Search results for: precision health
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9438

Search results for: precision health

9318 Theoretical and Experimental Analysis of Hard Material Machining

Authors: Rajaram Kr. Gupta, Bhupendra Kumar, T. V. K. Gupta, D. S. Ramteke

Abstract:

Machining of hard materials is a recent technology for direct production of work-pieces. The primary challenge in machining these materials is selection of cutting tool inserts which facilitates an extended tool life and high-precision machining of the component. These materials are widely for making precision parts for the aerospace industry. Nickel-based alloys are typically used in extreme environment applications where a combination of strength, corrosion resistance and oxidation resistance material characteristics are required. The present paper reports the theoretical and experimental investigations carried out to understand the influence of machining parameters on the response parameters. Considering the basic machining parameters (speed, feed and depth of cut) a study has been conducted to observe their influence on material removal rate, surface roughness, cutting forces and corresponding tool wear. Experiments are designed and conducted with the help of Central Composite Rotatable Design technique. The results reveals that for a given range of process parameters, material removal rate is favorable for higher depths of cut and low feed rate for cutting forces. Low feed rates and high values of rotational speeds are suitable for better finish and higher tool life.

Keywords: speed, feed, depth of cut, roughness, cutting force, flank wear

Procedia PDF Downloads 257
9317 Data Science-Based Key Factor Analysis and Risk Prediction of Diabetic

Authors: Fei Gao, Rodolfo C. Raga Jr.

Abstract:

This research proposal will ascertain the major risk factors for diabetes and to design a predictive model for risk assessment. The project aims to improve diabetes early detection and management by utilizing data science techniques, which may improve patient outcomes and healthcare efficiency. The phase relation values of each attribute were used to analyze and choose the attributes that might influence the examiner's survival probability using Diabetes Health Indicators Dataset from Kaggle’s data as the research data. We compare and evaluate eight machine learning algorithms. Our investigation begins with comprehensive data preprocessing, including feature engineering and dimensionality reduction, aimed at enhancing data quality. The dataset, comprising health indicators and medical data, serves as a foundation for training and testing these algorithms. A rigorous cross-validation process is applied, and we assess their performance using five key metrics like accuracy, precision, recall, F1-score, and area under the receiver operating characteristic curve (AUC-ROC). After analyzing the data characteristics, investigate their impact on the likelihood of diabetes and develop corresponding risk indicators.

Keywords: diabetes, risk factors, predictive model, risk assessment, data science techniques, early detection, data analysis, Kaggle

Procedia PDF Downloads 43
9316 DEEPMOTILE: Motility Analysis of Human Spermatozoa Using Deep Learning in Sri Lankan Population

Authors: Chamika Chiran Perera, Dananjaya Perera, Chirath Dasanayake, Banuka Athuraliya

Abstract:

Male infertility is a major problem in the world, and it is a neglected and sensitive health issue in Sri Lanka. It can be determined by analyzing human semen samples. Sperm motility is one of many factors that can evaluate male’s fertility potential. In Sri Lanka, this analysis is performed manually. Manual methods are time consuming and depend on the person, but they are reliable and it can depend on the expert. Machine learning and deep learning technologies are currently being investigated to automate the spermatozoa motility analysis, and these methods are unreliable. These automatic methods tend to produce false positive results and false detection. Current automatic methods support different techniques, and some of them are very expensive. Due to the geographical variance in spermatozoa characteristics, current automatic methods are not reliable for motility analysis in Sri Lanka. The suggested system, DeepMotile, is to explore a method to analyze motility of human spermatozoa automatically and present it to the andrology laboratories to overcome current issues. DeepMotile is a novel deep learning method for analyzing spermatozoa motility parameters in the Sri Lankan population. To implement the current approach, Sri Lanka patient data were collected anonymously as a dataset, and glass slides were used as a low-cost technique to analyze semen samples. Current problem was identified as microscopic object detection and tackling the problem. YOLOv5 was customized and used as the object detector, and it achieved 94 % mAP (mean average precision), 86% Precision, and 90% Recall with the gathered dataset. StrongSORT was used as the object tracker, and it was validated with andrology experts due to the unavailability of annotated ground truth data. Furthermore, this research has identified many potential ways for further investigation, and andrology experts can use this system to analyze motility parameters with realistic accuracy.

Keywords: computer vision, deep learning, convolutional neural networks, multi-target tracking, microscopic object detection and tracking, male infertility detection, motility analysis of human spermatozoa

Procedia PDF Downloads 71
9315 Comparative Evaluation of Accuracy of Selected Machine Learning Classification Techniques for Diagnosis of Cancer: A Data Mining Approach

Authors: Rajvir Kaur, Jeewani Anupama Ginige

Abstract:

With recent trends in Big Data and advancements in Information and Communication Technologies, the healthcare industry is at the stage of its transition from clinician oriented to technology oriented. Many people around the world die of cancer because the diagnosis of disease was not done at an early stage. Nowadays, the computational methods in the form of Machine Learning (ML) are used to develop automated decision support systems that can diagnose cancer with high confidence in a timely manner. This paper aims to carry out the comparative evaluation of a selected set of ML classifiers on two existing datasets: breast cancer and cervical cancer. The ML classifiers compared in this study are Decision Tree (DT), Support Vector Machine (SVM), k-Nearest Neighbor (k-NN), Logistic Regression, Ensemble (Bagged Tree) and Artificial Neural Networks (ANN). The evaluation is carried out based on standard evaluation metrics Precision (P), Recall (R), F1-score and Accuracy. The experimental results based on the evaluation metrics show that ANN showed the highest-level accuracy (99.4%) when tested with breast cancer dataset. On the other hand, when these ML classifiers are tested with the cervical cancer dataset, Ensemble (Bagged Tree) technique gave better accuracy (93.1%) in comparison to other classifiers.

