Search results for: polyolefin fibers
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 710

Search results for: polyolefin fibers

110 Protective Effect of Probiotic Lactic Acid Bacteria on Thioacetamide-Induced Liver Fibrosis in Rats: Histomorphological Study

Authors: Chittapon Jantararussamee, Malai Taweechotipatr, Udomsri Showpittapornchai, Wisuit Pradidarcheep

Abstract:

Hepatic fibrosis is characterized by collagen accumulation in hepatic lobules following wound healing process. If lefts untreated, it could progress into hepatic cirrhosis, portal hypertension, and liver failure. Probiotics comprise of lactic acid bacteria which are crucial components of the intestinal microflora and possess many beneficial properties. The objective of this study is to investigate the hepatoprotective effects of probiotic lactic acid bacteria (mixture of Lactobacillus paracasei, Lactobacillus casei, and Lactobacillus confusus at a ratio of 1: 1: 1) on thioacetamide-induced liver fibrotic rats in term of histomorphology study. Twenty-four male Wistar rats were randomly divided into four groups with 6 rats each: (A) control, (B) fibrotic, (C) fibrotic+probiotic, and (D) probiotic. Group (A) received daily oral administration of distilled water. Group (B and C) were induced by intraperitoneal injection of thioacetamide (TAA) (200 mg/kg BW) 3 times per week for consecutive 8 weeks. In probiotic-treated group (C and D), the number of a mixture of the viable microbial cells at 10⁹ CFU/ml was administered orally daily. After sacrifice, liver tissues were collected and processed for routine histological technique and stained with Sirius red. It was found that the fibrotic rats showed hepatic injury marked by area of inflammation, hydropic degeneration of hepatocytes, and accumulation of myofibroblast-like cells. The collagen fibers were substantially accumulated in the hepatic lobules. Moreover, probiotic-treated group significantly reduced the accumulation of collagen in rats treated by TAA. The liver damage was found to be lesser in the probiotic-treated group. It was noted that the liver tissues of control and probiotics groups were shown to be normal. Administration with probiotic lactic acid bacteria could improve the histomorphology in fibrotic liver and be useful for prevention of hepatic disorders.

Keywords: liver fibrosis, probiotics, lactic acid bacteria, thioacetamide

Procedia PDF Downloads 105
109 Prevalence and Antibiotic Resistance of Bacteria Isolated from Farmers’ Market Fruits and Vegetables Collected from Frostburg and Cumberland Areas in Maryland

Authors: Kumudini Apsara Munasinghe, Devin Gregory Lissau, Ryan Thomas Wade

Abstract:

Fresh fruits and vegetables are rich in vitamins, minerals, and fibers and help maintain a healthy weight over high-calorie food. Eating fruits and vegetables protects us from free radicals produced by metabolic reactions and safeguards us from cardiovascular disease and cancer. However, there has been an increased concern about foodborne diseases tied to contaminated farmers’ market produce. In addition, very little information is available about the contribution of eating raw fruits and vegetables to human exposure to antibiotic-resistant bacteria. This research aims to identify bacteria isolated from farmers’ market fruits and vegetables and understand their antibiotic resistance. Vegetables and fruits were collected from farmers’ markets around Frostburg and Cumberland areas in Maryland and transported to the microbiology lab at Frostburg State University for the isolation of bacteria. Bacteria were extracted from tomatoes, cucumber, strawberry, and lettuce using Tryptic soy broth overnight at 37°C, and Tryptic Soy agar was used for the streak plate technique to isolate bacteria. Pure cultures were used to identify bacteria using biochemical reactions after conducting Gram staining technique. The research used many biochemical reactions, including Mannitol Salt agar, MacConkey agar, and Eosin Methylene blue agar, for identification. Antibiotic sensitivity was tested for many different types of antibiotics, including amoxicillin, penicillin, tetracycline, ampicillin, and erythromycin. Most prevalent bacteria in the isolates were Staphylococcus, Bacillus, Micrococcus, Enterococcus, Enterobacter, Citrobacter, and other bacteria from the family Enterobacteriaceae. The data obtained from this research will be useful to educate and train farmers and individuals involved in post-harvest processes such as transportation and selling in farmers’ markets. Further results for bacterial antibiotic resistance will be obtained, and unculturable bacteria will be identified by next-generation DNA sequencing.

Keywords: antibiotic resistance, farmers markets, fruits, bacteria, vegetables

Procedia PDF Downloads 40
108 Light Weight Fly Ash Based Composite Material for Thermal Insulation Applications

Authors: Bharath Kenchappa, Kunigal Shivakumar

Abstract:

Lightweight, low thermal conductivity and high temperature resistant materials or the system with moderate mechanical properties and capable of taking high heating rates are needed in both commercial and military applications. A single material with these attributes is very difficult to find and one needs to come with innovative ideas to make such material system using what is available. To bring down the cost of the system, one has to be conscious about the cost of basic materials. Such a material system can be called as the thermal barrier system. This paper focuses on developing, testing and characterization of material system for thermal barrier applications. The material developed is porous, low density, low thermal conductivity of 0.1062 W/m C and glass transition temperature about 310 C. Also, the thermal properties of the developed material was measured in both longitudinal and thickness direction to highlight the fact that the material shows isotropic behavior. The material is called modified Eco-Core which uses only less than 9% weight of high-char resin in the composite. The filler (reinforcing material) is a component of fly ash called Cenosphere, they are hollow micro-bubbles made of ceramic materials. Special mixing-technique is used to surface coat the fillers with a thin layer of resin to develop a point-to-point contact of particles. One could use commercial ceramic micro-bubbles instead of Cenospheres, but it is expensive. The bulk density of Cenospheres is about 0.35 g/cc and we could accomplish the composite density of about 0.4 g/cc. One percent filler weight of 3mm length standard drywall grade fibers was used to bring the added toughness. Both thermal and mechanical characterization was performed and properties are documented. For higher temperature applications (up to 1,000 C), a hybrid system was developed using an aerogel mat. Properties of combined material was characterized and documented. Thermal tests were conducted on both the bare modified Eco-Core and hybrid materials to assess the suitability of the material to a thermal barrier application. The hybrid material system was found to meet the requirement of the application.

Keywords: aerogel, fly ash, porous material, thermal barrier

Procedia PDF Downloads 82
107 Evidence of Microplastics Ingestion in Two Commercial Cephalopod Species: Octopus Vulgaris and Sepia Officinalis

Authors: Federica Laface, Cristina Pedà, Francesco Longo, Francesca de Domenico, Riccardo Minichino, Pierpaolo Consoli, Pietro Battaglia, Silvestro Greco, Teresa Romeo

Abstract:

Plastics pollution represents one of the most important threats to marine biodiversity. In the last decades, different species are investigated to evaluate the extent of the plastic ingestion phenomenon. Even if the cephalopods play an important role in the food chain, they are still poorly studied. The aim of this research was to investigate the plastic ingestion in two commercial cephalopod species from the southern Tyrrhenian Sea: the common octopus, Octopus vulgaris (n=6; mean mantle length ML 10.7 ± 1.8) and the common cuttlefish, Sepia officinalis (n=13; mean ML 13.2 ± 1.7). Plastics were extracted from the filters obtained by the chemical digestion of cephalopods gastrointestinal tracts (GITs), using 10% potassium hydroxide (KOH) solution in a 1:5 (w/v) ratio. Once isolated, particles were photographed, measured, and their size class, shape and color were recorded. A total of 81 items was isolated from 16 of the 19 examined GITs, representing a total occurrence (%O) of 84.2% with a mean value of 4.3 ± 8.6 particles per individual. In particular, 62 plastics were found in 6 specimens of O. vulgaris (%O=100) and 19 particles in 10 S. officinalis (%O=94.7). In both species, the microplastics size class was the most abundant (93.8%). Plastic items found in O. vulgaris were mainly fibers (61%) while fragments were the most frequent in S. officinalis (53%). Transparent was the most common color in both species. The analysis will be completed by Fourier transform infrared (FT-IR) spectroscopy technique in order to identify polymers nature. This study reports preliminary data on plastic ingestion events in two cephalopods species and represents the first record of plastic ingestion by the common octopus. Microplastic items detected in both common octopus and common cuttlefish could derive from secondary and/or accidental ingestion events, probably due to their behavior, feeding habits and anatomical features. Further studies will be required to assess the effect of marine litter pollution in these ecologically and commercially important species.

