Search results for: polymer thin film
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3187

Search results for: polymer thin film

3007 “Self” and “The Other” in Dunkirk (2017)

Authors: Ebtesam Dessouki, Yasaman Mousavi

Abstract:

Christopher Nolan’s Dunkirk (2017) is not a conventional war film. He invites the audience to see the war from within, from the characters’ experiences, through suspense and fear, with the help of talented sound designers and musicians such as Hans Zimmer for an extra dimension creating those feelings. This experience of being among the surviving soldiers makes room for an interpretation of this film using the concept of the Self and the Other. The Self is the soldiers and the audience who try to make sense of their reality given limited information about the enemy and their situation, and the Other is the faceless enemy. However, this film can be taken under an even more detailed analysis theorizing that the Other also exists on different occasions in the film. Overall, Nolan leaves a lot of cues for the audience to track the Other and sometimes breaks the rules for the Other.

Keywords: film, Dunkirk, other, self

Procedia PDF Downloads 40
3006 In2S3 Buffer Layer Properties for Thin Film Solar Cells Based on CIGS Absorber

Authors: A. Bouloufa, K. Djessas

Abstract:

In this paper, we reported the effect of substrate temperature on the structural, electrical and optical properties of In2S3 thin films deposited on soda-lime glass substrates by physical vapor deposition technique at various substrate temperatures. The In2Se3 material used for deposition was synthesized from its constituent elements. It was found that all samples exhibit one phase which corresponds to β-In2S3 phase. Values of band gap energy of the films obtained at different substrate temperatures vary in the range of 2.38-2.80 eV and decrease with increasing substrate temperature.

Keywords: buffer layer, In2S3, optical properties, PVD, structural properties

Procedia PDF Downloads 291
3005 The Formation of Thin Copper Films on Graphite Surface Using Magnetron Sputtering Method

Authors: Zydrunas Kavaliauskas, Aleksandras Iljinas, Liutauras Marcinauskas, Mindaugas Milieska, Vitas Valincius

Abstract:

The magnetron sputtering deposition method is often used to obtain thin film coatings. The main advantage of magnetron vaporization compared to other deposition methods is the high rate erosion of the cathode material (e.g., copper, aluminum, etc.) and the ability to operate under low-pressure conditions. The structure of the formed coatings depends on the working parameters of the magnetron deposition system, which is why it is possible to influence the properties of the growing film, such as morphology, crystal orientation, and dimensions, stresses, adhesion, etc. The properties of these coatings depend on the distance between the substrate and the magnetron surface, the vacuum depth, the gas used, etc. Using this deposition technology, substrates are most often placed near the anode. The magnetic trap of the magnetrons for localization of electrons in the cathode region is formed using a permanent magnet system that is on the side of the cathode. The scientific literature suggests that, after insertion of a small amount of copper into graphite, the electronic conductivity of graphite increase. The aim of this work is to create thin (up to 300 nm) layers on a graphite surface using a magnetron evaporation method, to investigate the formation peculiarities and microstructure of thin films, as well as the mechanism of copper diffusion into graphite inner layers at different thermal treatment temperatures. The electron scanning microscope was used to investigate the microrelief of the coating surface. The chemical composition is determined using the EDS method, which shows that, with an increase of the thermal treatment of the copper-carbon layer from 200 °C to 400 °C, the copper content is reduced from 8 to 4 % in atomic mass units. This is because the EDS method captures only the amount of copper on the graphite surface, while the temperature of the heat treatment increases part of the copper because of the diffusion processes penetrates into the inner layers of the graphite. The XRD method shows that the crystalline copper structure is not affected by thermal treatment.

Keywords: carbon, coatings, copper, magnetron sputtering

Procedia PDF Downloads 255
3004 Structural and Optical Properties of RF-Sputtered ZnS and Zn(S,O) Thin Films

Authors: Ould Mohamed Cheikh, Mounir Chaik, Hind El Aakib, Mohamed Aggour, Abdelkader Outzourhit

Abstract:

