerability assessment – presents a systematic procedure for the assessment of infrastructure vulnerability. It provides real time re-scoping, practical need for data collection, analysis and review. Physical examination of systems is encouraged to complement the scoped data and ascertain the level of exposure to relevant climate risks in the area; 3. New infrastructure – consider infrastructures that are still at developmental level. It seeks to suggest the inclusion of flexible adaptive capacities in original design of infrastructures in line with climate threats and projections; 4. The Mainstreaming Climate Impact Assessment into government’s environmental decision making approach. Though this framework is designed specifically for the estimation of exposure, adaptive capacities and criticality of vulnerable oil and gas infrastructures in the Niger Delta to climate burdens; it is recommended for researchers and experts as a first-hand generic and practicable tool which can be used for the assessment of other infrastructures perceived as critical and vulnerable. The paper does not provide further tools that synch into the methodological approach but presents pointers upon which a pragmatic methodology can be developed.

Keywords: adaptation, assessment, conceptual, climate, change, framework, vulnerability

Procedia PDF Downloads 288
13833 Impacts of Present and Future Climate Variability on Forest Ecosystem in Mediterranean Region

Authors: Orkan Ozcan, Nebiye Musaoglu, Murat Turkes

Abstract:

Climate change is largely recognized as one of the real, pressing and significant global problems. The concept of ‘climate change vulnerability’ helps us to better comprehend the cause/effect relationships behind climate change and its impact on human societies, socioeconomic sectors, physiographical and ecological systems. In this study, multifactorial spatial modeling was applied to evaluate the vulnerability of a Mediterranean forest ecosystem to climate change. As a result, the geographical distribution of the final Environmental Vulnerability Areas (EVAs) of the forest ecosystem is based on the estimated final Environmental Vulnerability Index (EVI) values. This revealed that at current levels of environmental degradation, physical, geographical, policy enforcement and socioeconomic conditions, the area with a ‘very low’ vulnerability degree covered mainly the town, its surrounding settlements and the agricultural lands found mainly over the low and flat travertine plateau and the plains at the east and southeast of the district. The spatial magnitude of the EVAs over the forest ecosystem under the current environmental degradation was also determined. This revealed that the EVAs classed as ‘very low’ account for 21% of the total area of the forest ecosystem, those classed as ‘low’ account for 36%, those classed as ‘medium’ account for 20%, and those classed as ‘high’ account for 24%. Based on regionally averaged future climate assessments and projected future climate indicators, both the study site and the western Mediterranean sub-region of Turkey will probably become associated with a drier, hotter, more continental and more water-deficient climate. This analysis holds true for all future scenarios, with the exception of RCP4.5 for the period from 2015 to 2030. However, the present dry-sub humid climate dominating this sub-region and the study area shows a potential for change towards more dry climatology and for it to become a semiarid climate in the period between 2031 and 2050 according to the RCP8.5 high emission scenario. All the observed and estimated results and assessments summarized in the study show clearly that the densest forest ecosystem in the southern part of the study site, which is characterized by mainly Mediterranean coniferous and some mixed forest and the maquis vegetation, will very likely be influenced by medium and high degrees of vulnerability to future environmental degradation, climate change and variability.

Keywords: forest ecosystem, Mediterranean climate, RCP scenarios, vulnerability analysis

Procedia PDF Downloads 327
13832 Beggar-Thy-Neighbor's Beach: Pricing Adaptation to Sea-Level Rise

Authors: Arlan Zandro Brucal, John Lynham

Abstract:

With the accelerated sea-level rise (SLR) increasingly becoming a concern, demand for coastal management and protection is expected to grow. Among the coastal management and protection methods, building seawalls are among the most controversial due to the negative externalities they impose on beachgoers and neighboring properties. This paper provides estimates of the external cost associated with building seawalls on the island of Oahu in Hawaii. Using hedonic pricing approach on real properties sold between 1980-2010 and aerial photographs of seawalls in 1995, the paper finds that (1) while seawalls do increase the value of protected properties, the share of armored properties appear to be negatively correlated with property sale prices, suggesting that the positive effect of seawalls tend to decline as more and more rely on this coastal management method; and (2) the value of beachfront properties tend to decline as they get approach seawalls. Results suggest that policymakers should devise a policy that would internalize the externalities associated with private-sector adaptation to climate change.