Keywords: cephalopods, GIT analysis, marine pollution, Mediterranean sea, microplastics

Procedia PDF Downloads 216
106 Value Engineering Change Proposal Application in Construction of Road-Building Projects

Authors: Mohammad Mahdi Hajiali

Abstract:

Many of construction projects estimated in Iran have been influenced by the limitations of financial resources. As for Iran, a country that is developing, and to follow this development-oriented approach which many numbers of projects each year run in, if we can reduce the cost of projects by applying a method we will help greatly to minimize the cost of major construction projects and therefore projects will finish faster and more efficiently. One of the components of transportation infrastructure are roads that are considered to have a considerable share of the country budget. In addition, major budget of the related ministry is spending to repair, improve and maintain roads. Value Engineering is a simple and powerful methodology over the past six decades that has been successful in reducing the cost of many projects. Specific solution for using value engineering in the stage of project implementation is called value engineering change proposal (VECP). It was tried in this research to apply VECP in one of the road-building projects in Iran in order to enhance the value of this kind of projects and reduce their cost. In this case study after applying VECP, an idea was raised. It was about use of concrete pavement instead of hot mixed asphalt (HMA) and also using fiber in order to improve concrete pavement performance. VE group team made a decision that for choosing the best alternatives, get expert’s opinions in pavement systems and use Fuzzy TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) for ranking opinions of the experts. Finally, Jointed Plain Concrete Pavement (JPCP) was selected. Group also experimented concrete samples with available fibers in Iran and the results of experiments showed a significant increment in concrete specifications such as flexural strength. In the end, it was shown that by using of fiber-reinforced concrete pavement instead of asphalt pavement, we can achieve a significant saving in cost, time and also increment in quality, durability, and longevity.

Keywords: road-building projects, value engineering change proposal (VECP), Jointed Plain Concrete Pavement (JPCP), Fuzzy TOPSIS, fiber-reinforced concrete

Procedia PDF Downloads 161
105 Hybrid Nanostructures of Acrylonitrile Copolymers

Authors: A. Sezai Sarac

Abstract:

Acrylonitrile (AN) copolymers with typical comonomers of vinyl acetate (VAc) or methyl acrylate (MA) exhibit better mechanical behaviors than its homopolymer. To increase processability of conjugated polymer, and to obtain a hybrid nano-structure multi-stepped emulsion polymerization was applied. Such products could be used in, i.e., drug-delivery systems, biosensors, gas-sensors, electronic compounds, etc. Incorporation of a number of flexible comonomers weakens the dipolar interactions among CN and thereby decreases melting point or increases decomposition temperatures of the PAN based copolymers. Hence, it is important to consider the effect of comonomer on the properties of PAN-based copolymers. Acrylonitrile vinylacetate (AN–VAc ) copolymers have the significant effect to their thermal behavior and are also of interest as precursors in the production of high strength carbon fibers. AN is copolymerized with one or two comonomers, particularly with vinyl acetate The copolymer of AN and VAc can be used either as a plastic (VAc > 15 wt %) or as microfibers (VAc < 15 wt %). AN provides the copolymer with good processability, electrochemical and thermal stability; VAc provides the mechanical stability. The free radical copolymerization of AN and VAc copolymer and core Shell structure of polyprrole composites,and nanofibers of poly(m-anthranilic acid)/polyacrylonitrile blends were recently studied. Free radical copolymerization of acrylonitrile (AN) – with different comonomers, i.e. acrylates, and styrene was realized using ammonium persulfate (APS) in the presence of a surfactant and in-situ polymerization of conjugated polymers was performed in this reaction medium to obtain core-shell nano particles. Nanofibers of such nanoparticles were obtained by electrospinning. Morphological properties of nanofibers are investigated by scanning electron microscopy (SEM) and atomic force spectroscopy (AFM). Nanofibers are characterized using Fourier Transform Infrared - Attenuated Total Reflectance spectrometer (FTIR-ATR), Nuclear Magnetic Resonance Spectroscopy (1H-NMR), differential scanning calorimeter (DSC), thermal gravimetric analysis (TGA), and Electrochemical Impedance Spectroscopy. The electrochemical Impedance results of the nanofibers were fitted to an equivalent curcuit by modelling (ECM).

Keywords: core shell nanoparticles, nanofibers, ascrylonitile copolymers, hybrid nanostructures

Procedia PDF Downloads 362
104 Similar Correlation of Meat and Sugar to Global Obesity Prevalence

Authors: Wenpeng You, Maciej Henneberg

Abstract:

Background: Sugar consumption has been overwhelmingly advocated as a major dietary offender to obesity prevalence. Meat intake has been hypothesized as an obesity contributor in previous publications, but a moderate amount of meat to be included in our daily diet still has been suggested in many dietary guidelines. Comparable sugar and meat exposure data were obtained to assess the difference in relationships between the two major food groups and obesity prevalence at population level. Methods: Population level estimates of obesity and overweight rates, per capita per day exposure of major food groups (meat, sugar, starch crops, fibers, fats and fruits) and total calories, per capita per year GDP, urbanization and physical inactivity prevalence rate were extracted and matched for statistical analysis. Correlation coefficient (Pearson and partial) comparisons with Fisher’s r-to-z transformation and β range (β ± 2 SE) and overlapping in multiple linear regression (Enter and Stepwise) were used to examine potential differences in the relationships between obesity prevalence and sugar exposure and meat exposure respectively. Results: Pearson and partial correlations (controlled for total calories, physical inactivity prevalence, GDP and urbanization) analyses revealed that sugar and meat exposures correlated to obesity and overweight prevalence significantly. Fisher's r-to-z transformation did not show statistically significant difference in Pearson correlation coefficients (z=-0.53, p=0.5961) or partial correlation coefficients (z=-0.04, p=0.9681) between obesity prevalence and both sugar exposure and meat exposure. Both Enter and Stepwise models in multiple linear regression analysis showed that sugar and meat exposure were most significant predictors of obesity prevalence. Great β range overlapping in the Enter (0.289-0.573) and Stepwise (0.294-0.582) models indicated statistically sugar and meat exposure correlated to obesity without significant difference. Conclusion: Worldwide sugar and meat exposure correlated to obesity prevalence at the same extent. Like sugar, minimal meat exposure should also be suggested in the dietary guidelines.

Keywords: meat, sugar, obesity, energy surplus, meat protein, fats, insulin resistance

Procedia PDF Downloads 284
103 Immunohistochemical Study on the Effect of Tetracycline Loaded on Nanochitosan in the Treatment of Induced Infection with Porphyromonas gingivalis

Authors: Rania Hanafi Mahmoud Said, Rasha Mohamed Taha

Abstract:

Background: The use of nanoparticles for medication delivery offers the possibility of avoiding the negative effects of systemic antibiotic dosing as well as antibiotic resistance in bacteria. Aim of the study: The goal of this study was to see the efficiency of local administration of tetracycline loaded on nano chitosan in the treatment of the induced infection of the albino rats gingiva with Porphyromonas gingivalis through Immunohistochemical localization of Interleukin-1beta (IL-1β) as a proinflammatory cytokine.Material and methods: Fifty adult male albino rats 150 - 180 grams body weight used in this investigation. Any changes in rats’ weights were detected. The male albino rats were divided haphazardly into five groups as Group I involved ten rats; they served as a normal negative control group. Group II involved ten rats; they were infected once with P.gingivalis that was injected into the interdental gingiva. Group III involved ten rats; they were subjected to the same procedure as group II and then to daily injection at the site of infection with diluted tetracycline powder. Group IV involved ten rats; they were subjected to the same procedure as group II and then to daily injection of nano Chitosan at the site of injection. Group V involved ten rats; they were subjected to the same procedure as group II and then to daily injection of tetracycline loaded on nano Chitosan at the site of injection. After rats had been euthanized, the extraction and preparation of their gingiva were carried out in order to examine histologically and immunohistochemically. Results: The light microscopic results of groups II, III, and IV showed degeneration represented by swollen epithelial cells, collagen fibers dissociation of the connective tissue of lamina propria, and areas of basement membrane discontinuation, while groups I and V showed an almost normal histological picture of gingival tissue. Immunohistochemical results showed a significant difference in Group II and III when compared to control. No significant difference appears in group V when compared to the control (group I). Conclusion: Using nanochitosan as a carrier for tetracycline is a new technology to get over the increasing resistance of tetracycline.