Zinc sulfide [ZnS] and oxygenated zinc sulfide Zn(O,S) thin films were deposited on glass substrates, by reactive cathodic radio-frequency (RF) sputtering. The substrates power and percentage of oxygen were varied in the range of 100W to 250W and from 5% to 20% respectively. The structural, morphological and optical properties of these thin films were investigated. The optical properties (mainly the refractive index, absorption coefficient and optical band gap) were examined by optical transmission measurements in the ultraviolet-visible-near Infrared wavelength range. XRD analysis indicated that all sputtered ZnS films were a single phase with a preferential orientation along the (111) plane of zinc blend (ZB). The crystallite size was in the range of 19.5 nm to 48.5 nm, the crystallite size varied with RF power reaching a maximum at 200 W. The Zn(O,S) films, on the other hand, were amorphous. UV-Visible, measurements showed that the ZnS film had more than 80% transmittance in the visible wavelength region while that of Zn(O,S is 85%. Moreover, it was observed that the band gap energy of the ZnS films increases slightly from 3.4 to 3.52 eV as the RF power was increased. The optical band gap of Zn(O,S), on the other hand, decreased from 4.2 to 3.89 eV as the oxygen partial pressure is increased in the sputtering atmosphere at a fixed RF-power. Scanning electron microscopy observations revealed smooth surfaces for both type of films. The X-ray reflectometry measurements on the ZnS films showed that the density of the films (3.9 g/cm3) is close that of bulk ZnS.

Keywords: thin films Zn(O, S) properties, Zn(O, S) by Rf-sputtering, ZnS for solar cells, thin films for renewable energy

Procedia PDF Downloads 257
3003 Electrochemical Synthesis of ZnTe and Cu-ZnTe Thin Films for Low Resistive Ohmic Back Contact for CdS/CdTe Solar Cells

Authors: Shivaji M. Sonawane, N. B. Chaure

Abstract:

ZnTe is direct band gap, the P-type semiconductor with the high absorption coefficient of the order of 104cm-1 is suitable for solar cell development. It can be used as a low resistive ohmic contact to CdS/CdTe or tandem solar cell application. ZnTe and Cu-ZnTe thin film have been electrochemically synthesized on to fluorine-doped tin oxide coated glass substrates using three electrode systems containing Ag/AgCl, graphite and FTO as reference, counter and working electrode respectively were used to deposit the thin films. The aqueous electrolytic solution consist of 0.5M TeO2, 0.2M ZnSO4, and 0.1M Na3C6H5O7:2H2O, 0.1MC6H8O7:H2O and 0.1mMCuSO4 with PH 2.5 at room temperature was used. The reaction mechanism is studied in the cyclic voltammetry to identify the deposition potentials of ZnTe and Cu-ZnTe.The potential was optimized in the range -0,9 to -1,1 V. Vs Ag/AgCl reference electrode. The effect of deposition potential on the structural properties was studied by using X-ray diffraction. The X-ray diffraction result reveled cubic crystal structure of ZnTe with preferential (111) orientation with cubic structure. The surface morphology and film composition were analyzed by means of Scanning electron microscopy (SEM) and Energy Dispersive Analysis of X- Rays (EDAX). The optical absorption measurement has been analyzed for the band gap determination of deposited layers about 2.26 eV by UV-Visible spectroscopy. The drastic change in resistivity has been observed due to incorporation of copper probably due to the diffusion of Cu into grain boundaries.

Keywords: ohmic back contact, zinc telluride, electrodeposition, photovoltaic devices

Procedia PDF Downloads 196
3002 Anti-Site Disorder Effects on the Magnetic Properties of Sm₂NiMnO₆ Thin Films

Authors: Geetanjali Singh, R. J. Choudhary, Anjana Dogra

Abstract:

Here we report the effects of anti-site disorder, present in the sample, on the magnetic properties of Sm₂NiMnO₆ (SNMO) thin films. To our best knowledge, there are no studies available on the thin films of SNMO. Thin films were grown using pulsed laser deposition technique on SrTiO₃ (STO) substrate under oxygen pressure of 800 mTorr. X-ray diffraction (XRD) profiles show that the film grown is epitaxial. Field cooled (FC) and zero field cooled (ZFC) magnetization curve increase as we decrease the temperature till ~135K. A broad dip was observed in both the curves below this temperature which is more dominating in ZFC curve. An additional sharp cusplike shape was observed at low temperature (~20 K) which is due to the re-entrant spin-glass like properties present in the sample. Super-exchange interaction between Ni²⁺-O-Mn⁴⁺ is attributed to the FM ordering in these samples. The spin-glass feature is due to anti-site disorder within the homogeneous sample which was stated to be due to the mixed valence states Ni³⁺ and Mn³⁺ present in the sample. Anti-site disorder was found to play very crucial role in different magnetic phases of the sample.