Keywords: private sector climate change adaptation, externalities, sea-level rise, hedonic pricing

Procedia PDF Downloads 262
13831 Exploring Tree Growth Variables Influencing Carbon Sequestration in the Face of Climate Change

Authors: Funmilayo Sarah Eguakun, Peter Oluremi Adesoye

Abstract:

One of the major problems being faced by human society is that the global temperature is believed to be rising due to human activity that releases carbon IV oxide (CO2) to the atmosphere. Carbon IV oxide is the most important greenhouse gas influencing global warming and possible climate change. With climate change becoming alarming, reducing CO2 in our atmosphere has become a primary goal of international efforts. Forest landsare major sink and could absorb large quantities of carbon if the trees are judiciously managed. The study aims at estimating the carbon sequestration capacity of Pinus caribaea (pine)and Tectona grandis (Teak) under the prevailing environmental conditions and exploring tree growth variables that influencesthe carbon sequestration capacity in Omo Forest Reserve, Ogun State, Nigeria. Improving forest management by manipulating growth characteristics that influences carbon sequestration could be an adaptive strategy of forestry to climate change. Random sampling was used to select Temporary Sample Plots (TSPs) in the study area from where complete enumeration of growth variables was carried out within the plots. The data collected were subjected to descriptive and correlational analyses. The results showed that average carbon stored by Pine and Teak are 994.4±188.3 Kg and 1350.7±180.6 Kg respectively. The difference in carbon stored in the species is significant enough to consider choice of species relevant in climate change adaptation strategy. Tree growth variables influence the capacity of the tree to sequester carbon. Height, diameter, volume, wood density and age are positively correlated to carbon sequestration. These tree growth variables could be manipulated by the forest manager as an adaptive strategy for climate change while plantations of high wood density speciescould be relevant for management strategy to increase carbon storage.

Keywords: adaptation, carbon sequestration, climate change, growth variables, wood density

Procedia PDF Downloads 342
13830 Cross-Disciplinary Perspectives on Climate-Induced Migration in Brazil: Legislation, Policies and Practice

Authors: Heloisa H. Miura, Luiza M. Pallone

Abstract:

In Brazil, people forced to move due to environmental causes, called 'environmental migrants', have always been neglected by public policies and legislation. Meanwhile, the numbers of climate-induced migration within and to Brazil continues to increase. The operating Immigration Law, implemented in 1980 under the Brazilian military regime, is widely considered to be out of date, once it does not offer legal protection to migrants who do not fit the definition of a refugee and are not allowed to stay regularly in the country. Aiming to reformulate Brazil’s legislation and policies on the matter, a new Migration Bill (PL 2516/2015) is currently being discussed in the Senate and is expected to define a more humanized approach to migration. Although the present draft foresees an expansion of the legal protection to different types of migrants, it still hesitates to include climate-induced displacements in its premises and to establish a migration management strategy. By introducing a human rights-based approach, this paper aims to provide a new multidisciplinary perspective to the protection of environmental migrants in Brazil.

Keywords: environmental migrants, human mobility, climate change, migration policy

Procedia PDF Downloads 372
13829 A Review of Critical Framework Assessment Matrices for Data Analysis on Overheating in Buildings Impact

Authors: Martin Adlington, Boris Ceranic, Sally Shazhad

Abstract:

In an effort to reduce carbon emissions, changes in UK regulations, such as Part L Conservation of heat and power, dictates improved thermal insulation and enhanced air tightness. These changes were a direct response to the UK Government being fully committed to achieving its carbon targets under the Climate Change Act 2008. The goal is to reduce emissions by at least 80% by 2050. Factors such as climate change are likely to exacerbate the problem of overheating, as this phenomenon expects to increase the frequency of extreme heat events exemplified by stagnant air masses and successive high minimum overnight temperatures. However, climate change is not the only concern relevant to overheating, as research signifies, location, design, and occupation; construction type and layout can also play a part. Because of this growing problem, research shows the possibility of health effects on occupants of buildings could be an issue. Increases in temperature can perhaps have a direct impact on the human body’s ability to retain thermoregulation and therefore the effects of heat-related illnesses such as heat stroke, heat exhaustion, heat syncope and even death can be imminent. This review paper presents a comprehensive evaluation of the current literature on the causes and health effects of overheating in buildings and has examined the differing applied assessment approaches used to measure the concept. Firstly, an overview of the topic was presented followed by an examination of overheating research work from the last decade. These papers form the body of the article and are grouped into a framework matrix summarizing the source material identifying the differing methods of analysis of overheating. Cross case evaluation has identified systematic relationships between different variables within the matrix. Key areas focused on include, building types and country, occupants behavior, health effects, simulation tools, computational methods.

Keywords: overheating, climate change, thermal comfort, health

Procedia PDF Downloads 326
13828 Cost Benefit Analysis of Adoption of Climate Change Adaptation Options among Rural Rice Farmers in Nepal

Authors: Niranjan Devkota , Ram Kumar Phuya, Durga Lal Shreshta

Abstract:

This paper estimates cost and benefit of adoption of climate change adaptation options available to the rural rice farmers of Nepal. Adoption of adaptation strategies, intensity of use of adaptation options, identification of labor and non-labor cost and finally per unit cost and benefit analysis of climate change adaptation were made. Multi-stage sampling technique was used to source respondents for the study and used structured questionnaire techniques to collect data from 773 households from seven districts; 3 from Terai and 4 from Hilly region of Nepal. The result revealed that there are 13 major adaptation options rice farmers practice in order to protect themselves from climatic risk. Among the given adaptation options, the first three popular adaptation options practiced by rice farmers are (i) increasing use of chemical fertilizer (60.93%) (ii) use of climate smart verities (49.29%) and (iii) change in nursery date (32.08%). Adaptation cost is obvious, based on that, the first three costly adaptation options are the alternative irrigation practice which incurred average cost of US $69.95 (US$ 1 = 102.84 Nepalese Rupees) followed by a denser plantation of local seeds ($ 20.69) and using climate smart varieties ($ 18.06). 88% farmers practiced more than one adaptation strategies on the same farm with the aim of reducing the effect of extreme climatic conditions. Total cost and revenue revealed that per unit total cost ranges from $28.34 to $32.79 whereas per unit total revenue ranges $33.4 to $49.02. Surprisingly, it is observed that farmers who do not adopt any adaptation options are able to receive highest income from per unit production. As Net Present Value (NPV) is positive and Benefit Cost Ration (BCR) is greater than one for every adaptation options that indicates the available adaptation options are profitable to the rice farmers.

Keywords: climate change, adaptation options, cost benefit analysis, rural rice farmers, Nepal

Procedia PDF Downloads 231
13827 Joint Probability Distribution of Extreme Water Level with Rainfall and Temperature: Trend Analysis of Potential Impacts of Climate Change

Authors: Ali Razmi, Saeed Golian

Abstract:

Climate change is known to have the potential to impact adversely hydrologic patterns for variables such as rainfall, maximum and minimum temperature and sea level rise. Long-term average of these climate variables could possibly change over time due to climate change impacts. In this study, trend analysis was performed on rainfall, maximum and minimum temperature and water level data of a coastal area in Manhattan, New York City, Central Park and Battery Park stations to investigate if there is a significant change in the data mean. Partial Man-Kendall test was used for trend analysis. Frequency analysis was then performed on data using common probability distribution functions such as Generalized Extreme Value (GEV), normal, log-normal and log-Pearson. Goodness of fit tests such as Kolmogorov-Smirnov are used to determine the most appropriate distributions. In flood frequency analysis, rainfall and water level data are often separately investigated. However, in determining flood zones, simultaneous consideration of rainfall and water level in frequency analysis could have considerable effect on floodplain delineation (flood extent and depth). The present study aims to perform flood frequency analysis considering joint probability distribution for rainfall and storm surge. First, correlation between the considered variables was investigated. Joint probability distribution of extreme water level and temperature was also investigated to examine how global warming could affect sea level flooding impacts. Copula functions were fitted to data and joint probability of water level with rainfall and temperature for different recurrence intervals of 2, 5, 25, 50, 100, 200, 500, 600 and 1000 was determined and compared with the severity of individual events. Results for trend analysis showed increase in long-term average of data that could be attributed to climate change impacts. GEV distribution was found as the most appropriate function to be fitted to the extreme climate variables. The results for joint probability distribution analysis confirmed the necessity for incorporation of both rainfall and water level data in flood frequency analysis.