Keywords: immunohistochemistry, P.gingivalis, nano-chitosan, tetracycline, periodontitis

Procedia PDF Downloads 99
102 Successful Rehabilitation of Recalcitrant Knee Pain Due to Anterior Cruciate Ligament Injury Masked by Extensive Skin Graft: A Case Report

Authors: Geum Yeon Sim, Tyler Pigott, Julio Vasquez

Abstract:

A 38-year-old obese female with no apparent past medical history presented with left knee pain. Six months ago, she sustained a left knee dislocation in a motor vehicle accident that was managed with a skin graft over the left lower extremity without any reconstructive surgery. She developed persistent pain and stiffness in her left knee that worsened with walking and stair climbing. Examination revealed healed extensive skin graft over the left lower extremity, including the left knee. Palpation showed moderate tenderness along the superior border of the patella, exquisite tenderness over MCL, and mild tenderness on the tibial tuberosity. There was normal sensation, reflexes, and strength in her lower extremities. There was limited active and passive range of motion of her left knee during flexion. There was instability noted upon the valgus stress test of the left knee. Left knee magnetic resonance imaging showed high-grade (grade 2-3) injury of the proximal superficial fibers of the MCL and diffuse thickening and signal abnormality of the cruciate ligaments, as well as edema-like subchondral marrow signal change in the anterolateral aspect of the lateral femoral condyle weight-bearing surface. There was also notable extensive scarring and edema of the skin, subcutaneous soft tissues, and musculature surrounding the knee. The patient was managed with left knee immobilization for five months, which was complicated by limited knee flexion. Physical therapy consisting of quadriceps, hamstrings, gastrocnemius stretching and strengthening, range of motion exercises, scar/soft tissue mobilization, and gait training was given with marked improvement in pain and range of motion. The patient experienced a further reduction in pain as well as an improvement in function with home exercises consisting of continued strengthening and stretching.

Keywords: ligamentous injury, trauma, rehabilitation, knee pain

Procedia PDF Downloads 62
101 Kirigami Designs for Enhancing the Electromechanical Performance of E-Textiles

Authors: Braden M. Li, Inhwan Kim, Jesse S. Jur

Abstract:

One of the fundamental challenges in the electronic textile (e-textile) industry is the mismatch in compliance between the rigid electronic components integrated onto soft textile platforms. To address these problems, various printing technologies using conductive inks have been explored in an effort to improve the electromechanical performance without sacrificing the innate properties of the printed textile. However, current printing methods deposit densely layered coatings onto textile surfaces with low through-plane wetting resulting in poor electromechanical properties. This work presents an inkjet printing technique in conjunction with unique Kirigami cut designs to address these issues for printed smart textiles. By utilizing particle free reactive silver inks, our inkjet process produces conformal and micron thick silver coatings that surround individual fibers of the printed smart textile. This results in a highly conductive (0.63 Ω sq-1) printed e-textile while also maintaining the innate properties of the textile material including stretchability, flexibility, breathability and fabric hand. Kirigami is the Japanese art of paper cutting. By utilizing periodic cut designs, Kirigami imparts enhanced flexibility and delocalization of stress concentrations. Kirigami cut design parameters (i.e., cut spacing and length) were correlated to both the mechanical and electromechanical properties of the printed textiles. We demonstrate that designs using a higher cut-out ratio exponentially softens the textile substrate. Thus, our designs achieve a 30x improvement in the overall stretchability, 1000x decrease in elastic modulus, and minimal resistance change over strain regimes of 100-200% when compared to uncut designs. We also show minimal resistance change of our Kirigami inspired printed devices after being stretched to 100% for 1000 cycles. Lastly, we demonstrate a Kirigami-inspired electrocardiogram (ECG) monitoring system that improves stretchability without sacrificing signal acquisition performance. Overall this study suggests fundamental parameters affecting the performance of e-textiles and their scalability in the wearable technology industry

Keywords: kirigami, inkjet printing, flexible electronics, reactive silver ink

Procedia PDF Downloads 112
100 Corneal Confocal Microscopy As a Surrogate Marker of Neuronal Pathology In Schizophrenia

Authors: Peter W. Woodruff, Georgios Ponirakis, Reem Ibrahim, Amani Ahmed, Hoda Gad, Ioannis N. Petropoulos, Adnan Khan, Ahmed Elsotouhy, Surjith Vattoth, Mahmoud K. M. Alshawwaf, Mohamed Adil Shah Khoodoruth, Marwan Ramadan, Anjushri Bhagat, James Currie, Ziyad Mahfoud, Hanadi Al Hamad, Ahmed Own, Peter Haddad, Majid Alabdulla, Rayaz A. Malik

Abstract:

Introduction:- We aimed to test the hypothesis that, using corneal confocal microscopy (a non-invasive method for assessing corneal nerve fibre integrity), patients with schizophrenia would show neuronal abnormalities compared with healthy participants. Schizophrenia is a neurodevelopmental and progressive neurodegenerative disease, for which there are no validated biomarkers. Corneal confocal microscopy (CCM) is a non-invasive ophthalmic imaging biomarker that can be used to detect neuronal abnormalities in neuropsychiatric syndromes. Methods:- Patients with schizophrenia (DSM-V criteria) without other causes of peripheral neuropathy and healthy controls underwent CCM, vibration perception threshold (VPT) and sudomotor function testing. The diagnostic accuracy of CCM in distinguishing patients from controls was assessed using the area under the curve (AUC) of the Receiver Operating Characterstics (ROC) curve. Findings:- Participants with schizophrenia (n=17) and controls (n=38) with comparable age (35.7±8.5 vs 35.6±12.2, P=0.96) were recruited. Patients with schizophrenia had significantly higher body weight (93.9±25.5 vs 77.1±10.1, P=0.02), lower Low Density Lipoproteins (2.6±1.0 vs 3.4±0.7, P=0.02), but comparable systolic and diastolic blood pressure, HbA1c, total cholesterol, triglycerides and High Density Lipoproteins were comparable with control participants. Patients with schizophrenia had significantly lower corneal nerve fiber density (CNFD, fibers/mm2) (23.5±7.8 vs 35.6±6.5, p<0.0001), branch density (CNBD, branches/mm2) (34.4±26.9 vs 98.1±30.6, p<0.0001), and fiber length (CNFL, mm/mm2) (14.3±4.7 vs 24.2±3.9, p<0.0001) but no difference in VPT (6.1±3.1 vs 4.5±2.8, p=0.12) and electrochemical skin conductance (61.0±24.0 vs 68.9±12.3, p=0.23) compared with controls. The diagnostic accuracy of CNFD, CNBD and CNFL to distinguish patients with schizophrenia from healthy controls were, according to the AUC, (95% CI): 87.0% (76.8-98.2), 93.2% (84.2-102.3), 93.2% (84.4-102.1), respectively. Conclusion:- In conclusion, CCM can be used to help identify neuronal changes and has a high diagnostic accuracy to distinguish subjects with schizophrenia from healthy controls.