Keywords: double perovskite, pulsed laser deposition, spin-glass, magnetization

Procedia PDF Downloads 231
3001 Non Linear Stability of Non Newtonian Thin Liquid Film Flowing down an Incline

Authors: Lamia Bourdache, Amar Djema

Abstract:

The effect of non-Newtonian property (power law index n) on traveling waves of thin layer of power law fluid flowing over an inclined plane is investigated. For this, a simplified second-order two-equation model (SM) is used. The complete model is second-order four-equation (CM). It is derived by combining the weighted residual integral method and the lubrication theory. This is due to the fact that at the beginning of the instability waves, a very small number of waves is observed. Using a suitable set of test functions, second order terms are eliminated from the calculus so that the model is still accurate to the second order approximation. Linear, spatial, and temporal stabilities are studied. For travelling waves, a particular type of wave form that is steady in a moving frame, i.e., that travels at a constant celerity without changing its shape is studied. This type of solutions which are characterized by their celerity exists under suitable conditions, when the widening due to dispersion is balanced exactly by the narrowing effect due to the nonlinearity. Changing the parameter of celerity in some range allows exploring the entire spectrum of asymptotic behavior of these traveling waves. The (SM) model is converted into a three dimensional dynamical system. The result is that the model exhibits bifurcation scenarios such as heteroclinic, homoclinic, Hopf, and period-doubling bifurcations for different values of the power law index n. The influence of the non-Newtonian parameter on the nonlinear development of these travelling waves is discussed. It is found at the end that the qualitative characters of bifurcation scenarios are insensitive to the variation of the power law index.

Keywords: inclined plane, nonlinear stability, non-Newtonian, thin film

Procedia PDF Downloads 257
3000 Lateral Torsional Buckling of Steel Thin-Walled Beams with Lateral Restraints

Authors: Ivan Balázs, Jindřich Melcher

Abstract:

Metal thin-walled members have been widely used in building industry. Usually they are utilized as purlins, girts or ceiling beams. Due to slenderness of thin-walled cross-sections these structural members are prone to stability problems (e.g. flexural buckling, lateral torsional buckling). If buckling is not constructionally prevented their resistance is limited by buckling strength. In practice planar members of roof or wall cladding can be attached to thin-walled members. These elements reduce displacement of thin-walled members and therefore increase their buckling strength. If this effect is taken into static assessment more economical sections of thin-walled members might be utilized and certain savings of material might be achieved. This paper focuses on problem of determination of critical load of steel thin-walled beams with lateral continuous restraint which is crucial for lateral torsional buckling assessment.

Keywords: beam, buckling, numerical analysis, stability, steel

Procedia PDF Downloads 302
2999 A 1T1R Nonvolatile Memory with Al/TiO₂/Au and Sol-Gel Processed Barium Zirconate Nickelate Gate in Pentacene Thin Film Transistor

Authors: Ke-Jing Lee, Cheng-Jung Lee, Yu-Chi Chang, Li-Wen Wang, Yeong-Her Wang

Abstract:

To avoid the cross-talk issue of only resistive random access memory (RRAM) cell, one transistor and one resistor (1T1R) architecture with a TiO₂-based RRAM cell connected with solution barium zirconate nickelate (BZN) organic thin film transistor (OTFT) device is successfully demonstrated. The OTFT were fabricated on a glass substrate. Aluminum (Al) as the gate electrode was deposited via a radio-frequency (RF) magnetron sputtering system. The barium acetate, zirconium n-propoxide, and nickel II acetylacetone were synthesized by using the sol-gel method. After the BZN solution was completely prepared using the sol-gel process, it was spin-coated onto the Al/glass substrate as the gate dielectric. The BZN layer was baked at 100 °C for 10 minutes under ambient air conditions. The pentacene thin film was thermally evaporated on the BZN layer at a deposition rate of 0.08 to 0.15 nm/s. Finally, gold (Au) electrode was deposited using an RF magnetron sputtering system and defined through shadow masks as both the source and drain. The channel length and width of the transistors were 150 and 1500 μm, respectively. As for the manufacture of 1T1R configuration, the RRAM device was fabricated directly on drain electrodes of TFT device. A simple metal/insulator/metal structure, which consisting of Al/TiO₂/Au structures, was fabricated. First, Au was deposited to be a bottom electrode of RRAM device by RF magnetron sputtering system. Then, the TiO₂ layer was deposited on Au electrode by sputtering. Finally, Al was deposited as the top electrode. The electrical performance of the BZN OTFT was studied, showing superior transfer characteristics with the low threshold voltage of −1.1 V, good saturation mobility of 5 cm²/V s, and low subthreshold swing of 400 mV/decade. The integration of the BZN OTFT and TiO₂ RRAM devices was finally completed to form 1T1R configuration with low power consumption of 1.3 μW, the low operation current of 0.5 μA, and reliable data retention. Based on the I-V characteristics, the different polarities of bipolar switching are found to be determined by the compliance current with the different distribution of the internal oxygen vacancies used in the RRAM and 1T1R devices. Also, this phenomenon can be well explained by the proposed mechanism model. It is promising to make the 1T1R possible for practical applications of low-power active matrix flat-panel displays.