Keywords: climate change, climate variables, copula, joint probability

Procedia PDF Downloads 326
13826 Hydro-Sedimentological Evaluation in Itajurú Channel–Araruama Lagoon-Rj, Due Superelevation of the Sea Level by Climate Change

Authors: Paulo José Sigaúque, Paulo Rosman

Abstract:

The Itajurú channel, located in the Eastern side of the Araruama lagoon, Rio de Janeiro state, is the one who makes the connection between Araruama lagoon and the sea. It is important to understand the hydrodynamic circulation of the location and effects of the sedimentological processes, and also estimate of the hydrodynamic and sedimentological processes in the future after the sea level change due to effects of climate change. This work presents results of a study about sediments dynamics in the Araruama lagoon focusing on the Itajurú channel region considering the present mean sea level and a foreseen sea level rise of 0.5 meters due to climate changes. The study was conducted with the aid of computer modeling for hydrodynamic and morphodynamic in SisBaHiA®. The results indicate that Araruama lagoon is composed by two hydrodynamics compartments; one is dominated by the action of the tide between the entrance of the channel and the strait of Perynas, and another one by the action of wind in narrow region between strait of Perynas and western extreme of the lagoon. With sea level rise, the magnitude of current velocities and flow rates is increased and consequently flow of sediment transport from upstream to downstream of Itajurú channel is increased and has more effect in the bridge Feliciano Sodré.

Keywords: hydrodinamic, superelevation, sea level, climate change

Procedia PDF Downloads 276
13825 Role of Indigenous Peoples in Climate Change

Authors: Neelam Kadyan, Pratima Ranga, Yogender

Abstract:

Indigenous people are the One who are affected by the climate change the most, although there have contributed little to its causes. This is largely a result of their historic dependence on local biological diversity, ecosystem services and cultural landscapes as a source of their sustenance and well-being. Comprising only four percent of the world’s population they utilize 22 percent of the world’s land surface. Despite their high exposure-sensitivity indigenous peoples and local communities are actively responding to changing climatic conditions and have demonstrated their resourcefulness and resilience in the face of climate change. Traditional Indigenous territories encompass up to 22 percent of the world’s land surface and they coincide with areas that hold 80 percent of the planet’s biodiversity. Also, the greatest diversity of indigenous groups coincides with the world’s largest tropical forest wilderness areas in the Americas (including Amazon), Africa, and Asia, and 11 percent of world forest lands are legally owned by Indigenous Peoples and communities. This convergence of biodiversity-significant areas and indigenous territories presents an enormous opportunity to expand efforts to conserve biodiversity beyond parks, which tend to benefit from most of the funding for biodiversity conservation. Tapping on Ancestral Knowledge Indigenous Peoples are carriers of ancestral knowledge and wisdom about this biodiversity. Their effective participation in biodiversity conservation programs as experts in protecting and managing biodiversity and natural resources would result in more comprehensive and cost effective conservation and management of biodiversity worldwide. Addressing the Climate Change Agenda Indigenous Peoples has played a key role in climate change mitigation and adaptation. The territories of indigenous groups who have been given the rights to their lands have been better conserved than the adjacent lands (i.e., Brazil, Colombia, Nicaragua, etc.). Preserving large extensions of forests would not only support the climate change objectives, but it would respect the rights of Indigenous Peoples and conserve biodiversity as well. A climate change agenda fully involving Indigenous Peoples has many more benefits than if only government and/or the private sector are involved. Indigenous peoples are some of the most vulnerable groups to the negative effects of climate change. Also, they are a source of knowledge to the many solutions that will be needed to avoid or ameliorate those effects. For example, ancestral territories often provide excellent examples of a landscape design that can resist the negatives effects of climate change. Over the millennia, Indigenous Peoples have developed adaptation models to climate change. They have also developed genetic varieties of medicinal and useful plants and animal breeds with a wider natural range of resistance to climatic and ecological variability.