Keywords:

Procedia PDF Downloads 243
99 Experimental Investigation on Strengthening of Timber Beam Using Glass Fibers and Steel Plates

Authors: Sisaynew Tesfaw Admassu

Abstract:

The strengthening of timber beams can be necessary for several reasons including the increase of live loads (possible in a historical building for a change of destination of use or upgrading to meet new requirements), the reduction of the resistant cross-sections following deterioration (attacks of biological agents such as fungi, and insects) or traumatic events (fires) and the excess of deflection in the members. The main purpose of strengthening an element is not merely to repair it, but also to prevent and minimize the appearance of future problems. This study did an experimental investigation on the behavior of reference and strengthened solid timber beams. The strengthening materials used in this study were CSM-450 glass fiber and steel materials for both flexural and shear strengthening techniques. Twenty-two solid timber beams of Juniperus procera (TID) species with the dimensions of 60 x 90 x 780 mm were used in the present study. The binding material to bond the strengthening materials with timber was general-purpose resin with Luperox® K10 MEKP catalyst. Three beams were used as control beams (unstrengthen beams) while the remaining nineteen beams were strengthened using the strengthening materials for flexure and shear. All the beams were tested for three points loading to failure by using a Universal Testing Machine, UTM-600kN machine. The experimental results showed that the strengthened beams performed better than the unstrengthen beams. The experimental result of flexural strengthened beams showed that the load-bearing capacity of strengthened beams increased between 16.34 – 42.55%. Four layers of Glass Fiber Reinforced polymer on the tension side of the beams was shown to be the most effective way to enhance load-bearing capacity. The strengthened beams also have an enhancement in their flexural stiffness. The stiffness of flexural strengthened beams was increased between 1.18 – 65.53% as compared to the control beams. The highest increment in stiffness has occurred on beams strengthened using 2x60 mm steel plates. The shear-strengthened beams showed a relatively small amount of performance as compared to flexural-strengthened beams; the reason is that the beams are sufficient for shear. The polyester resin used in the experimental work showed good performance in bonding agents between materials. The resin showed more effectiveness in GFRP materials than steel materials.

Keywords: heritage structures, strengthening, stiffness, adhesive, polyester resin, steel plates

Procedia PDF Downloads 43
98 Determination of the Structural Parameters of Calcium Phosphate for Biomedical Use

Authors: María Magdalena Méndez-González, Miguel García Rocha, Carlos Manuel Yermo De la Cruz

Abstract:

Calcium phosphate (Ca5(PO4)3(X)) is widely used in orthopedic applications and is widely used as powder and granules. However, their presence in bone is in the form of nanometric needles 60 nm in length with a non-stoichiometric phase of apatite contains CO3-2, Na+, OH-, F-, and other ions in a matrix of collagen fibers. The crystal size, morphology control and interaction with cells are essential for the development of nanotechnology. The structural results of calcium phosphate, synthesized by chemical precipitation with crystal size of 22.85 nm are presented in this paper. The calcium phosphate powders were analyzed by X-ray diffraction, energy dispersive spectroscopy (EDS), infrared spectroscopy and FT-IR transmission electron microscopy. Network parameters, atomic positions, the indexing of the planes and the calculation of FWHM (full width at half maximum) were obtained. The crystal size was also calculated using the Scherer equation d (hkl) = cλ/βcosѲ. Where c is a constant related to the shape of the crystal, the wavelength of the radiation used for a copper anode is 1.54060Å, Ѳ is the Bragg diffraction angle, and β is the width average peak height of greater intensity. Diffraction pattern corresponding to the calcium phosphate called hydroxyapatite phase of a hexagonal crystal system was obtained. It belongs to the space group P63m with lattice parameters a = 9.4394 Å and c = 6.8861 Å. The most intense peak is obtained 2Ѳ = 31.55 (FWHM = 0.4798), with a preferred orientation in 121. The intensity difference between the experimental data and the calculated values is attributable to the temperature at which the sintering was performed. The intensity of the highest peak is at angle 2Ѳ = 32.11. The structure of calcium phosphate obtained was a hexagonal configuration. The intensity changes in the peaks of the diffraction pattern, in the lattice parameters at the corners, indicating the possible presence of a dopant. That each calcium atom is surrounded by a tetrahedron of oxygen and hydrogen was observed by infrared spectra. The unit cell pattern corresponds to hydroxyapatite and transmission electron microscopic crystal morphology corresponding to the hexagonal phase with a preferential growth along the c-plane was obtained.

Keywords: structure, nanoparticles, calcium phosphate, metallurgical and materials engineering

Procedia PDF Downloads 477
97 Health Monitoring of Composite Pile Construction Using Fiber Bragg Gratings Sensor Arrays

Authors: B. Atli-Veltin, A. Vosteen, D. Megan, A. Jedynska, L. K. Cheng

Abstract:

Composite materials combine the advantages of being lightweight and possessing high strength. This is in particular of interest for the development of large constructions, e.g., aircraft, space applications, wind turbines, etc. One of the shortcomings of using composite materials is the complex nature of the failure mechanisms which makes it difficult to predict the remaining lifetime. Therefore, condition and health monitoring are essential for using composite material for critical parts of a construction. Different types of sensors are used/developed to monitor composite structures. These include ultrasonic, thermography, shearography and fiber optic. The first 3 technologies are complex and mostly used for measurement in laboratory or during maintenance of the construction. Optical fiber sensor can be surface mounted or embedded in the composite construction to provide the unique advantage of in-operation measurement of mechanical strain and other parameters of interest. This is identified to be a promising technology for Structural Health Monitoring (SHM) or Prognostic Health Monitoring (PHM) of composite constructions. Among the different fiber optic sensing technologies, Fiber Bragg Grating (FBG) sensor is the most mature and widely used. FBG sensors can be realized in an array configuration with many FBGs in a single optical fiber. In the current project, different aspects of using embedded FBG for composite wind turbine monitoring are investigated. The activities are divided into two parts. Firstly, FBG embedded carbon composite laminate is subjected to tensile and bending loading to investigate the response of FBG which are placed in different orientations with respect to the fiber. Secondly, the demonstration of using FBG sensor array for temperature and strain sensing and monitoring of a 5 m long scale model of a glass fiber mono-pile is investigated. Two different FBG types are used; special in-house fibers and off-the-shelf ones. The results from the first part of the study are showing that the FBG sensors survive the conditions during the production of the laminate. The test results from the tensile and the bending experiments are indicating that the sensors successfully response to the change of strain. The measurements from the sensors will be correlated with the strain gauges that are placed on the surface of the laminates.

Keywords: Fiber Bragg Gratings, embedded sensors, health monitoring, wind turbine towers

Procedia PDF Downloads 222
96 Identification and Classification of Fiber-Fortified Semolina by Near-Infrared Spectroscopy (NIR)

Authors: Amanda T. Badaró, Douglas F. Barbin, Sofia T. Garcia, Maria Teresa P. S. Clerici, Amanda R. Ferreira

Abstract:

Food fortification is the intentional addition of a nutrient in a food matrix and has been widely used to overcome the lack of nutrients in the diet or increasing the nutritional value of food. Fortified food must meet the demand of the population, taking into account their habits and risks that these foods may cause. Wheat and its by-products, such as semolina, has been strongly indicated to be used as a food vehicle since it is widely consumed and used in the production of other foods. These products have been strategically used to add some nutrients, such as fibers. Methods of analysis and quantification of these kinds of components are destructive and require lengthy sample preparation and analysis. Therefore, the industry has searched for faster and less invasive methods, such as Near-Infrared Spectroscopy (NIR). NIR is a rapid and cost-effective method, however, it is based on indirect measurements, yielding high amount of data. Therefore, NIR spectroscopy requires calibration with mathematical and statistical tools (Chemometrics) to extract analytical information from the corresponding spectra, as Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA). PCA is well suited for NIR, once it can handle many spectra at a time and be used for non-supervised classification. Advantages of the PCA, which is also a data reduction technique, is that it reduces the data spectra to a smaller number of latent variables for further interpretation. On the other hand, LDA is a supervised method that searches the Canonical Variables (CV) with the maximum separation among different categories. In LDA, the first CV is the direction of maximum ratio between inter and intra-class variances. The present work used a portable infrared spectrometer (NIR) for identification and classification of pure and fiber-fortified semolina samples. The fiber was added to semolina in two different concentrations, and after the spectra acquisition, the data was used for PCA and LDA to identify and discriminate the samples. The results showed that NIR spectroscopy associate to PCA was very effective in identifying pure and fiber-fortified semolina. Additionally, the classification range of the samples using LDA was between 78.3% and 95% for calibration and 75% and 95% for cross-validation. Thus, after the multivariate analysis such as PCA and LDA, it was possible to verify that NIR associated to chemometric methods is able to identify and classify the different samples in a fast and non-destructive way.