Keywords: one transistor and one resistor (1T1R), organic thin-film transistor (OTFT), resistive random access memory (RRAM), sol-gel

Procedia PDF Downloads 325
2998 PVDF-HFP Based Nanocomposite Gel Polymer Electrolytes Dispersed with Zro2 for Li-Ion Batteries

Authors: R. Sharma, A. Sil, S. Ray

Abstract:

Nanocomposites gel polymer electrolytes are gaining more and more attention among the researchers worldwide due to their possible applications in various electrochemical devices particularly in solid-state Li-ion batteries. In this work we have investigated the effect of nanofibers on the electrical properties of PVDF-HFP based gel electrolytes. The nanocomposites polymer electrolytes have been synthesized by solution casting technique with 10wt% of ZrO2. By analysis of impedance spectroscopy it has been demonstrated that the incorporation of ZrO2 into PVDF-HFP–(PC+DEC)–LiClO4 gel polymer electrolyte system significantly enhances the ionic conductivity of the electrolyte. The enhancement of ionic conductivity seems to be correlated with the fact that the dispersion of ZrO2 to PVDF-HFP prevents polymer chain reorganization due to the high aspect ratio of ZrO2, resulting in reduction in polymer crystallinity, which gives rise to an increase in ionic conductivity. The decrease of crystallinity of PVDF-HFP due the addition of ZrO2 has been confirmed by XRD. The interaction of ZrO2 with various constituents of polymer electrolytes has been studied by FTIR spectroscopy. TEM results show that the fillers (ZrO2) has distributed uniformly in the polymer electrolytes. Moreover, ZrO2 added gel polymer electrolytes offer better thermal stability as compared to that of ZrO2 free electrolytes as confirmed by TGA analysis.

Keywords: polymer electrolytes, ZrO2, ionic conductivity, FTIR

Procedia PDF Downloads 446
2997 Film Studies: Definition, Current Status, and Future Perspectives for Cuba

Authors: Carlos Guillermo Lloga Sanz, Maria del Carmen Tamayo Asef

Abstract:

As an object of study in Cuban universities, cinema is still in its infancy. This is relevant considering the significance of cinema within the local political culture and its impact on countries of the region. Discussions about the medium have been carried out mainly in the field of film criticism. The objective of this article is to reflect on the divergences between film studies and film criticism taking into account formal and theoretical features and to explore the transcendence of this debate for the intellectual ambiance of the Island. Methodologically, the study relies on theoretical elaborations based on literature review and non-structure interviews with Cuban film critics and scholars. The study finds that the gradation proposed by the Anglo-Saxon tradition, where film studies are considered a “higher stage," compared to criticism and cinephilia, does not apply to the Cuban space. Instead, to assess the state of reflection on cinema in Cuba, it is essential to consider it a starry node traversed by epistemic, institutional, and geopolitical matrices.

Keywords: film studies, film criticism, Cuban cinema, Cuban film studies

Procedia PDF Downloads 64
2996 Understanding the Performance and Loss Mechanisms in Ag Alloy CZTS Solar Cells: Photocurrent Generation, Charge Separation, and Carrier Transport

Authors: Kang Jian Xian, Huda Abdullah, Md. Akhtaruzzaman, Iskandar Yahya, Mohd Hafiz Dzarfan Othman, Brian Yulianto

Abstract:

The CZTS absorber layer doped with a silver (Ag) is one of the candidates that suggest improving the efficiency of thin films. Silver element functions to reduce antisite defects, increase grain size and create the plasmonic effect. In this work, an experimental study has been done to investigate the electrical and physical properties of CZTS, ACZTS, and AZTS. Ag replaces the Cu in (Cu1-xAgx)2ZnSnS4 (ACZTS) is up to x ≤1. ACZTS thin-films solar cells have been deposited by sol–the gel spin coating method. There are a total of 19 samples done with 11 significant percentages (0%, 10%, 20%… 100%) to show the whole phenomena of efficiency rate and nine specific percentages to find out the best concentration rate for Ag-doped. The obtained results can be helpful for better understanding ACZTS layers.

Keywords: CZTS, ACZTS, AZTS, silver, antisite, efficiency, thin-film solar cell

Procedia PDF Downloads 56
2995 Fabrication of Highly Conductive Graphene/ITO Transparent Bi-Film through Chemical Vapor Deposition (CVD) and Organic Additives-Free Sol-Gel Techniques

Authors: Bastian Waduge Naveen Harindu Hemasiri, Jae-Kwan Kim, Ji-Myon Lee

Abstract:

Indium tin oxide (ITO) remains the industrial standard transparent conducting oxides with better performances. Recently, graphene becomes as a strong material with unique properties to replace the ITO. However, graphene/ITO hybrid composite material is a newly born field in the electronic world. In this study, the graphene/ITO composite bi-film was synthesized by a two steps process. 10 wt.% tin-doped, ITO thin films were produced by an environmentally friendly aqueous sol-gel spin coating technique with economical salts of In(NO3)3.H2O and SnCl4 without using organic additives. The wettability and surface free energy (97.6986 mJ/m2) enhanced oxygen plasma treated glass substrates were used to form voids free continuous ITO film. The spin-coated samples were annealed at 600 0C for 1 hour under low vacuum conditions to obtained crystallized, ITO film. The crystal structure and crystalline phases of ITO thin films were analyzed by X-ray diffraction (XRD) technique. The Scherrer equation was used to determine the crystallite size. Detailed information about chemical composition and elemental composition of the ITO film were determined by X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDX) coupled with FE-SEM respectively. Graphene synthesis was done under chemical vapor deposition (CVD) method by using Cu foil at 1000 0C for 1 min. The quality of the synthesized graphene was characterized by Raman spectroscopy (532nm excitation laser beam) and data was collected at room temperature and normal atmosphere. The surface and cross-sectional observation were done by using FE-SEM. The optical transmission and sheet resistance were measured by UV-Vis spectroscopy and four point probe head at room temperature respectively. Electrical properties were also measured by using V-I characteristics. XRD patterns reveal that the films contain the In2O3 phase only and exhibit the polycrystalline nature of the cubic structure with the main peak of (222) plane. The peak positions of In3d5/2 (444.28 eV) and Sn3d5/2 (486.7 eV) in XPS results indicated that indium and tin are in the oxide form only. The UV-visible transmittance shows 91.35 % at 550 nm with 5.88 x 10-3 Ωcm specific resistance. The G and 2D band in Raman spectroscopy of graphene appear at 1582.52 cm-1 and 2690.54 cm-1 respectively when the synthesized CVD graphene on SiO2/Si. The determined intensity ratios of 2D to G (I2D/IG) and D to G (ID/IG) were 1.531 and 0.108 respectively. However, the above-mentioned G and 2D peaks appear at 1573.57 cm-1 and 2668.14 cm-1 respectively when the CVD graphene on the ITO coated glass, the positions of G and 2D peaks were red shifted by 8.948 cm-1 and 22.396 cm-1 respectively. This graphene/ITO bi-film shows modified electrical properties when compares with sol-gel derived ITO film. The reduction of sheet resistance in the bi-film was 12.03 % from the ITO film. Further, the fabricated graphene/ITO bi-film shows 88.66 % transmittance at 550 nm wavelength.

Keywords: chemical vapor deposition, graphene, ITO, Raman Spectroscopy, sol-gel

Procedia PDF Downloads 232
2994 Effect of Deposition Time on Structural, Electrical, and Optical Properties of Tin Sulfide Thin Films Deposited by Spray Ultrasonic

Authors: I. Bouhaf Kharkhachi, A. Attaf

Abstract:

Tin sulfide thin films on glass substrate were prepared by spray ultrasonic technique, at different experimental conditions. The influence of deposition time (2, 4, 6, 8 and 10 min) on different properties of thin films, such us, (XRD) and (UV) spectroscopy visible spectrum was investigated. X-ray diffraction showing that thin films crystallized in SnS, SnS2, and Sn2S3 phases. The results of (UV) spectroscopy visible spectrum show that films deposited at 4 min are large transmittance 60% in the visible region.

Keywords: SnS, thin films, ultrasonic spray, X-ray diffraction, UV spectroscopy visible

Procedia PDF Downloads 495
2993 Structural, Optical and Electrical Properties of Gd Doped ZnO Thin Films Prepared by a Sol-Gel Method

Authors: S. M. AL-Shomar, N. B. Ibrahim, Sahrim Hj. Ahmad

Abstract:

ZnO thin films with various Gd doping concentration (0, 0.01, 0.03 and 0.05 mol/L) have been synthesized by sol–gel method on quartz substrates at annealing temperature of 600 ºC. X-ray analysis reveals that ZnO(Gd) films have hexagonal wurtzite structure. No peaks that correspond to Gd metal clusters or gadolinium acetylacetonate are detected in the patterns. The position of the main peak (101) shifts to higher angles after doping. The surface morphologies studied using a field emission scanning electron microscope (FESEM) showed that the grain size and the films thickness reduced gradually with the increment of Gd concentration. The roughness of ZnO film investigated by an atomic force microscopy (AFM) showed that the films are smooth and high dense grain. The roughness of doped films decreased from 6.05 to 4.84 rms with the increment of dopant concentration.The optical measurements using a UV-Vis-NIR spectroscopy showed that the Gd doped ZnO thin films have high transmittance (above 80%) in the visible range and the optical band gap increase with doping concentration from 3.13 to 3.39 eV. The doped films show low electrical resistivity 2.6 × 10-3Ω.cm.at high doping concentration.