Keywords: artificial neural networks, breast cancer, classifiers, cervical cancer, f-score, machine learning, precision, recall

Procedia PDF Downloads 251
9314 A Sectional Control Method to Decrease the Accumulated Survey Error of Tunnel Installation Control Network

Authors: Yinggang Guo, Zongchun Li

Abstract:

In order to decrease the accumulated survey error of tunnel installation control network of particle accelerator, a sectional control method is proposed. Firstly, the accumulation rule of positional error with the length of the control network is obtained by simulation calculation according to the shape of the tunnel installation-control-network. Then, the RMS of horizontal positional precision of tunnel backbone control network is taken as the threshold. When the accumulated error is bigger than the threshold, the tunnel installation control network should be divided into subsections reasonably. On each segment, the middle survey station is taken as the datum for independent adjustment calculation. Finally, by taking the backbone control points as faint datums, the weighted partial parameters adjustment is performed with the adjustment results of each segment and the coordinates of backbone control points. The subsections are jointed and unified into the global coordinate system in the adjustment process. An installation control network of the linac with a length of 1.6 km is simulated. The RMS of positional deviation of the proposed method is 2.583 mm, and the RMS of the difference of positional deviation between adjacent points reaches 0.035 mm. Experimental results show that the proposed sectional control method can not only effectively decrease the accumulated survey error but also guarantee the relative positional precision of the installation control network. So it can be applied in the data processing of tunnel installation control networks, especially for large particle accelerators.

Keywords: alignment, tunnel installation control network, accumulated survey error, sectional control method, datum

Procedia PDF Downloads 164
9313 Cracks Detection and Measurement Using VLP-16 LiDAR and Intel Depth Camera D435 in Real-Time

Authors: Xinwen Zhu, Xingguang Li, Sun Yi

Abstract:

Crack is one of the most common damages in buildings, bridges, roads and so on, which may pose safety hazards. However, cracks frequently happen in structures of various materials. Traditional methods of manual detection and measurement, which are known as subjective, time-consuming, and labor-intensive, are gradually unable to meet the needs of modern development. In addition, crack detection and measurement need be safe considering space limitations and danger. Intelligent crack detection has become necessary research. In this paper, an efficient method for crack detection and quantification using a 3D sensor, LiDAR, and depth camera is proposed. This method works even in a dark environment, which is usual in real-world applications. The LiDAR rapidly spins to scan the surrounding environment and discover cracks through lasers thousands of times per second, providing a rich, 3D point cloud in real-time. The LiDAR provides quite accurate depth information. The precision of the distance of each point can be determined within around  ±3 cm accuracy, and not only it is good for getting a precise distance, but it also allows us to see far of over 100m going with the top range models. But the accuracy is still large for some high precision structures of material. To make the depth of crack is much more accurate, the depth camera is in need. The cracks are scanned by the depth camera at the same time. Finally, all data from LiDAR and Depth cameras are analyzed, and the size of the cracks can be quantified successfully. The comparison shows that the minimum and mean absolute percentage error between measured and calculated width are about 2.22% and 6.27%, respectively. The experiments and results are presented in this paper.

Keywords: LiDAR, depth camera, real-time, detection and measurement

Procedia PDF Downloads 188
9312 Establishing a Change Management Model for Precision Machinery Industry in Taiwan

Authors: Feng-Tsung Cheng, Shu-Li Wang, Mei-Fang Wu, , Hui-Yu Chuang

Abstract:

Due to the rapid development of modern technology, the widespread usage of the Internet makes business environment changing quickly. In order to be a leader in the global competitive market and to pursuit survive, “changing” becomes an unspoken rules need to follow for the company survival. The purpose of this paper is to build change model by using SWOT, strategy map, and balance scorecard, KPI and change management theory. The research findings indicate that organizational change plan formulated by the case company should require the employee to resist change factors and performance management system issues into consideration and must be set organizational change related programs, such as performance appraisal reward system, consulting and counseling mechanisms programs to improve motivation and reduce staff negative emotions. Then according to the model revised strategy maps and performance indicators proposed in this paper, such as strategy maps add and modify corporate culture, improve internal processes management, increase the growth rate of net income and other strategies. The performance indicators are based on strategy maps new and modified by adding net income growth rate, to achieve target production rate, manpower training achievement rates and other indicators, through amendments to achieve the company’s goal, be a leading brand of precision machinery industry.

Keywords: organizational change, SWOT analysis, strategy maps, performance indicators

Procedia PDF Downloads 255
9311 Direct Phoenix Identification and Antimicrobial Susceptibility Testing from Positive Blood Culture Broths

Authors: Waad Al Saleemi, Badriya Al Adawi, Zaaima Al Jabri, Sahim Al Ghafri, Jalila Al Hadhramia

Abstract:

Objectives: Using standard lab methods, a positive blood culture requires a minimum of two days (two occasions of overnight incubation) to obtain a final identification (ID) and antimicrobial susceptibility results (AST) report. In this study, we aimed to evaluate the accuracy and precision of identification and antimicrobial susceptibility testing of an alternative method (direct method) that will reduce the turnaround time by 24 hours. This method involves the direct inoculation of positive blood culture broths into the Phoenix system using serum separation tubes (SST). Method: This prospective study included monomicrobial-positive blood cultures obtained from January 2022 to May 2023 in SQUH. Blood cultures containing a mixture of organisms, fungi, or anaerobic organisms were excluded from this study. The result of the new “direct method” under study was compared with the current “standard method” used in the lab. The accuracy and precision were evaluated for the ID and AST using Clinical and Laboratory Standards Institute (CLSI) recommendations. The categorical agreement, essential agreement, and the rates of very major errors (VME), major errors (ME), and minor errors (MIE) for both gram-negative and gram-positive bacteria were calculated. Passing criteria were set according to CLSI. Result: The results of ID and AST were available for a total of 158 isolates. Of 77 isolates of gram-negative bacteria, 71 (92%) were correctly identified at the species level. Of 70 isolates of gram-positive bacteria, 47(67%) isolates were correctly identified. For gram-negative bacteria, the essential agreement of the direct method was ≥92% when compared to the standard method, while the categorical agreement was ≥91% for all tested antibiotics. The precision of ID and AST were noted to be 100% for all tested isolates. For gram-positive bacteria, the essential agreement was >93%, while the categorical agreement was >92% for all tested antibiotics except moxifloxacin. Many antibiotics were noted to have an unacceptable higher rate of very major errors including penicillin, cotrimoxazole, clindamycin, ciprofloxacin, and moxifloxacin. However, no error was observed in the results of vancomycin, linezolid, and daptomycin. Conclusion: The direct method of ID and AST for positive blood cultures using SST is reliable for gram negative bacteria. It will significantly decrease the turnaround time and will facilitate antimicrobial stewardship.