Keywords: Chemometrics, fiber, linear discriminant analysis, near-infrared spectroscopy, principal component analysis, semolina

Procedia PDF Downloads 185
95 Characterization of Kevlar 29 for Multifunction Applications

Authors: Doaa H. Elgohary, Dina M. Hamoda, S. Yahia

Abstract:

Technical textiles refer to textile materials that are engineered and designed to have specific functionalities and performance characteristics beyond their traditional use as apparel or upholstery fabrics. These textiles are usually developed for their unique properties such as strength, durability, flame retardancy, chemical resistance, waterproofing, insulation and other special properties. The development and use of technical textiles are constantly evolving, driven by advances in materials science, manufacturing technologies and the demand for innovative solutions in various industries. Kevlar 29 is a type of aramid fiber developed by DuPont. It is a high-performance material known for its exceptional strength and resistance to impact, abrasion, and heat. Kevlar 29 belongs to the Kevlar family, which includes different types of aramid fibers. Kevlar 29 is primarily used in applications that require strength and durability, such as ballistic protection, body armor, and body armor for military and law enforcement personnel. It is also used in the aerospace and automotive industries to reinforce composite materials, as well as in various industrial applications. Two different Kevlar samples were used coated with cooper lithium silicate (CLS); ten different mechanical and physical properties (weight, thickness, tensile strength, elongation, stiffness, air permeability, puncture resistance, thermal conductivity, stiffness, and spray test) were conducted to approve its functional performance efficiency. The influence of different mechanical properties was statistically analyzed using an independent t-test with a significant difference at P-value = 0.05. The radar plot was calculated and evaluated to determine the best-performing samples. The results of the independent t-test observed that all variables were significantly affected by yarn counts except water permeability, which has no significant effect. All properties were evaluated for samples 1 and 2, a radar chart was used to determine the best attitude for samples. The radar chart area was calculated, which shows that sample 1 recorded the best performance, followed by sample 2. The surface morphology of all samples and the coating materials was determined using a scanning electron microscope (SEM), also Fourier Transform Infrared Spectroscopy Measurement for the two samples.

Keywords: cooper lithium silicate, independent t-test, kevlar, technical textiles.

Procedia PDF Downloads 48
94 In vitro Study of Laser Diode Radiation Effect on the Photo-Damage of MCF-7 and MCF-10A Cell Clusters

Authors: A. Dashti, M. Eskandari, L. Farahmand, P. Parvin, A. Jafargholi

Abstract:

Breast Cancer is one of the most considerable diseases in the United States and other countries and is the second leading cause of death in women. Common breast cancer treatments would lead to adverse side effects such as loss of hair, nausea, and weakness. These complications arise because these cancer treatments damage some healthy cells while eliminating the cancer cells. In an effort to address these complications, laser radiation was utilized and tested as a targeted cancer treatment for breast cancer. In this regard, tissue engineering approaches are being employed by using an electrospun scaffold in order to facilitate the growth of breast cancer cells. Polycaprolacton (PCL) was used as a material for scaffold fabricating because of its biocompatibility, biodegradability, and supporting cell growth. The specific breast cancer cells have the ability to create a three-dimensional cell cluster due to the spontaneous accumulation of cells in the porosity of the scaffold under some specific conditions. Therefore, we are looking for a higher density of porosity and larger pore size. Fibers showed uniform diameter distribution and final scaffold had optimum characteristics with approximately 40% porosity. The images were taken by SEM and the density and the size of the porosity were determined with the Image. After scaffold preparation, it has cross-linked by glutaraldehyde. Then, it has been washed with glycine and phosphate buffer saline (PBS), in order to neutralize the residual glutaraldehyde. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromidefor (MTT) results have represented approximately 91.13% viability of the scaffolds for cancer cells. In order to create a cluster, Michigan Cancer Foundation-7 (MCF-7, breast cancer cell line) and Michigan Cancer Foundation-10A (MCF-10A, human mammary epithelial cell line) cells were cultured on the scaffold in 24 well plate for five days. Then, we have exposed the cluster to the laser diode 808 nm radiation to investigate the effect of laser on the tumor with different power and time. Under the same conditions, cancer cells lost their viability more than the healthy ones. In conclusion, laser therapy is a viable method to destroy the target cells and has a minimum effect on the healthy tissues and cells and it can improve the other method of cancer treatments limitations.

Keywords: breast cancer, electrospun scaffold, polycaprolacton, laser diode, cancer treatment

Procedia PDF Downloads 120
93 D-Lysine Assisted 1-Ethyl-3-(3-Dimethylaminopropyl)Carbodiimide / N-Hydroxy Succinimide Initiated Crosslinked Collagen Scaffold with Controlled Structural and Surface Properties

Authors: G. Krishnamoorthy, S. Anandhakumar

Abstract:

The effect of D-Lysine (D-Lys) on collagen with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide(EDC)/N-hydroxysuccinimide(NHS) initiated cross linking using experimental and modelling tools are evaluated. The results of the Coll-D-Lys-EDC/NHS scaffold also indicate an increase in the tensile strength (TS), percentage of elongation (% E), denaturation temperature (Td), and decrease the decomposition rate compared to L-Lys-EDC/NHS. Scanning electron microscopic (SEM) and atomic force microscopic (AFM) analyses revealed a well ordered with properly oriented and well-aligned structure of scaffold. The D-Lys stabilizes the scaffold against degradation by collagenase than L-Lys. The cell assay showed more than 98% fibroblast viability (NIH3T3) and improved cell adhesions, protein adsorption after 72h of culture when compared with native scaffold. Cell attachment after 74h was robust, with cytoskeletal analysis showing that the attached cells were aligned along the fibers assuming a spindle-shape appearance, despite, gene expression analyses revealed no apparent alterations in mRNA levels, although cell proliferation was not adversely affected. D-Lysine (D-Lys) plays a pivotal role in the self-assembly and conformation of collagen fibrils. The D-Lys assisted EDC/NHS initiated cross-linking induces the formation of an carboxamide by the activation of the side chain -COOH group, followed by aminolysis of the O-iso acylurea intermediates by the -NH2 groups are directly joined via an isopeptides bond. This leads to the formation of intra- and inter-helical cross links. Modeling studies indicated that D-Lys bind with collagen-like peptide (CLP) through multiple H-bonding and hydrophobic interactions. Orientational changes in collagenase on CLP-D-Lys are observed which may decrease its accessibility to degradation and stabilize CLP against the action of the former. D-Lys has lowest binding energy and improved fibrillar-assembly and staggered alignment without the undesired structural stiffness and aggregations. The proteolytic machinery is not well equipped to deal with Coll-D-Lys than Coll-L-Lys scaffold. The information derived from the present study could help in designing collagenolytically stable heterochiral collagen based scaffold for biomedical applications.

Keywords: collagen, collagenase, collagen like peptide, D-lysine, heterochiral collagen scaffold

Procedia PDF Downloads 368
92 Sympathetic Skin Response and Reaction Times in Chronic Autoimmune Thyroiditis; An Overlooked Electrodiagnostic Study

Authors: Oya Umit Yemisci, Nur Saracgil Cosar, Tubanur Ozturk Sisman, Selin Ozen

Abstract:

Chronic autoimmune thyroiditis (AIT) may result in a wide spectrum of reversible abnormalities in the neuromuscular function. Usually, proximal muscle-related symptoms and neuropathic findings such as mild axonal peripheral neuropathy have been reported. Sympathetic skin responses are useful in evaluating sudomotor activity of the unmyelinated sympathetic fibers of the autonomic nervous system. Neurocognitive impairment may also be a prominent feature of hypothyroidism, particularly in elderly patients. Electromyographic reaction times as a highly sensitive parameter provides. Objective data concerning cognitive and motor functions. The aim of this study was to evaluate peripheral nerve functions, sympathetic skin response and electroneuromyographic (ENMG) reaction times in euthyroid and subclinically hypothyroid patients with a diagnosis of AIT and compare to those of a control group. Thirty-five euthyroid, 19 patients with subclinical hypothyroidism and 35 age and sex-matched healthy subjects were included in the study. Motor and sensory nerve conduction studies, sympathetic skin responses recorded from hand and foot by stimulating contralateral median nerve and simple reaction times by stimulating tibial nerve and recording from extensor indicis proprius muscle were performed to all patients and control group. Only median nerve sensory conduction velocities of the forearm were slower in patients with AIT compared to the control group (p=0.019). Otherwise, nerve conduction studies and sympathetic skin responses showed no significant difference between the patients and the control group. However, reaction times were shorter in the healthy subjects compared to AIT patients. Prolongation in the reaction times may be considered as a parameter reflecting the alterations in the cognitive functions related to the primary disease process in AIT. Combining sympathetic skin responses with more quantitative tests such as cardiovascular tests and sudomotor axon reflex testing may allow us to determine higher rates of involvement of the autonomic nervous system in AIT.