Keywords: Gd doped ZnO, electric, optics, microstructure

Procedia PDF Downloads 435
2992 Climate Adaptive Building Shells for Plus-Energy-Buildings, Designed on Bionic Principles

Authors: Andreas Hammer

Abstract:

Six peculiar architecture designs from the Frankfurt University will be discussed within this paper and their future potential of the adaptable and solar thin-film sheets implemented facades will be shown acting and reacting on climate/solar changes of their specific sites. The different aspects, as well as limitations with regard to technical and functional restrictions, will be named. The design process for a “multi-purpose building”, a “high-rise building refurbishment” and a “biker’s lodge” on the river Rheine valley, has been critically outlined and developed step by step from an international studentship towards an overall energy strategy, that firstly had to push the design to a plus-energy building and secondly had to incorporate bionic aspects into the building skins design. Both main parameters needed to be reviewed and refined during the whole design process. Various basic bionic approaches have been given [e.g. solar ivyᵀᴹ, flectofinᵀᴹ or hygroskinᵀᴹ, which were to experiment with, regarding the use of bendable photovoltaic thin film elements being parts of a hybrid, kinetic façade system.

Keywords: bionic and bioclimatic design, climate adaptive building shells [CABS], energy-strategy, harvesting façade, high-efficiency building skin, photovoltaic in building skins, plus-energy-buildings, solar gain, sustainable building concept

Procedia PDF Downloads 400
2991 Nazi Propaganda and the 1930 Berlin Film Premiere of “All Quiet on the Western Front”

Authors: Edward C. Smith

Abstract:

Historical narration in literature and film is an act that necessarily develops and deforms history, whether consciously or unconsciously. Such “translation” suffers or thrives depending on its historical context and on the ability of the artist/artists to make choices that enhance or diminish social and political reality. This “translation” and its challenges is examined from within the historical and political context of the 1930 Berlin film premiere of “All Quiet on the Western Front,” a film based on Erich Maria Remarque’s 1928 best-selling novel. Both the film and the novel appeared during a period in which the “aestheticization” of reality predominated. This was an era in early 20th-century European society in which life was conceived of as innately artistic and structured like an art form. The emergence of this modern consciousness, one in which memory and history surrendered their former authority, enabled conservative propaganda of the period to denounce all art that did not adhere conceptually to its political tenets, with “All Quiet” becoming yet another of its “victims.”

Keywords: documentary and propaganda film, film and TV audiences, international literature in film studies, popular culture and film

Procedia PDF Downloads 375
2990 Enhanced Thermal and Electrical Properties of Terbium Manganate-Polyvinyl Alcohol Nanocomposite Film

Authors: Monalisa Halder, Amit K. Das, Ajit K. Meikap

Abstract:

Polymer nanocomposites are very significant materials both in academia and industry for diverse potential applicability in electronics. Polymer plays the role of matrix element which has low density, flexibility, good mechanical strength and electrical properties. Use of nanosized multiferroic filler in the polymer matrix is suitable to achieve nanocomposites with enhanced magneto-dielectric effect and good mechanical properties both at the same time. Multiferroic terbium manganate (TbMnO₃) nanoparticles have been synthesized by sol-gel method using chloride precursors. Terbium manganate-polyvinyl alcohol (TbMnO₃-PVA) nanocomposite film has been prepared by solution casting method. Crystallite size of TbMnO₃ nanoparticle has been calculated to be ~ 40 nm from XRD analysis. Morphological study of the samples has been done by scanning electron microscopy and a well dispersion of the nanoparticles in the PVA matrix has been found. Thermogravimetric analysis (TGA) exhibits enhancement of thermal stability of the nanocomposite film with the inclusion of TbMnO₃ nanofiller in PVA matrix. The electrical transport properties of the nanocomposite film sample have been studied in the frequency range 20Hz - 2MHz at and above room temperature. The frequency dependent variation of ac conductivity follows universal dielectric response (UDR) obeying Jhonscher’s sublinear power law. Correlated barrier hopping (CBH) mechanism is the dominant charge transport mechanism with maximum barrier height 19 meV above room temperature. The variation of dielectric constant of the sample with frequency has been studied at different temperatures. Real part of dielectric constant at 1 KHz frequency at room temperature of the sample is found to be ~ 8 which is higher than that of the pure PVA film sample (~ 6). Dielectric constant decreases with the increase in frequency. Relaxation peaks have been observed in the variation of imaginary part of electric modulus with frequency. The relaxation peaks shift towards higher frequency as temperature increases probably due to the existence of interfacial polarization in the sample in presence of applied electric field. The current-voltage (I-V) characteristics of the nanocomposite film have been studied under ±40 V applied at different temperatures. I-V characteristic exhibits temperature dependent rectifying nature indicating the formation of Schottky barrier diode (SBD) with barrier height 23 meV. In conclusion, using multiferroic TbMnO₃ nanofiller in PVA matrix, enhanced thermal stability and electrical properties can be achieved.