Keywords: ancestral knowledge, cost effective conservation, management, indigenous peoples, climate change

Procedia PDF Downloads 649
13824 Making Unorganized Social Groups Responsible for Climate Change: Structural Analysis

Authors: Vojtěch Svěrák

Abstract:

Climate change ethics have recently shifted away from individualistic paradigms towards concepts of shared or collective responsibility. Despite this evolving trend, a noticeable gap remains: a lack of research exclusively addressing the moral responsibility of specific unorganized social groups. The primary objective of the article is to fill this gap. The article employs the structuralist methodological approach proposed by some feminist philosophers, utilizing structural analysis to explain the existence of social groups. The argument is made for the integration of this framework with the so-called forward-looking Social Connection Model (SCM) of responsibility, which ascribes responsibilities to individuals based on their participation in social structures. The article offers an extension of this model to justify the responsibility of unorganized social groups. The major finding of the study is that although members of unorganized groups are loosely connected, collectively they instantiate specific external social structures, share social positioning, and the notion of responsibility could be based on that. Specifically, if the structure produces harm or perpetuates injustices, and the group both benefits from and possesses the capacity to significantly influence the structure, a greater degree of responsibility should be attributed to the group as a whole. This thesis is applied and justified within the context of climate change, based on the asymmetrical positioning of different social groups. Climate change creates a triple inequality: in contribution, vulnerability, and mitigation. The study posits that different degrees of group responsibility could be drawn from these inequalities. Two social groups serve as a case study for the article: first, the Pakistan lower class, consisting of people living below the national poverty line, with a low greenhouse gas emissions rate, severe climate change-related vulnerability due to the lack of adaptation measures, and with very limited options to participate in the mitigation of climate change. Second, the so-called polluter elite, defined by members' investments in polluting companies and high-carbon lifestyles, thus with an interest in the continuation of structures leading to climate change. The first identified group cannot be held responsible for climate change, but their group interest lies in structural change and should be collectively maintained. On the other hand, the responsibility of the second identified group is significant and can be fulfilled by a justified demand for some political changes. The proposed approach of group responsibility is suggested to help navigate climate justice discourse and environmental policies, thus helping with the sustainability transition.

Keywords: collective responsibility, climate justice, climate change ethics, group responsibility, social ontology, structural analysis

Procedia PDF Downloads 31
13823 Long Term Variability of Temperature in Armenia in the Context of Climate Change

Authors: Hrachuhi Galstyan, Lucian Sfîcă, Pavel Ichim

Abstract:

The purpose of this study is to analyze the temporal and spatial variability of thermal conditions in the Republic of Armenia. The paper describes annual fluctuations in air temperature. Research has been focused on case study region of Armenia and surrounding areas, where long–term measurements and observations of weather conditions have been performed within the National Meteorological Service of Armenia and its surrounding areas. The study contains yearly air temperature data recorded between 1961-2012. Mann-Kendal test and the autocorrelation function were applied to detect the change trend of annual mean temperature, as well as other parametric and non-parametric tests searching to find the presence of some breaks in the long term evolution of temperature. The analysis of all records reveals a tendency mostly towards warmer years, with increased temperatures especially in valleys and inner basins. The maximum temperature increase is up to 1,5 °C. Negative results have not been observed in Armenia. The patterns of temperature change have been observed since the 1990’s over much of the Armenian territory. The climate in Armenia was influenced by global change in the last 2 decades, as results from the methods employed within the study.