Keywords: bloodstream infection, oman, direct ast, blood culture, rapid identification, antimicrobial susceptibility, phoenix, direct inoculation

Procedia PDF Downloads 24
9310 Effective Validation Model and Use of Mobile-Health Apps for Elderly People

Authors: Leonardo Ramirez Lopez, Edward Guillen Pinto, Carlos Ramos Linares

Abstract:

The controversy brought about by the increasing use of mHealth apps and their effectiveness for disease prevention and diagnosis calls for immediate control. Although a critical topic in research areas such as medicine, engineering, economics, among others, this issue lacks reliable implementation models. However, projects such as Open Web Application Security Project (OWASP) and various studies have helped to create useful and reliable apps. This research is conducted under a quality model to optimize two mHealth apps for older adults. Results analysis on the use of two physical activity monitoring apps - AcTiv (physical activity) and SMCa (energy expenditure) - is positive and ideal. Through a theoretical and practical analysis, precision calculations and personal information control of older adults for disease prevention and diagnosis were performed. Finally, apps are validated by a physician and, as a result, they may be used as health monitoring tools in physical performance centers or any other physical activity. The results obtained provide an effective validation model for this type of mobile apps, which, in turn, may be applied by other software developers that along with medical staff would offer digital healthcare tools for elderly people.

Keywords: model, validation, effective, healthcare, elderly people, mobile app

Procedia PDF Downloads 193
9309 Fourier Transform and Machine Learning Techniques for Fault Detection and Diagnosis of Induction Motors

Authors: Duc V. Nguyen

Abstract:

Induction motors are widely used in different industry areas and can experience various kinds of faults in stators and rotors. In general, fault detection and diagnosis techniques for induction motors can be supervised by measuring quantities such as noise, vibration, and temperature. The installation of mechanical sensors in order to assess the health conditions of a machine is typically only done for expensive or load-critical machines, where the high cost of a continuous monitoring system can be Justified. Nevertheless, induced current monitoring can be implemented inexpensively on machines with arbitrary sizes by using current transformers. In this regard, effective and low-cost fault detection techniques can be implemented, hence reducing the maintenance and downtime costs of motors. This work proposes a method for fault detection and diagnosis of induction motors, which combines classical fast Fourier transform and modern/advanced machine learning techniques. The proposed method is validated on real-world data and achieves a precision of 99.7% for fault detection and 100% for fault classification with minimal expert knowledge requirement. In addition, this approach allows users to be able to optimize/balance risks and maintenance costs to achieve the highest bene t based on their requirements. These are the key requirements of a robust prognostics and health management system.

Keywords: fault detection, FFT, induction motor, predictive maintenance

Procedia PDF Downloads 134
9308 The Effect of Fixing Kinesiology Tape onto the Plantar Surface during Loading Phase of Gait

Authors: Albert K. Chong, Jasim Ahmed Ali Al-Baghdadi, Peter B. Milburn

Abstract:

Precise capture of plantar 3D surface of the foot at the loading gait phases on rigid substrate was found to be valuable for the assessment of the physiology, health and problems of the feet. Photogrammetry, a precision 3D spatial data capture technique is suitable for this type of dynamic application. In this research, the technique is utilised to study of the effect on the plantar deformation for having a strip of kinesiology tape on the plantar surface while going through the loading phase of gait. For this pilot study, one healthy adult male subject was recruited under the USQ University human research ethics guidelines for this preliminary study. The 3D plantar deformation data of both with and without applying the tape were analysed. The results and analyses are presented together with the detail of the findings.

Keywords: gait, human plantar, plantar loading, photogrammetry, kinesiology tape

Procedia PDF Downloads 469
9307 Optimization by Means of Genetic Algorithm of the Equivalent Electrical Circuit Model of Different Order for Li-ion Battery Pack

Authors: V. Pizarro-Carmona, S. Castano-Solis, M. Cortés-Carmona, J. Fraile-Ardanuy, D. Jimenez-Bermejo

Abstract:

The purpose of this article is to optimize the Equivalent Electric Circuit Model (EECM) of different orders to obtain greater precision in the modeling of Li-ion battery packs. Optimization includes considering circuits based on 1RC, 2RC and 3RC networks, with a dependent voltage source and a series resistor. The parameters are obtained experimentally using tests in the time domain and in the frequency domain. Due to the high non-linearity of the behavior of the battery pack, Genetic Algorithm (GA) was used to solve and optimize the parameters of each EECM considered (1RC, 2RC and 3RC). The objective of the estimation is to minimize the mean square error between the measured impedance in the real battery pack and those generated by the simulation of different proposed circuit models. The results have been verified by comparing the Nyquist graphs of the estimation of the complex impedance of the pack. As a result of the optimization, the 2RC and 3RC circuit alternatives are considered as viable to represent the battery behavior. These battery pack models are experimentally validated using a hardware-in-the-loop (HIL) simulation platform that reproduces the well-known New York City cycle (NYCC) and Federal Test Procedure (FTP) driving cycles for electric vehicles. The results show that using GA optimization allows obtaining EECs with 2RC or 3RC networks, with high precision to represent the dynamic behavior of a battery pack in vehicular applications.