Keywords: correlated barrier hopping, nanocomposite, schottky diode, TbMnO₃, TGA

Procedia PDF Downloads 101
2989 Single-Molecule Analysis of Structure and Dynamics in Polymer Materials by Super-Resolution Technique

Authors: Hiroyuki Aoki

Abstract:

The physical properties of polymer materials are dependent on the conformation and molecular motion of a polymer chain. Therefore, the structure and dynamic behavior of the single polymer chain have been the most important concerns in the field of polymer physics. However, it has been impossible to directly observe the conformation of the single polymer chain in a bulk medium. In the current work, the novel techniques to study the conformation and dynamics of a single polymer chain are proposed. Since a fluorescence method is extremely sensitive, the fluorescence microscopy enables the direct detection of a single molecule. However, the structure of the polymer chain as large as 100 nm cannot be resolved by conventional fluorescence methods because of the diffraction limit of light. In order to observe the single chains, we developed the labeling method of polymer materials with a photo-switchable dye and the super-resolution microscopy. The real-space conformational analysis of single polymer chains with the spatial resolution of 15-20 nm was achieved. The super-resolution microscopy enables us to obtain the three-dimensional coordinates; therefore, we succeeded the conformational analysis in three dimensions. The direct observation by the nanometric optical microscopy would reveal the detailed information on the molecular processes in the various polymer systems.

Keywords: polymer materials, single molecule, super-resolution techniques, conformation

Procedia PDF Downloads 278
2988 Further Study of Mechanism of Contrasting Charge Transport Properties for Phenyl and Thienyl Substituent Organic Semiconductors

Authors: Yanan Zhu

Abstract:

Based on the previous work about the influence mechanism of the mobility difference of phenyl and thienyl substituent semiconductors, we have made further exploration towards to design high-performance organic thin-film transistors. The substituent groups effect plays a significant role in materials properties and device performance as well. For the theoretical study, simulation of materials property and crystal packing can supply scientific guidance for materials synthesis in experiments. This time, we have taken the computational methods to design a new material substituent with furan groups, which are the potential to be used in organic thin-film transistors and organic single-crystal transistors. The reorganization energy has been calculated and much lower than 2,6-diphenyl anthracene (DPAnt), which performs large mobility as more than 30 cm²V⁻¹s⁻¹. Moreover, the other important parameter, charge transfer integral is larger than DPAnt, which suggested the furan substituent material may get a much better charge transport data. On the whole, the mechanism investigation based on phenyl and thienyl assisted in designing novel materials with furan substituent, which is predicted to be an outperformed organic field-effect transistors.

Keywords: theoretical calculation, mechanism, mobility, organic transistors

Procedia PDF Downloads 112
2987 Preparation and Characterization of Transparent and Conductive SnO2 Thin Films by Spray Pyrolysis

Authors: V. Jelev, P. Petkov, P. Shindov

Abstract:

Thin films of undoped and As-doped tin oxide (As:SnO2) were obtained on silicon and glass substrates at 450°- 480°C by spray pyrolysis technique. Tin chloride (SnCl4.5H2O) and As oxide (3As2O5.5H2O) were used as a source for Sn and As respectively. The As2O5 concentration was varied from 0 to 10 mol% in the starting water-alcoholic solution. The characterization of the films was provided with XRD, CEM, AFM and UV-VIS spectroscopy. The influence of the synthesis parameters (the temperature of the substrate, solution concentration, gas and solution flow rates, deposition time, nozzle-to substrate distance) on the optical, electrical and structural properties of the films was investigated. The substrate temperature influences on the surface topography, structure and resistivity of the films. Films grown at low temperatures (<300°C) are amorphous whereas this deposited at higher temperatures have certain degree of polycrystallinity. Thin oxide films deposited at 450°C are generally polycrystalline with tetragonal rutile structure. The resistivity decreases with dopant concentration. The minimum resistivity was achieved at dopant concentration about 2.5 mol% As2O5 in the solution. The transmittance greater than 80% and resistivity smaller than 7.5.10-4Ω.cm were achieved in the films deposited at 480°C. The As doped films (SnO2: As) deposited on silicon substrates was used for preparation of a large area position sensitive photodetector (PSD), acting on the base of a lateral photovoltaic effect. The position characteristic of PSD is symmetric to the zero and linear in the 80% of the active area. The SnO2 films are extremely stable under typical environmental conditions and extremely resistant to chemical etching.