Keywords: sympathetic skin response, simple reaction time, chronic autoimmune thyroiditis

Procedia PDF Downloads 117
91 Ultra-High Molecular Weight Polyethylene (UHMWPE) for Radiation Dosimetry Applications

Authors: Malik Sajjad Mehmood, Aisha Ali, Hamna Khan, Tariq Yasin, Masroor Ikram

Abstract:

Ultra-high molecular weight polyethylene (UHMWPE) is one of the polymers belongs to polyethylene (PE) family having monomer –CH2– and average molecular weight is approximately 3-6 million g/mol. Due its chemical, mechanical, physical and biocompatible properties, it has been extensively used in the field of electrical insulation, medicine, orthopedic, microelectronics, engineering, chemistry and the food industry etc. In order to alter/modify the properties of UHMWPE for particular application of interest, certain various procedures are in practice e.g. treating the material with high energy irradiations like gamma ray, e-beam, and ion bombardment. Radiation treatment of UHMWPE induces free radicals within its matrix, and these free radicals are the precursors of chain scission, chain accumulation, formation of double bonds, molecular emission, crosslinking etc. All the aforementioned physical and chemical processes are mainly responsible for the modification of polymers properties to use them in any particular application of our interest e.g. to fabricate LEDs, optical sensors, antireflective coatings, polymeric optical fibers, and most importantly for radiation dosimetry applications. It is therefore, to check the feasibility of using UHMWPE for radiation dosimetery applications, the compressed sheets of UHMWPE were irradiated at room temperature (~25°C) for total dose values of 30 kGy and 100 kGy, respectively while one were kept un-irradiated as reference. Transmittance data (from 400 nm to 800 nm) of e-beam irradiated UHMWPE and its hybrids were measured by using Muller matrix spectro-polarimeter. As a result significant changes occur in the absorption behavior of irradiated samples. To analyze these (radiation induced) changes in polymer matrix Urbach edge method and modified Tauc’s equation has been used. The results reveal that optical activation energy decreases with irradiation. The values of activation energies are 2.85 meV, 2.48 meV, and 2.40 meV for control, 30 kGy, and 100 kGy samples, respectively. Direct and indirect energy band gaps were also found to decrease with irradiation due to variation of C=C unsaturation in clusters. We believe that the reported results would open new horizons for radiation dosimetery applications.

Keywords: electron beam, radiation dosimetry, Tauc’s equation, UHMWPE, Urbach method

Procedia PDF Downloads 391
90 Multiscale Modeling of Damage in Textile Composites

Authors: Jaan-Willem Simon, Bertram Stier, Brett Bednarcyk, Evan Pineda, Stefanie Reese

Abstract:

Textile composites, in which the reinforcing fibers are woven or braided, have become very popular in numerous applications in aerospace, automotive, and maritime industry. These textile composites are advantageous due to their ease of manufacture, damage tolerance, and relatively low cost. However, physics-based modeling of the mechanical behavior of textile composites is challenging. Compared to their unidirectional counterparts, textile composites introduce additional geometric complexities, which cause significant local stress and strain concentrations. Since these internal concentrations are primary drivers of nonlinearity, damage, and failure within textile composites, they must be taken into account in order for the models to be predictive. The macro-scale approach to modeling textile-reinforced composites treats the whole composite as an effective, homogenized material. This approach is very computationally efficient, but it cannot be considered predictive beyond the elastic regime because the complex microstructural geometry is not considered. Further, this approach can, at best, offer a phenomenological treatment of nonlinear deformation and failure. In contrast, the mesoscale approach to modeling textile composites explicitly considers the internal geometry of the reinforcing tows, and thus, their interaction, and the effects of their curved paths can be modeled. The tows are treated as effective (homogenized) materials, requiring the use of anisotropic material models to capture their behavior. Finally, the micro-scale approach goes one level lower, modeling the individual filaments that constitute the tows. This paper will compare meso- and micro-scale approaches to modeling the deformation, damage, and failure of textile-reinforced polymer matrix composites. For the mesoscale approach, the woven composite architecture will be modeled using the finite element method, and an anisotropic damage model for the tows will be employed to capture the local nonlinear behavior. For the micro-scale, two different models will be used, the one being based on the finite element method, whereas the other one makes use of an embedded semi-analytical approach. The goal will be the comparison and evaluation of these approaches to modeling textile-reinforced composites in terms of accuracy, efficiency, and utility.

Keywords: multiscale modeling, continuum damage model, damage interaction, textile composites

Procedia PDF Downloads 326
89 Stress-Strain Behavior of Banana Fiber Reinforced and Biochar Amended Compressed Stabilized Earth Blocks

Authors: Farnia Nayar Parshi, Mohammad Shariful Islam

Abstract:

Though earth construction is an ancient technology, researchers are working on increasing its strength by adding different types of stabilizers. Ordinary Portland cement for sandy soil and lime for clayey soil is very popular practice as well as recommended by various authorities for making stabilized blocks for satisfactory performance. The addition of these additives improves compressive strength but fails to improve ductility. The addition of both synthetic and natural fibers increases both compressive strength and ductility. Studies are conducted to make earth blocks more cost-effective, energy-efficient and sustainable. In this experiment, an agricultural waste banana fiber and biochar is used to study the compressive stress-strain behavior of earth blocks made with four types of soil low plastic clay, sandy low plastic clay, very fine sand and medium to fine sand. Biochar is a charcoal-like carbon usually produced from organic or agricultural waste in high temperatures through a controlled condition called pyrolysis. In this experimental study, biochar was collected from BBI (Bangladesh Biochar Initiative) produced from wood flakes around 400 deg. Celsius. Locally available PPC (Portland Pozzolana Cement) is used. 5 cm × 5 cm × 5 cm earth blocks were made with eight different combinations such as bare soil, soil with 6% cement, soil with 6% cement and 5% biochar, soil with 6% cement, 5% biochar and 1% fiber, soil with 1% fiber, soil with 5% biochar and 1% fiber and soil with 6% cement and 1% fiber. All samples were prepared with 10-12% water content. Uniaxial compressive strength tests were conducted on 21 days old earth blocks. Stress-strain diagram shows that the addition of banana fiber improved compressive strength drastically, but the combined effect of fiber and biochar is different based on different soil types. For clayey soil, 6% cement and 1% fiber give maximum compressive strength of 991 kPa, and for very fine sand, a combination of 5% biochar, 6% cement and 1% fiber gives maximum compressive strength of 522 kPa as well as ductility. For medium-to-find sand, 6% cement and 1% fiber give the best result, 1530 kPa, among other combinations. The addition of fiber increases not only ductility but also compressive strength as well. The effect of biochar with fiber varies with the soil type.