Keywords: Li-ion battery packs modeling optimized, EECM, GA, electric vehicle applications

Procedia PDF Downloads 93
9306 Automatic and High Precise Modeling for System Optimization

Authors: Stephanie Chen, Mitja Echim, Christof Büskens

Abstract:

To describe and propagate the behavior of a system mathematical models are formulated. Parameter identification is used to adapt the coefficients of the underlying laws of science. For complex systems this approach can be incomplete and hence imprecise and moreover too slow to be computed efficiently. Therefore, these models might be not applicable for the numerical optimization of real systems, since these techniques require numerous evaluations of the models. Moreover not all quantities necessary for the identification might be available and hence the system must be adapted manually. Therefore, an approach is described that generates models that overcome the before mentioned limitations by not focusing on physical laws, but on measured (sensor) data of real systems. The approach is more general since it generates models for every system detached from the scientific background. Additionally, this approach can be used in a more general sense, since it is able to automatically identify correlations in the data. The method can be classified as a multivariate data regression analysis. In contrast to many other data regression methods this variant is also able to identify correlations of products of variables and not only of single variables. This enables a far more precise and better representation of causal correlations. The basis and the explanation of this method come from an analytical background: the series expansion. Another advantage of this technique is the possibility of real-time adaptation of the generated models during operation. Herewith system changes due to aging, wear or perturbations from the environment can be taken into account, which is indispensable for realistic scenarios. Since these data driven models can be evaluated very efficiently and with high precision, they can be used in mathematical optimization algorithms that minimize a cost function, e.g. time, energy consumption, operational costs or a mixture of them, subject to additional constraints. The proposed method has successfully been tested in several complex applications and with strong industrial requirements. The generated models were able to simulate the given systems with an error in precision less than one percent. Moreover the automatic identification of the correlations was able to discover so far unknown relationships. To summarize the above mentioned approach is able to efficiently compute high precise and real-time-adaptive data-based models in different fields of industry. Combined with an effective mathematical optimization algorithm like WORHP (We Optimize Really Huge Problems) several complex systems can now be represented by a high precision model to be optimized within the user wishes. The proposed methods will be illustrated with different examples.

Keywords: adaptive modeling, automatic identification of correlations, data based modeling, optimization

Procedia PDF Downloads 376
9305 Commercial Winding for Superconducting Cables and Magnets

Authors: Glenn Auld Knierim

Abstract:

Automated robotic winding of high-temperature superconductors (HTS) addresses precision, efficiency, and reliability critical to the commercialization of products. Today’s HTS materials are mature and commercially promising but require manufacturing attention. In particular to the exaggerated rectangular cross-section (very thin by very wide), winding precision is critical to address the stress that can crack the fragile ceramic superconductor (SC) layer and destroy the SC properties. Damage potential is highest during peak operations, where winding stress magnifies operational stress. Another challenge is operational parameters such as magnetic field alignment affecting design performance. Winding process performance, including precision, capability for geometric complexity, and efficient repeatability, are required for commercial production of current HTS. Due to winding limitations, current HTS magnets focus on simple pancake configurations. HTS motors, generators, MRI/NMR, fusion, and other projects are awaiting robotic wound solenoid, planar, and spherical magnet configurations. As with conventional power cables, full transposition winding is required for long length alternating current (AC) and pulsed power cables. Robotic production is required for transposition, periodic swapping of cable conductors, and placing into precise positions, which allows power utility required minimized reactance. A full transposition SC cable, in theory, has no transmission length limits for AC and variable transient operation due to no resistance (a problem with conventional cables), negligible reactance (a problem for helical wound HTS cables), and no long length manufacturing issues (a problem with both stamped and twisted stacked HTS cables). The Infinity Physics team is solving manufacturing problems by developing automated manufacturing to produce the first-ever reliable and utility-grade commercial SC cables and magnets. Robotic winding machines combine mechanical and process design, specialized sense and observer, and state-of-the-art optimization and control sequencing to carefully manipulate individual fragile SCs, especially HTS, to shape previously unattainable, complex geometries with electrical geometry equivalent to commercially available conventional conductor devices.

Keywords: automated winding manufacturing, high temperature superconductor, magnet, power cable

Procedia PDF Downloads 116
9304 Identification, Isolation and Characterization of Unknown Degradation Products of Cefprozil Monohydrate by HPTLC

Authors: Vandana T. Gawande, Kailash G. Bothara, Chandani O. Satija

Abstract:

The present research work was aimed to determine stability of cefprozil monohydrate (CEFZ) as per various stress degradation conditions recommended by International Conference on Harmonization (ICH) guideline Q1A (R2). Forced degradation studies were carried out for hydrolytic, oxidative, photolytic and thermal stress conditions. The drug was found susceptible for degradation under all stress conditions. Separation was carried out by using High Performance Thin Layer Chromatographic System (HPTLC). Aluminum plates pre-coated with silica gel 60F254 were used as the stationary phase. The mobile phase consisted of ethyl acetate: acetone: methanol: water: glacial acetic acid (7.5:2.5:2.5:1.5:0.5v/v). Densitometric analysis was carried out at 280 nm. The system was found to give compact spot for cefprozil monohydrate (0.45 Rf). The linear regression analysis data showed good linear relationship in the concentration range 200-5.000 ng/band for cefprozil monohydrate. Percent recovery for the drug was found to be in the range of 98.78-101.24. Method was found to be reproducible with % relative standard deviation (%RSD) for intra- and inter-day precision to be < 1.5% over the said concentration range. The method was validated for precision, accuracy, specificity and robustness. The method has been successfully applied in the analysis of drug in tablet dosage form. Three unknown degradation products formed under various stress conditions were isolated by preparative HPTLC and characterized by mass spectroscopic studies.

Keywords: cefprozil monohydrate, degradation products, HPTLC, stress study, stability indicating method

Procedia PDF Downloads 266
9303 Genetically Informed Precision Drug Repurposing for Rheumatoid Arthritis

Authors: Sahar El Shair, Laura Greco, William Reay, Murray Cairns

Abstract:

Background: Rheumatoid arthritis (RA) is a chronic, systematic, inflammatory, autoimmune disease that involves damages to joints and erosions to the associated bones and cartilage, resulting in reduced physical function and disability. RA is a multifactorial disorder influenced by heterogenous genetic and environmental factors. Whilst different medications have proven successful in reducing inflammation associated with RA, they often come with significant side effects and limited efficacy. To address this, the novel pharmagenic enrichment score (PES) algorithm was tested in self-reported RA patients from the UK Biobank (UKBB), which is a cohort of predominantly European ancestry, and identified individuals with a high genetic risk in clinically actionable biological pathways to identify novel opportunities for precision interventions and drug repurposing to treat RA. Methods and materials: Genetic association data for rheumatoid arthritis was derived from publicly available genome-wide association studies (GWAS) summary statistics (N=97173). The PES framework exploits competitive gene set enrichment to identify pathways that are associated with RA to explore novel treatment opportunities. This data is then integrated into WebGestalt, Drug Interaction database (DGIdb) and DrugBank databases to identify existing compounds with existing use or potential for repurposed use. The PES for each of these candidates was then profiled in individuals with RA in the UKBB (Ncases = 3,719, Ncontrols = 333,160). Results A total of 209 pathways with known drug targets after multiple testing correction were identified. Several pathways, including interferon gamma signaling and TID pathway (which relates to a chaperone that modulates interferon signaling), were significantly associated with self-reported RA in the UKBB when adjusting for age, sex, assessment centre month and location, RA polygenic risk and 10 principal components. These pathways have a major role in RA pathogenesis, including autoimmune attacks against certain citrullinated proteins, synovial inflammation, and bone loss. Encouragingly, many also relate to the mechanism of action of existing RA medications. The analyses also revealed statistically significant association between RA polygenic scores and self-reported RA with individual PES scorings, highlighting the potential utility of the PES algorithm in uncovering additional genetic insights that could aid in the identification of individuals at risk for RA and provide opportunities for more targeted interventions. Conclusions In this study, pharmacologically annotated genetic risk was explored through the PES framework to overcome inter-individual heterogeneity and enable precision drug repurposing in RA. The results showed a statistically significant association between RA polygenic scores and self-reported RA and individual PES scorings for 3,719 RA patients. Interestingly, several enriched PES pathways were targeted by already approved RA drugs. In addition, the analysis revealed genetically supported drug repurposing opportunities for future treatment of RA with a relatively safe profile.

Keywords: rheumatoid arthritis, precision medicine, drug repurposing, system biology, bioinformatics

Procedia PDF Downloads 48
9302 Study and Solving High Complex Non-Linear Differential Equations Applied in the Engineering Field by Analytical New Approach AGM

Authors: Mohammadreza Akbari, Sara Akbari, Davood Domiri Ganji, Pooya Solimani, Reza Khalili

Abstract:

In this paper, three complicated nonlinear differential equations(PDE,ODE) in the field of engineering and non-vibration have been analyzed and solved completely by new method that we have named it Akbari-Ganji's Method (AGM) . As regards the previous published papers, investigating this kind of equations is a very hard task to do and the obtained solution is not accurate and reliable. This issue will be emerged after comparing the achieved solutions by Numerical Method. Based on the comparisons which have been made between the gained solutions by AGM and Numerical Method (Runge-Kutta 4th), it is possible to indicate that AGM can be successfully applied for various differential equations particularly for difficult ones. Furthermore, It is necessary to mention that a summary of the excellence of this method in comparison with the other approaches can be considered as follows: It is noteworthy that these results have been indicated that this approach is very effective and easy therefore it can be applied for other kinds of nonlinear equations, And also the reasons of selecting the mentioned method for solving differential equations in a wide variety of fields not only in vibrations but also in different fields of sciences such as fluid mechanics, solid mechanics, chemical engineering, etc. Therefore, a solution with high precision will be acquired. With regard to the afore-mentioned explanations, the process of solving nonlinear equation(s) will be very easy and convenient in comparison with the other methods. And also one of the important position that is explored in this paper is: Trigonometric and exponential terms in the differential equation (the method AGM) , is no need to use Taylor series Expansion to enhance the precision of the result.

Keywords: new method (AGM), complex non-linear partial differential equations, damping ratio, energy lost per cycle

Procedia PDF Downloads 439
9301 Fossil Health: Causes and Consequences of Hegemonic Health Paradigms

Authors: Laila Vivas

Abstract:

Fossil Health is proposed as a value-concept to describe the hegemonic health paradigms that underpin health enactment. Such representation is justified by Foucaldian and related ideas on biopower and biosocialities, calling for the politicization of health and signalling the importance of narratives. This approach, hence, enables contemplating health paradigms as reflexive or co-constitutive of health itself or, in other words, conceiving health as a verb. Fossil health is a symbolic representation, influenced by Andreas Malm’s concept of fossil capitalism, that integrates environment and health as non-dichotomic areas. Fossil Health sustains that current notions of human and non-human health revolve around fossil fuel dependencies. Moreover, addressing disequilibria from established health ideals involves fossil-fixes. Fossil Health, therefore, represents causes and consequences of a health conception that has the agency to contribute to the functioning of a particular structural eco-social model. Moreover, within current capitalist relations, Fossil Health expands its meaning to cover not only fossil implications but also other dominant paradigms of the capitalist system that are (re)produced through health paradigms, such as the burgeoning of technoscience and biomedicalization, privatization of health, expertization of health, or the imposing of standards of uniformity. Overall, Fossil Health is a comprehensive approach to environment and health, where understanding hegemonic health paradigms means understanding our (human-non-human) nature paradigms and the structuring effect these narratives convey.

Keywords: fossil health, environment, paradigm, capitalism

Procedia PDF Downloads 87
9300 Linking Soil Spectral Behavior and Moisture Content for Soil Moisture Content Retrieval at Field Scale

Authors: Yonwaba Atyosi, Moses Cho, Abel Ramoelo, Nobuhle Majozi, Cecilia Masemola, Yoliswa Mkhize

Abstract:

Spectroscopy has been widely used to understand the hyperspectral remote sensing of soils. Accurate and efficient measurement of soil moisture is essential for precision agriculture. The aim of this study was to understand the spectral behavior of soil at different soil water content levels and identify the significant spectral bands for soil moisture content retrieval at field-scale. The study consisted of 60 soil samples from a maize farm, divided into four different treatments representing different moisture levels. Spectral signatures were measured for each sample in laboratory under artificial light using an Analytical Spectral Device (ASD) spectrometer, covering a wavelength range from 350 nm to 2500 nm, with a spectral resolution of 1 nm. The results showed that the absorption features at 1450 nm, 1900 nm, and 2200 nm were particularly sensitive to soil moisture content and exhibited strong correlations with the water content levels. Continuum removal was developed in the R programming language to enhance the absorption features of soil moisture and to precisely understand its spectral behavior at different water content levels. Statistical analysis using partial least squares regression (PLSR) models were performed to quantify the correlation between the spectral bands and soil moisture content. This study provides insights into the spectral behavior of soil at different water content levels and identifies the significant spectral bands for soil moisture content retrieval. The findings highlight the potential of spectroscopy for non-destructive and rapid soil moisture measurement, which can be applied to various fields such as precision agriculture, hydrology, and environmental monitoring. However, it is important to note that the spectral behavior of soil can be influenced by various factors such as soil type, texture, and organic matter content, and caution should be taken when applying the results to other soil systems. The results of this study showed a good agreement between measured and predicted values of Soil Moisture Content with high R2 and low root mean square error (RMSE) values. Model validation using independent data was satisfactory for all the studied soil samples. The results has significant implications for developing high-resolution and precise field-scale soil moisture retrieval models. These models can be used to understand the spatial and temporal variation of soil moisture content in agricultural fields, which is essential for managing irrigation and optimizing crop yield.

Keywords: soil moisture content retrieval, precision agriculture, continuum removal, remote sensing, machine learning, spectroscopy

Procedia PDF Downloads 60
9299 The Impact of Artificial Intelligence on Pharmacy and Pharmacology

Authors: Mamdouh Milad Adly Morkos

Abstract:

Despite having the greatest rates of mortality and morbidity in the world, low- and middle-income (LMIC) nations trail high-income nations in terms of the number of clinical trials, the number of qualified researchers, and the amount of research information specific to their people. Health inequities and the use of precision medicine may be hampered by a lack of local genomic data, clinical pharmacology and pharmacometrics competence, and training opportunities. These issues can be solved by carrying out health care infrastructure development, which includes data gathering and well-designed clinical pharmacology training in LMICs. It will be advantageous if there is international cooperation focused at enhancing education and infrastructure and promoting locally motivated clinical trials and research. This paper outlines various instances where clinical pharmacology knowledge could be put to use, including pharmacogenomic opportunities that could lead to better clinical guideline recommendations. Examples of how clinical pharmacology training can be successfully implemented in LMICs are also provided, including clinical pharmacology and pharmacometrics training programmes in Africa and a Tanzanian researcher's personal experience while on a training sabbatical in the United States. These training initiatives will profit from advocacy for clinical pharmacologists' employment prospects and career development pathways, which are gradually becoming acknowledged and established in LMICs. The advancement of training and research infrastructure to increase clinical pharmacologists' knowledge in LMICs would be extremely beneficial because they have a significant role to play in global health

Keywords: electromagnetic solar system, nano-material, nano pharmacology, pharmacovigilance, quantum theoryclinical simulation, education, pharmacology, simulation, virtual learning low- and middle-income, clinical pharmacology, pharmacometrics, career development pathways

Procedia PDF Downloads 38
9298 Calculation of the Normalized Difference Vegetation Index and the Spectral Signature of Coffee Crops: Benefits of Image Filtering on Mixed Crops

Authors: Catalina Albornoz, Giacomo Barbieri

Abstract:

Crop monitoring has shown to reduce vulnerability to spreading plagues and pathologies in crops. Remote sensing with Unmanned Aerial Vehicles (UAVs) has made crop monitoring more precise, cost-efficient and accessible. Nowadays, remote monitoring involves calculating maps of vegetation indices by using different software that takes either Truecolor (RGB) or multispectral images as an input. These maps are then used to segment the crop into management zones. Finally, knowing the spectral signature of a crop (the reflected radiation as a function of wavelength) can be used as an input for decision-making and crop characterization. The calculation of vegetation indices using software such as Pix4D has high precision for monoculture plantations. However, this paper shows that using this software on mixed crops may lead to errors resulting in an incorrect segmentation of the field. Within this work, authors propose to filter all the elements different from the main crop before the calculation of vegetation indices and the spectral signature. A filter based on the Sobel method for border detection is used for filtering a coffee crop. Results show that segmentation into management zones changes with respect to the traditional situation in which a filter is not applied. In particular, it is shown how the values of the spectral signature change in up to 17% per spectral band. Future work will quantify the benefits of filtering through the comparison between in situ measurements and the calculated vegetation indices obtained through remote sensing.

Keywords: coffee, filtering, mixed crop, precision agriculture, remote sensing, spectral signature

Procedia PDF Downloads 363
9297 Using Machine Learning to Build a Real-Time COVID-19 Mask Safety Monitor

Authors: Yash Jain

Abstract:

The US Center for Disease Control has recommended wearing masks to slow the spread of the virus. The research uses a video feed from a camera to conduct real-time classifications of whether or not a human is correctly wearing a mask, incorrectly wearing a mask, or not wearing a mask at all. Utilizing two distinct datasets from the open-source website Kaggle, a mask detection network had been trained. The first dataset that was used to train the model was titled 'Face Mask Detection' on Kaggle, where the dataset was retrieved from and the second dataset was titled 'Face Mask Dataset, which provided the data in a (YOLO Format)' so that the TinyYoloV3 model could be trained. Based on the data from Kaggle, two machine learning models were implemented and trained: a Tiny YoloV3 Real-time model and a two-stage neural network classifier. The two-stage neural network classifier had a first step of identifying distinct faces within the image, and the second step was a classifier to detect the state of the mask on the face and whether it was worn correctly, incorrectly, or no mask at all. The TinyYoloV3 was used for the live feed as well as for a comparison standpoint against the previous two-stage classifier and was trained using the darknet neural network framework. The two-stage classifier attained a mean average precision (MAP) of 80%, while the model trained using TinyYoloV3 real-time detection had a mean average precision (MAP) of 59%. Overall, both models were able to correctly classify stages/scenarios of no mask, mask, and incorrectly worn masks.