Keywords: air temperature, long-term variability, trend, climate change

Procedia PDF Downloads 264
13822 Carbon Footprint Assessment Initiative and Trees: Role in Reducing Emissions

Authors: Omar Alelweet

Abstract:

Carbon emissions are quantified in terms of carbon dioxide equivalents, generated through a specific activity or accumulated throughout the life stages of a product or service. Given the growing concern about climate change and the role of carbon dioxide emissions in global warming, this initiative aims to create awareness and understanding of the impact of human activities and identify potential areas for improvement regarding the management of the carbon footprint on campus. Given that trees play a vital role in reducing carbon emissions by absorbing CO₂ during the photosynthesis process, this paper evaluated the contribution of each tree to reducing those emissions. Collecting data over an extended period of time is essential to monitoring carbon dioxide levels. This will help capture changes at different times and identify any patterns or trends in the data. By linking the data to specific activities, events, or environmental factors, it is possible to identify sources of emissions and areas where carbon dioxide levels are rising. Analyzing the collected data can provide valuable insights into ways to reduce emissions and mitigate the impact of climate change.

Keywords: sustainability, green building, environmental impact, CO₂

Procedia PDF Downloads 25
13821 Climate Change Impacts on Future Wheat Growing Areas

Authors: Rasha Aljaryian, Lalit Kumar

Abstract:

Climate is undergoing continuous change and this trend will affect the cultivation areas ofmost crops, including wheat (Triticum aestivum L.), in the future. The current suitable cultivation areas may become unsuitable climatically. Countries that depend on wheat cultivation and export may suffer an economic loss because of production decline. On the other hand, some regions of the world could gain economically by increasing cultivation areas. This study models the potential future climatic suitability of wheat by using CLIMEX software. Two different global climate models (GCMs) were used, CSIRO-Mk3.0 (CS) and MIROC-H (MR), with two emission scenarios (A2, A1B). The results of this research indicate that the suitable climatic areas for wheat in the southern hemisphere, such as Australia, are expected to contract by the end of this century. However, some unsuitable or marginal areas will become climatically suitable under future climate scenarios. In North America and Europe further expansion inland could occur. Also, the results illustrate that heat and dry stresses as abiotic climatic factors will play an important role in wheat distribution in the future. Providing sufficient information about future wheat distribution will be useful for agricultural ministries and organizations to manage the shift in production areas in the future. They can minimize the expected harmful economic consequences by preparing strategic plans and identifying new areas for wheat cultivation.

Keywords: Climate change, Climate modelling, CLIMEX, Triticum aestivum, Wheat

Procedia PDF Downloads 214
13820 Effects of Climate Change on Floods of Pakistan, and Gap Analysis of Existing Policies with Vision 2025

Authors: Saima Akbar, Tahseen Ullah Khan

Abstract:

The analysis of the climate change impact on flood frequency represents an important issue for water resource management and flood risk mitigation. This research was conducted to address the effects of climate change on flood incidents of Pakistan and find out gaps in existing policies to reducing the environmental aspects on floods and effects of global warming. The main objective of this research was to critically analyses the National Climate Change Policy (NCCP), National Disaster Management Authority (NDMA), Federal Flood Commission (FFC) and Vision 2025, as an effective policy document which is not only hitting the target of a climate resilient Pakistan but provides room for efficient and flexible policy implementation. The methodology integrates projected changes in monsoon patterns (since last 20 years and overall change in rainfall pattern since 1901 to 2015 from Pakistan Metrological Department), glacier melting, decreasing dam capacity and lacks in existing policies by using SWOT (Strength, Weakness, Opportunities, Threats) model in order to explore the relative impacts of global warming on the system performance. Results indicate the impacts of climate change are significant, but probably not large enough to justify a major effort for adapting the physical infrastructure to expected climatic conditions in Vision 2025 which is our shared destination to progress, ultimate aspiration to see Pakistan among the ten largest economies of the world by 2047– the centennial year of our independence. The conclusion of this research was to adapt sustainable measures to reduce flood impacts and make policies as neighboring countries are adapting for their sustainability.