Keywords: banana fiber, biochar, cement, compressed stabilized earth blocks, compressive strength

Procedia PDF Downloads 92
88 Limos Lactobacillus Fermentum from Buffalo Milk Is Suitable for Potential Biotechnological Process Development

Authors: Sergio D’Ambrosioa, Azza Dobousa, Chiara Schiraldia, Donatella Ciminib

Abstract:

Probiotics are living microorganisms that give beneficial effects while consumed. Lactic acid bacteria and bifidobacteria are among the most representative strains assessed as probiotics and exploited as food supplements. Numerous studies demonstrated their potential as a therapeutic candidate for a variety of diseases (restoring gut flora, lowering cholesterol, immune response-enhancing, anti-inflammation and anti-oxidation activities). These beneficial actions are also due to biomolecules produced by probiotics, such as exopolysaccharides (EPSs), that demonstrate plenty of beneficial properties such as antimicrobial, antitumor, anti-biofilm, antiviral and immunomodulatory activities. Limosilactobacillus fermentum is a widely studied member of probiotics; however, few data are available on the development of fermentation and downstream processes for the production of viable biomasses for potential industrial applications. However, few data are available on the development of fermentation processes for the large-scale production of probiotics biomass for industrial applications and for purification processes of EPSs at an industrial scale. For this purpose, L. fermentum strain was isolated from buffalo milk and used as a test example for biotechnological process development. The strain was able to produce up to 109 CFU/mL on a (glucose-based) semi-defined medium deprived of animal-derived raw materials up to the pilot scale (150 L), demonstrating improved results compared to commonly used, although industrially not suitable, media-rich of casein and beef extract. Biomass concentration via microfiltration on hollow fibers, and subsequent spray-drying allowed to recover of about 5.7 × 1010CFU/gpowder of viable cells, indicating strain resistance to harsh processing conditions. Overall, these data demonstrate the possibility of obtaining and maintaining adequate levels of viable L. fermentum cells by using a simple approach that is potentially suitable for industrial development. A downstream EPS purification protocol based on ultrafiltration, precipitation and activated charcoal treatments showed a purity of the recovered polysaccharides of about 70-80%.

Keywords: probiotics, fermentation, exopolysaccharides (EPSs), purification

Procedia PDF Downloads 53
87 Limbic Involvement in Visual Processing

Authors: Deborah Zelinsky

Abstract:

The retina filters millions of incoming signals into a smaller amount of exiting optic nerve fibers that travel to different portions of the brain. Most of the signals are for eyesight (called "image-forming" signals). However, there are other faster signals that travel "elsewhere" and are not directly involved with eyesight (called "non-image-forming" signals). This article centers on the neurons of the optic nerve connecting to parts of the limbic system. Eye care providers are currently looking at parvocellular and magnocellular processing pathways without realizing that those are part of an enormous "galaxy" of all the body systems. Lenses are modifying both non-image and image-forming pathways, taking A.M. Skeffington's seminal work one step further. Almost 100 years ago, he described the Where am I (orientation), Where is It (localization), and What is It (identification) pathways. Now, among others, there is a How am I (animation) and a Who am I (inclination, motivation, imagination) pathway. Classic eye testing considers pupils and often assesses posture and motion awareness, but classical prescriptions often overlook limbic involvement in visual processing. The limbic system is composed of the hippocampus, amygdala, hypothalamus, and anterior nuclei of the thalamus. The optic nerve's limbic connections arise from the intrinsically photosensitive retinal ganglion cells (ipRGC) through the "retinohypothalamic tract" (RHT). There are two main hypothalamic nuclei with direct photic inputs. These are the suprachiasmatic nucleus and the paraventricular nucleus. Other hypothalamic nuclei connected with retinal function, including mood regulation, appetite, and glucose regulation, are the supraoptic nucleus and the arcuate nucleus. The retino-hypothalamic tract is often overlooked when we prescribe eyeglasses. Each person is different, but the lenses we choose are influencing this fast processing, which affects each patient's aiming and focusing abilities. These signals arise from the ipRGC cells that were only discovered 20+ years ago and do not address the campana retinal interneurons that were only discovered 2 years ago. As eyecare providers, we are unknowingly altering such factors as lymph flow, glucose metabolism, appetite, and sleep cycles in our patients. It is important to know what we are prescribing as the visual processing evaluations expand past the 20/20 central eyesight.

Keywords: neuromodulation, retinal processing, retinohypothalamic tract, limbic system, visual processing

Procedia PDF Downloads 45
86 Proposing Smart Clothing for Addressing Criminal Acts Against Women in South Africa

Authors: Anne Mastamet-Mason

Abstract:

Crimes against women is a global concern, and South Africa, in particular, is in a dilemma of dealing with constant criminal acts that face the country. Debates on violence against women in South Africa cannot be overemphasised any longer as crimes continue to rise year by year. The recent death of a university student at the University of Cape Town, as well as many other cases, continues to strengthen the need to find solutions from all the spheres of South African society. The advanced textiles market contains a high number and variety of technologies, many of which have protected status and constitute a relatively small portion of the textiles used for the consumer market. Examples of advanced textiles include nanomaterials, such as silver, titanium dioxide and zinc oxide, designed to create an anti-microbial and self-cleaning layer on top of the fibers, thereby reducing body smell and soiling. Smart textiles propose materials and fabrics versatile and adaptive to different situations and functions. Integrating textiles and computing technologies offer an opportunity to come up with differentiated characteristics and functionality. This paper presents a proposal to design a smart camisole/Yoga sports brazier and a smart Yoga sports pant garment to be worn by women while alone and while in purported danger zones. The smart garments are to be worn under normal clothing and cannot be detected or seen, or suspected by perpetrators. The garments are imbued with devices to sense any physical aggression and any abnormal or accelerated heartbeat that may be exhibited by the victim of violence. The signals created during the attack can be transmitted to the police and family members who own a mobile application system that accepts signals emitted. The signals direct the receiver to the exact location of the offence, and the victim can be rescued before major violations are committed. The design of the Yoga sports garments will be done by Professor Mason, who is a fashion designer by profession, while the mobile phone application system will be developed by Mr. Amos Yegon, who is an independent software developer.

Keywords: smart clothing, wearable technology, south africa, 4th industrial revolution

Procedia PDF Downloads 173
85 Treatment of Full-Thickness Rotator Cuff Tendon Tear Using Umbilical Cord Blood-Derived Mesenchymal Stem Cells and Polydeoxyribonucleotides in a Rabbit Model

Authors: Sang Chul Lee, Gi-Young Park, Dong Rak Kwon

Abstract:

Objective: The aim of this study was to investigate regenerative effects of ultrasound (US)-guided injection with human umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) and/or polydeoxyribonucleotide (PDRN) injection in a chronic traumatic full-thickness rotator cuff tendon tear (FTRCTT) in a rabbit model. Material and Methods: Rabbits (n = 32) were allocated into 4 groups. After a 5-mm sized FTRCTT just proximal to the insertion site on the subscapularis tendon was created by excision, the wound was immediately covered by silicone tube to prevent natural healing. After 6 weeks, 4 injections (0.2 mL normal saline, G1; 0.2 mL PDRN, G2; 0.2 mL UCB-MSCs, G3; and 0.2 mL UCB-MSCs with 0.2ml PDRN, G4) were injected into FTRCTT under US guidance. We evaluated gross morphologic changes on all rabbits after sacrifice. Masson’s trichrome, anti-type 1 collagen antibody, bromodeoxyuridine, proliferating cell nuclear antigen, vascular endothelial growth factor and platelet endothelial cell adhesion molecule stain were performed to evaluate histological changes. Motion analysis was also performed. Results: The gross morphologic mean tendon tear size in G3 and 4 was significantly smaller than that of G1 and 2 (p < .05). However, there were no significant differences in tendon tear size between G3 and 4. In G4, newly regenerated collagen type 1 fibers, proliferating cells activity, angiogenesis, walking distance, fast walking time, and mean walking speed were greater than in the other three groups on histological examination and motion analysis. Conclusion: Co-injection of UCB-MSCs and PDRN was more effective than UCB-MSCs injection alone in histological and motion analysis in a rabbit model of chronic traumatic FTRCTT. However, there was no significant difference in gross morphologic change of tendon tear between UCB-MSCs with/without PDRN injection. The results of this study regarding the combination of UCB-MSCs and PDRN are worth additional investigations.