Keywords: datasets, classifier, mask-detection, real-time, TinyYoloV3, two-stage neural network classifier

Procedia PDF Downloads 128
9296 Defining the Push and Pull Factors to Adopt Health Information Technologies by Health Entrepreneurs

Authors: Elaheh Ezami, Behzad Mohammadian, Elham Aznab

Abstract:

Health service design will need to change due to bringing in new digital health tools. This highlights the importance of innovation in adopting Health Information Technology (HIT). It can be argued that innovation in the health sector correlates with entrepreneurship. Various reasons exist for health entrepreneurs to advocate increased investment in HIT to compensate for shortcomings in the health sector and improve the quality of healthcare. Furthermore, every innovative program presents challenges and motivations for entrepreneurs that may distract or encourage the adoption of technology. Our study used a systematic literature review to identify relevant articles that defined the frustrations and promotions of using health information technology in organizations or enterprises. A meta-analysis of the articles was conducted to identify the factors driving or pulling entrepreneurs to use HIT.

Keywords: health information technology, health entrepreneurship, health enterprise, health entrepreneurs' innovation

Procedia PDF Downloads 79
9295 The Superiority of 18F-Sodium Fluoride PET/CT for Detecting Bone Metastases in Comparison with Other Bone Diagnostic Imaging Modalities

Authors: Mojtaba Mirmontazemi, Habibollah Dadgar

Abstract:

Bone is the most common metastasis site in some advanced malignancies, such as prostate and breast cancer. Bone metastasis generally indicates fewer prognostic factors in these patients. Different radiological and molecular imaging modalities are used for detecting bone lesions. Molecular imaging including computed tomography, magnetic resonance imaging, planar bone scintigraphy, single-photon emission tomography, and positron emission tomography as noninvasive visualization of the biological occurrences has the potential to exact examination, characterization, risk stratification and comprehension of human being diseases. Also, it is potent to straightly visualize targets, specify clearly cellular pathways and provide precision medicine for molecular targeted therapies. These advantages contribute implement personalized treatment for each patient. Currently, NaF PET/CT has significantly replaced standard bone scintigraphy for the detection of bone metastases. On one hand, 68Ga-PSMA PET/CT has gained high attention for accurate staging of primary prostate cancer and restaging after biochemical recurrence. On the other hand, FDG PET/CT is not commonly used in osseous metastases of prostate and breast cancer as well as its usage is limited to staging patients with aggressive primary tumors or localizing the site of disease. In this article, we examine current studies about FDG, NaF, and PSMA PET/CT images in bone metastases diagnostic utility and assess response to treatment in patients with breast and prostate cancer.

Keywords: skeletal metastases, fluorodeoxyglucose, sodium fluoride, molecular imaging, precision medicine, prostate cancer (68Ga-PSMA-11)

Procedia PDF Downloads 84
9294 Effect of Segregation on the Reaction Rate of Sewage Sludge Pyrolysis in a Bubbling Fluidized Bed

Authors: A. Soria-Verdugo, A. Morato-Godino, L. M. García-Gutiérrez, N. García-Hernando

Abstract:

The evolution of the pyrolysis of sewage sludge in a fixed and a fluidized bed was analyzed using a novel measuring technique. This original measuring technique consists of installing the whole reactor over a precision scale, capable of measuring the mass of the complete reactor with enough precision to detect the mass released by the sewage sludge sample during its pyrolysis. The inert conditions required for the pyrolysis process were obtained supplying the bed with a nitrogen flowrate, and the bed temperature was adjusted to either 500 ºC or 600 ºC using a group of three electric resistors. The sewage sludge sample was supplied through the top of the bed in a batch of 10 g. The measurement of the mass released by the sewage sludge sample was employed to determine the evolution of the reaction rate during the pyrolysis, the total amount of volatile matter released, and the pyrolysis time. The pyrolysis tests of sewage sludge in the fluidized bed were conducted using two different bed materials of the same size but different densities: silica sand and sepiolite particles. The higher density of silica sand particles induces a flotsam behavior for the sewage sludge particles which move close to the bed surface. In contrast, the lower density of sepiolite produces a neutrally-buoyant behavior for the sewage sludge particles, which shows a proper circulation throughout the whole bed in this case. The analysis of the evolution of the pyrolysis process in both fluidized beds show that the pyrolysis is faster when buoyancy effects are negligible, i.e. in the bed conformed by sepiolite particles. Moreover, sepiolite was found to show an absorbent capability for the volatile matter released during the pyrolysis of sewage sludge.

Keywords: bubbling fluidized bed, pyrolysis, reaction rate, segregation effects, sewage sludge

Procedia PDF Downloads 326
9293 Health Expenditure and its Place in Economy: The Case of Turkey

Authors: Ayşe Coban, Orhan Coban, Haldun Soydal, Sükrü Sürücü

Abstract:

While health is a source of prosperity for individuals, it is also one of the most important determinants of economic growth for a country. Health, by increasing the productivity of labor, contributes to economic growth. Therefore, countries should give the necessary emphasis to health services. The primary aim of this study is to analyze the changes occurring in health services in Turkey by examining the developments in the sector. In this scope, the second aim of the study is to reveal the place of health expenditures in the Turkish economy. As a result of the analysis in the dataset, in which the 1999-2013 periods is considered, it was determined that some increase in health expenditures took place and that the increase in the share of health expenditures in GDP was too small. Furthermore, analysis of the results points out that in financing health expenditures, the public sector is prominent compared to the private sector.

Keywords: health, health service, health expenditures, Turkey

Procedia PDF Downloads 336
9292 COVID_ICU_BERT: A Fine-Tuned Language Model for COVID-19 Intensive Care Unit Clinical Notes

Authors: Shahad Nagoor, Lucy Hederman, Kevin Koidl, Annalina Caputo

Abstract:

Doctors’ notes reflect their impressions, attitudes, clinical sense, and opinions about patients’ conditions and progress, and other information that is essential for doctors’ daily clinical decisions. Despite their value, clinical notes are insufficiently researched within the language processing community. Automatically extracting information from unstructured text data is known to be a difficult task as opposed to dealing with structured information such as vital physiological signs, images, and laboratory results. The aim of this research is to investigate how Natural Language Processing (NLP) techniques and machine learning techniques applied to clinician notes can assist in doctors’ decision-making in Intensive Care Unit (ICU) for coronavirus disease 2019 (COVID-19) patients. The hypothesis is that clinical outcomes like survival or mortality can be useful in influencing the judgement of clinical sentiment in ICU clinical notes. This paper introduces two contributions: first, we introduce COVID_ICU_BERT, a fine-tuned version of clinical transformer models that can reliably predict clinical sentiment for notes of COVID patients in the ICU. We train the model on clinical notes for COVID-19 patients, a type of notes that were not previously seen by clinicalBERT, and Bio_Discharge_Summary_BERT. The model, which was based on clinicalBERT achieves higher predictive accuracy (Acc 93.33%, AUC 0.98, and precision 0.96 ). Second, we perform data augmentation using clinical contextual word embedding that is based on a pre-trained clinical model to balance the samples in each class in the data (survived vs. deceased patients). Data augmentation improves the accuracy of prediction slightly (Acc 96.67%, AUC 0.98, and precision 0.92 ).