Keywords: climatic factors, monsoon, Pakistan, sustainability

Procedia PDF Downloads 124
13819 Biodiversity and Climate Change: Consequences for Norway Spruce Mountain Forests in Slovakia

Authors: Jozef Mindas, Jaroslav Skvarenina, Jana Skvareninova

Abstract:

Study of the effects of climate change on Norway Spruce (Picea abies) forests has mainly focused on the diversity of tree species diversity of tree species as a result of the ability of species to tolerate temperature and moisture changes as well as some effects of disturbance regime changes. The tree species’ diversity changes in spruce forests due to climate change have been analyzed via gap model. Forest gap model is a dynamic model for calculation basic characteristics of individual forest trees. Input ecological data for model calculations have been taken from the permanent research plots located in primeval forests in mountainous regions in Slovakia. The results of regional scenarios of the climatic change for the territory of Slovakia have been used, from which the values are according to the CGCM3.1 (global) model, KNMI and MPI (regional) models. Model results for conditions of the climate change scenarios suggest a shift of the upper forest limit to the region of the present subalpine zone, in supramontane zone. N. spruce representation will decrease at the expense of beech and precious broadleaved species (Acer sp., Sorbus sp., Fraxinus sp.). The most significant tree species diversity changes have been identified for the upper tree line and current belt of dwarf pine (Pinus mugo) occurrence. The results have been also discussed in relation to most important disturbances (wind storms, snow and ice storms) and phenological changes which consequences are little known. Special discussion is focused on biomass production changes in relation to carbon storage diversity in different carbon pools.

Keywords: biodiversity, climate change, Norway spruce forests, gap model

Procedia PDF Downloads 254
13818 Developing a Video Game (Historia’s Nightmare) and Finding Out if We Can Use It to Raise Social Awareness and Improve Learning

Authors: Hasibul Kabir, Samin Shahriar Tokey, Md. Tofazzal Hossain

Abstract:

One of the most necessary things in the present time is raising social awareness about global warming and climate change among the people. Though many types of mediums and techniques have been used to teach people about this global phenomenon, there are still more effective ways to reach people with useful information about global warming. As many traditional methods to teach people about global warming and climate change did not work well, video games were overdue. To learn how effective a video game can be in this regard, we developed a Video game, "Historia's Nightmare," that teaches people about Global warming and climate change. The game was designed to entertain people and give them an idea about the reasons and consequences of global warming and climate change while not being like traditional educational games. The game threw a mini quiz consisting of two MCQs based on the information shown in the game, where a gamer had to pass the quiz to reach the next level. We published the game on different platforms to let all types of people play and complete our experiment effectively. The game continuously communicated with our server to send data about gamers' performance. We observed the data, including the participants' performance, time spent, quiz score, and the in-game feedback on a regular basis, and finally came to a verdict. In our experiment, we have found that most participants positively accepted the game and learned something new. The participants who spent more on our game performed better in both quiz and the game. Our experiment's result demonstrates that video games can be a great way to teach people something, particularly to raise social awareness about global warming and climate change. It also demonstrates that the game can be a significant element in education and learning improvement.

Keywords: video game, global warming, social awareness, climate change, education, feedback

Procedia PDF Downloads 91
13817 (De)Motivating Mitigation Behavior: An Exploratory Framing Study Applied to Sustainable Food Consumption

Authors: Youval Aberman, Jason E. Plaks

Abstract:

This research provides initial evidence that self-efficacy of mitigation behavior – the belief that one’s action can make a difference on the environment – can be implicitly inferred from the way numerical information is presented in environmental messages. The scientific community sees climate change as a pressing issue, but the general public tends to construe climate change as an abstract phenomenon that is psychologically distant. As such, a main barrier to pro-environmental behavior is that individuals often believe that their own behavior makes little to no difference on the environment. When it comes to communicating how the behavior of billions of individuals affects global climate change, it might appear valuable to aggregate those billions and present the shocking enormity of the resources individuals consume. This research provides initial evidence that, in fact, this strategy is ineffective; presenting large-scale aggregate data dilutes the contribution of the individual and impedes individuals’ motivation to act pro-environmentally. The high-impact, underrepresented behavior of eating a sustainable diet was chosen for the present studies. US Participants (total N = 668) were recruited online for a study on ‘meat and the environment’ and received information about some of resources used in meat production – water, CO2e, and feed – with numerical information that varied in its frame of reference. A ‘Nation’ frame of reference discussed the resources used in the beef industry, such as the billions of CO2e released daily by the industry, while a ‘Meal’ frame of reference presented the resources used in the production of a single beef dish. Participants completed measures of pro-environmental attitudes and behavioral intentions, either immediately (Study 1) or two days (Study 2) after reading the information. In Study 2 (n = 520) participants also indicated whether they consumed less or more meat than usual. Study 2 included an additional control condition that contained no environmental data. In Study 1, participants who read about meat production at a national level, compared to at a meal level, reported lower motivation to make ecologically conscious dietary choices and reported lower behavioral intention to change their diet. In Study 2, a similar pattern emerged, with the added insight that the Nation condition, but not the Meal condition, deviated from the control condition. Participants across conditions, on average, reduced their meat consumption in the duration of Study 2, except those in the Nation condition who remained unchanged. Presenting nation-wide consequences of human behavior is a double-edged sword: Framing in a large scale might reveal the relationship between collective actions and environmental issues, but it hinders the belief that individual actions make a difference.