Keywords: mesenchymal stem cell, umbilical cord, polydeoxyribonucleotides, shoulder, rotator cuff, ultrasonography, injections

Procedia PDF Downloads 168
84 The Influence of Neural Synchrony on Auditory Middle Latency and Late Latency Responses and Its Correlation with Audiological Profile in Individuals with Auditory Neuropathy

Authors: P. Renjitha, P. Hari Prakash

Abstract:

Auditory neuropathy spectrum disorder (ANSD) is an auditory disorder with normal cochlear outer hair cell function and disrupted auditory nerve function. It results in unique clinical characteristic with absent auditory brainstem response (ABR), absent acoustic reflex and the presence of otoacoustic emissions (OAE) and cochlear microphonics. The lesion site could be at cochlear inner hair cells, the synapse between the inner hair cells and type I auditory nerve fibers, and/or the auditory nerve itself. But the literatures on synchrony at higher auditory system are sporadic and are less understood. It might be interesting to see if there is a recovery of neural synchrony at higher auditory centers. Also, does the level at which the auditory system recovers with adequate synchrony to the extent of observable evoke response potentials (ERPs) can predict speech perception? In the current study, eight ANSD participants and healthy controls underwent detailed audiological assessment including ABR, auditory middle latency response (AMLR), and auditory late latency response (ALLR). AMLR was recorded for clicks and ALLR was evoked using 500Hz and 2 kHz tone bursts. Analysis revealed that the participant could be categorized into three groups. Group I (2/8) where ALLR was present only for 2kHz tone burst. Group II (4/8), where AMLR was absent and ALLR was seen for both the stimuli. Group III (2/8) consisted individuals with identifiable AMLR and ALLR for all the stimuli. The highest speech identification sore observed in ANSD group was 30% and hence considered having poor speech perception. Overall test result indicates that the site of neural synchrony recovery could be varying across individuals with ANSD. Some individuals show recovery of neural synchrony at the thalamocortical level while others show the same only at the cortical level. Within ALLR itself there could be variation across stimuli again could be related to neural synchrony. Nevertheless, none of these patterns could possible explain the speech perception ability of the individuals. Hence, it could be concluded that neural synchrony as measured by evoked potentials could not be a good clinical predictor speech perception.

Keywords: auditory late latency response, auditory middle latency response, auditory neuropathy spectrum disorder, correlation with speech identification score

Procedia PDF Downloads 118
83 Verification Protocols for the Lightning Protection of a Large Scale Scientific Instrument in Harsh Environments: A Case Study

Authors: Clara Oliver, Oibar Martinez, Jose Miguel Miranda

Abstract:

This paper is devoted to the study of the most suitable protocols to verify the lightning protection and ground resistance quality in a large-scale scientific facility located in a harsh environment. We illustrate this work by reviewing a case study: the largest telescopes of the Northern Hemisphere Cherenkov Telescope Array, CTA-N. This array hosts sensitive and high-speed optoelectronics instrumentation and sits on a clear, free from obstacle terrain at around 2400 m above sea level. The site offers a top-quality sky but also features challenging conditions for a lightning protection system: the terrain is volcanic and has resistivities well above 1 kOhm·m. In addition, the environment often exhibits humidities well below 5%. On the other hand, the high complexity of a Cherenkov telescope structure does not allow a straightforward application of lightning protection standards. CTA-N has been conceived as an array of fourteen Cherenkov Telescopes of two different sizes, which will be constructed in La Palma Island, Spain. Cherenkov Telescopes can provide valuable information on different astrophysical sources from the gamma rays reaching the Earth’s atmosphere. The largest telescopes of CTA are called LST’s, and the construction of the first one was finished in October 2018. The LST has a shape which resembles a large parabolic antenna, with a 23-meter reflective surface supported by a tubular structure made of carbon fibers and steel tubes. The reflective surface has 400 square meters and is made of an array of segmented mirrors that can be controlled individually by a subsystem of actuators. This surface collects and focuses the Cherenkov photons into the camera, where 1855 photo-sensors convert the light in electrical signals that can be processed by dedicated electronics. We describe here how the risk assessment of direct strike impacts was made and how down conductors and ground system were both tested. The verification protocols which should be applied for the commissioning and operation phases are then explained. We stress our attention on the ground resistance quality assessment.

Keywords: grounding, large scale scientific instrument, lightning risk assessment, lightning standards and safety

Procedia PDF Downloads 103
82 Analytical Study and Conservation Processes of Scribe Box from Old Kingdom

Authors: Mohamed Moustafa, Medhat Abdallah, Ramy Magdy, Ahmed Abdrabou, Mohamed Badr

Abstract:

The scribe box under study dates back to the old kingdom. It was excavated by the Italian expedition in Qena (1935-1937). The box consists of 2pieces, the lid and the body. The inner side of the lid is decorated with ancient Egyptian inscriptions written with a black pigment. The box was made using several panels assembled together by wooden dowels and secured with plant ropes. The entire box is covered with a red pigment. This study aims to use analytical techniques in order to identify and have deep understanding for the box components. Moreover, the authors were significantly interested in using infrared reflectance transmission imaging (RTI-IR) to improve the hidden inscriptions on the lid. The identification of wood species included in this study. The visual observation and assessment were done to understand the condition of this box. 3Ddimensions and 2D programs were used to illustrate wood joints techniques. Optical microscopy (OM), X-ray diffraction (XRD), X-ray fluorescence portable (XRF) and Fourier Transform Infrared spectroscopy (FTIR) were used in this study in order to identify wood species, remains of insects bodies, red pigment, fibers plant and previous conservation adhesives, also RTI-IR technique was very effective to improve hidden inscriptions. The analysis results proved that wooden panels and dowels were identified as Acacia nilotica, wooden rail was Salix sp. the insects were identified as Lasioderma serricorne and Gibbium psylloids, the red pigment was Hematite, while the fiber plants were linen, previous adhesive was identified as cellulose nitrates. The historical study for the inscriptions proved that it’s a Hieratic writings of a funerary Text. After its transportation from the Egyptian museum storage to the wood conservation laboratory of the Grand Egyptian museum –conservation center (GEM-CC), conservation techniques were applied with high accuracy in order to restore the object including cleaning , consolidating of friable pigments and writings, removal of previous adhesive and reassembly, finally the conservation process that were applied were extremely effective for this box which became ready for display or storage in the grand Egyptian museum.

Keywords: scribe box, hieratic, 3D program, Acacia nilotica, XRD, cellulose nitrate, conservation

Procedia PDF Downloads 247
81 Industrial and Technological Applications of Brewer’s Spent Malt

Authors: Francielo Vendruscolo

Abstract:

During industrial processing of raw materials of animal and vegetable origin, large amounts of solid, liquid and gaseous wastes are generated. Solid residues are usually materials rich in carbohydrates, protein, fiber and minerals. Brewer’s spent grain (BSG) is the main waste generated in the brewing industry, representing 85% of the waste generated in this industry. It is estimated that world’s BSG generation is approximately 38.6 x 106 t per year and represents 20-30% (w/w) of the initial mass of added malt, resulting in low commercial value by-product, however, does not have economic value, but it must be removed from the brewery, as its spontaneous fermentation can attract insects and rodents. For every 100 grams in dry basis, BSG has approximately 68 g total fiber, being divided into 3.5 g of soluble fiber and 64.3 g of insoluble fiber (cellulose, hemicellulose and lignin). In addition to dietary fibers, depending on the efficiency of the grinding process and mashing, BSG may also have starch, reducing sugars, lipids, phenolics and antioxidants, emphasizing that its composition will depend on the barley variety and cultivation conditions, malting and technology involved in the production of beer. BSG demands space for storage, but studies have proposed alternatives such as the use of drying, extrusion, pressing with superheated steam, and grinding to facilitate storage. Other important characteristics that enhance its applicability in bioremediation, effluent treatment and biotechnology, is the surface area (SBET) of 1.748 m2 g-1, total pore volume of 0.0053 cm3 g-1 and mean pore diameter of 121.784 Å, characterized as a macroporous and possess fewer adsorption properties but have great ability to trap suspended solids for separation from liquid solutions. It has low economic value; however, it has enormous potential for technological applications that can improve or add value to this agro-industrial waste. Due to its composition, this material has been used in several industrial applications such as in the production of food ingredients, fiber enrichment by its addition in foods such as breads and cookies in bioremediation processes, substrate for microorganism and production of biomolecules, bioenergy generation, and civil construction, among others. Therefore, the use of this waste or by-product becomes essential and aimed at reducing the amount of organic waste in different industrial processes, especially in breweries.

Keywords: brewer’s spent malt, agro-industrial residue, lignocellulosic material, waste generation

Procedia PDF Downloads 189