Keywords: BERT fine-tuning, clinical sentiment, COVID-19, data augmentation

Procedia PDF Downloads 169
9291 An In-Situ Integrated Micromachining System for Intricate Micro-Parts Machining

Authors: Shun-Tong Chen, Wei-Ping Huang, Hong-Ye Yang, Ming-Chieh Yeh, Chih-Wei Du

Abstract:

This study presents a novel versatile high-precision integrated micromachining system that combines contact and non-contact micromachining techniques to machine intricate micro-parts precisely. Two broad methods of micro fabrication-1) volume additive (micro co-deposition), and 2) volume subtractive (nanometric flycutting, ultrafine w-EDM (wire Electrical Discharge Machining), and micro honing) - are integrated in the developed micromachining system, and their effectiveness is verified. A multidirectional headstock that supports various machining orientations is designed to evaluate the feasibility of multifunctional micromachining. An exchangeable working-tank that allows for various machining mechanisms is also incorporated into the system. Hence, the micro tool and workpiece need not be unloaded or repositioned until all the planned tasks have been completed. By using the designed servo rotary mechanism, a nanometric flycutting approach with a concentric rotary accuracy of 5-nm is constructed and utilized with the system to machine a diffraction-grating element with a nano-metric scale V-groove array. To improve the wear resistance of the micro tool, the micro co-deposition function is used to provide a micro-abrasive coating by an electrochemical method. The construction of ultrafine w-EDM facilitates the fabrication of micro slots with a width of less than 20-µm on a hardened tool. The hardened tool can thus be employed as a micro honing-tool to hone a micro hole with an internal diameter of 200 µm on SKD-11 molded steel. Experimental results prove that intricate micro-parts can be in-situ manufactured with high-precision by the developed integrated micromachining system.

Keywords: integrated micromachining system, in-situ micromachining, nanometric flycutting, ultrafine w-EDM, micro honing

Procedia PDF Downloads 382
9290 Research on Construction of Subject Knowledge Base Based on Literature Knowledge Extraction

Authors: Yumeng Ma, Fang Wang, Jinxia Huang

Abstract:

Researchers put forward higher requirements for efficient acquisition and utilization of domain knowledge in the big data era. As literature is an effective way for researchers to quickly and accurately understand the research situation in their field, the knowledge discovery based on literature has become a new research method. As a tool to organize and manage knowledge in a specific domain, the subject knowledge base can be used to mine and present the knowledge behind the literature to meet the users' personalized needs. This study designs the construction route of the subject knowledge base for specific research problems. Information extraction method based on knowledge engineering is adopted. Firstly, the subject knowledge model is built through the abstraction of the research elements. Then under the guidance of the knowledge model, extraction rules of knowledge points are compiled to analyze, extract and correlate entities, relations, and attributes in literature. Finally, a database platform based on this structured knowledge is developed that can provide a variety of services such as knowledge retrieval, knowledge browsing, knowledge q&a, and visualization correlation. Taking the construction practices in the field of activating blood circulation and removing stasis as an example, this study analyzes how to construct subject knowledge base based on literature knowledge extraction. As the system functional test shows, this subject knowledge base can realize the expected service scenarios such as a quick query of knowledge, related discovery of knowledge and literature, knowledge organization. As this study enables subject knowledge base to help researchers locate and acquire deep domain knowledge quickly and accurately, it provides a transformation mode of knowledge resource construction and personalized precision knowledge services in the data-intensive research environment.

Keywords: knowledge model, literature knowledge extraction, precision knowledge services, subject knowledge base

Procedia PDF Downloads 133
9289 Performance Evaluation of the CareSTART S1 Analyzer for Quantitative Point-Of-Care Measurement of Glucose-6-Phosphate Dehydrogenase Activity

Authors: Haiyoung Jung, Mi Joung Leem, Sun Hwa Lee

Abstract:

Background & Objective: Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a genetic abnormality that results in an inadequate amount of G6PD, leading to increased susceptibility of red blood cells to reactive oxygen species and hemolysis. The present study aimed to evaluate the careSTARTTM S1 analyzer for measuring G6PD activity to hemoglobin (Hb) ratio. Methods: Precision for G6PD activity and hemoglobin measurement was evaluated using control materials with two levels on five repeated runs per day for five days. The analytic performance of the careSTARTTM S1 analyzer was compared with spectrophotometry in 40 patient samples. Reference ranges suggested by the manufacturer were validated in 20 healthy males and females each. Results: The careSTARTTM S1 analyzer demonstrated precision of 6.0% for low-level (14~45 U/dL) and 2.7% for high-level (60~90 U/dL) control in G6PD activity, and 1.4% in hemoglobin (7.9~16.3 u/g Hb). A comparison study of G6PD to Hb ratio between the careSTARTTM S1 analyzer and spectrophotometry showed an average difference of 29.1% with a positive bias of the careSTARTTM S1 analyzer. All normal samples from the healthy population were validated for the suggested reference range for males (≥2.19 U/g Hb) and females (≥5.83 U/g Hb). Conclusion: The careSTARTTM S1 analyzer demonstrated good analytical performance and can replace the current spectrophotometric measurement of G6PD enzyme activity. In the aspect of the management of clinical laboratories, it can be a reasonable option as a point-of-care analyzer with minimal handling of samples and reagents, in addition to the automatic calculation of the ratio of measured G6PD activity and Hb concentration, to minimize any clerical errors involved with manual calculation.

Keywords: POCT, G6PD, performance evaluation, careSTART

Procedia PDF Downloads 43