Keywords: climate change communication, environmental concern, meat consumption, motivation

Procedia PDF Downloads 139
13816 Perceived Impact of Climate Change on the Livelihood of Arable Crop Farmers in Ipokia Local Government Area of Ogun State, Nigeria

Authors: Emmanuel Olugbenga Fakoya

Abstract:

The study examined the perceived impact of climate change on the livelihood of arable crop farmers in Ipokia Local Government Area of Ogun State, Nigeria. Multistage sampling technique was used to select 80 arable crop farmers in the study area. Data collected were analyzed using percentages, frequencies and Chi square analysis. The result showed that 63.8 percent of the respondents were male while 55.0 percent were married. Less than half (30.0 percent) of the respondents were between the age bracket of 41-50 years and 50.0 percent had 6-10 household size. Furthermore, majority (40.0 percent) of the arable crop farmers farmed on an inherited land and 51.3 percent had 2-3 hectares of land. Majority (38.8 percent) of the farmers intercrop maize with cassava and maize with yam. Various strategies adapted to reduce the effect of climate change on their crop and livelihood include: crop rotation (53.8 percent), planting of leguminous crop (35.0 percent), application of organic fertilizers (45.0 percent), mulching (56.3 percent) and by planting drought resistance crops (46.5 percent). Reported among the effects of climate change on crop and farmers’ livelihood were: discoloration of crop leave (63.8 percent), increase infestation of pests and diseases (58.8 percent) and reduction of crop yield (60.0 percent). Chi- square analysis showed significant relationship between impact of climate change on arable crop production and thus famers’ livelihood. It was concluded from the study that climate change is an impinging factor that seriously affect arable crop production and hence farmers’ livelihood despite coping strategies to minimize its effect. It was however recommended that Agricultural policies and practices that could minimize or eliminate its effect should be seriously enacted to boost production and increase farmers’ livelihood.

Keywords: agricultural extension, extension agent, private sector, perception

Procedia PDF Downloads 415
13815 Empirical Investigation into Climate Change and Climate-Smart Agriculture for Food Security in Nigeria

Authors: J. Julius Adebayo

Abstract:

The objective of this paper is to assess the agro-climatic condition of Ibadan in the rain forest ecological zone of Nigeria, using rainfall pattern and temperature between 1978-2018. Data on rainfall and temperature in Ibadan, Oyo State for a period of 40 years were obtained from Meteorological Section of Forestry Research Institute of Nigeria, Ibadan and Oyo State Meteorology Centre. Time series analysis was employed to analyze the data. The trend revealed that rainfall is decreasing slowly and temperature is averagely increasing year after year. The model for rainfall and temperature are Yₜ = 1454.11-8*t and Yₜ = 31.5995 + 2.54 E-02*t respectively, where t is the time. On this basis, a forecast of 20 years (2019-2038) was generated, and the results showed a further downward trend on rainfall and upward trend in temperature, this indicates persistence rainfall shortage and very hot weather for agricultural practices in the southwest rain forest ecological zone. Suggestions on possible solutions to avert climate change crisis and also promote climate-smart agriculture for sustainable food and nutrition security were also discussed.

Keywords: climate change, rainfall pattern, temperature, time series analysis, food and nutrition security

Procedia PDF Downloads 110