Keywords: metal oxide film, SnO2 film, position sensitive photodetectors (PSD), lateral photovoltaic effect

Procedia PDF Downloads 272
2986 Analytical Model of Locomotion of a Thin-Film Piezoelectric 2D Soft Robot Including Gravity Effects

Authors: Zhiwu Zheng, Prakhar Kumar, Sigurd Wagner, Naveen Verma, James C. Sturm

Abstract:

Soft robots have drawn great interest recently due to a rich range of possible shapes and motions they can take on to address new applications, compared to traditional rigid robots. Large-area electronics (LAE) provides a unique platform for creating soft robots by leveraging thin-film technology to enable the integration of a large number of actuators, sensors, and control circuits on flexible sheets. However, the rich shapes and motions possible, especially when interacting with complex environments, pose significant challenges to forming well-generalized and robust models necessary for robot design and control. In this work, we describe an analytical model for predicting the shape and locomotion of a flexible (steel-foil-based) piezoelectric-actuated 2D robot based on Euler-Bernoulli beam theory. It is nominally (unpowered) lying flat on the ground, and when powered, its shape is controlled by an array of piezoelectric thin-film actuators. Key features of the models are its ability to incorporate the significant effects of gravity on the shape and to precisely predict the spatial distribution of friction against the contacting surfaces, necessary for determining inchworm-type motion. We verified the model by developing a distributed discrete element representation of a continuous piezoelectric actuator and by comparing its analytical predictions to discrete-element robot simulations using PyBullet. Without gravity, predicting the shape of a sheet with a linear array of piezoelectric actuators at arbitrary voltages is straightforward. However, gravity significantly distorts the shape of the sheet, causing some segments to flatten against the ground. Our work includes the following contributions: (i) A self-consistent approach was developed to exactly determine which parts of the soft robot are lifted off the ground, and the exact shape of these sections, for an arbitrary array of piezoelectric voltages and configurations. (ii) Inchworm-type motion relies on controlling the relative friction with the ground surface in different sections of the robot. By adding torque-balance to our model and analyzing shear forces, the model can then determine the exact spatial distribution of the vertical force that the ground is exerting on the soft robot. Through this, the spatial distribution of friction forces between ground and robot can be determined. (iii) By combining this spatial friction distribution with the shape of the soft robot, in the function of time as piezoelectric actuator voltages are changed, the inchworm-type locomotion of the robot can be determined. As a practical example, we calculated the performance of a 5-actuator system on a 50-µm thick steel foil. Piezoelectric properties of commercially available thin-film piezoelectric actuators were assumed. The model predicted inchworm motion of up to 200 µm per step. For independent verification, we also modelled the system using PyBullet, a discrete-element robot simulator. To model a continuous thin-film piezoelectric actuator, we broke each actuator into multiple segments, each of which consisted of two rigid arms with appropriate mass connected with a 'motor' whose torque was set by the applied actuator voltage. Excellent agreement between our analytical model and the discrete-element simulator was shown for both for the full deformation shape and motion of the robot.

Keywords: analytical modeling, piezoelectric actuators, soft robot locomotion, thin-film technology

Procedia PDF Downloads 141
2985 Thai’s Film after Political Crisis in October 14, 1973 and Political Crisis between 2005-2014

Authors: Pison Suwanpakdee

Abstract:

The objective of presenting this article is to analyze between Thai’s film and Thai society in political crisis, to study the development and trend of the film which reflects society in Thailand from political crisis of 14 October 1973 and the present day political crisis using a comparative study of the two era, both the similarities and differences in the film reflects the society in an era of change.

Keywords: film, political, neorealism, Thailand

Procedia PDF Downloads 395
2984 Customized Temperature Sensors for Sustainable Home Appliances

Authors: Merve Yünlü, Nihat Kandemir, Aylin Ersoy

Abstract:

Temperature sensors are used in home appliances not only to monitor the basic functions of the machine but also to minimize energy consumption and ensure safe operation. In parallel with the development of smart home applications and IoT algorithms, these sensors produce important data such as the frequency of use of the machine, user preferences, and the compilation of critical data in terms of diagnostic processes for fault detection throughout an appliance's operational lifespan. Commercially available thin-film resistive temperature sensors have a well-established manufacturing procedure that allows them to operate over a wide temperature range. However, these sensors are over-designed for white goods applications. The operating temperature range of these sensors is between -70°C and 850°C, while the temperature range requirement in home appliance applications is between 23°C and 500°C. To ensure the operation of commercial sensors in this wide temperature range, usually, a platinum coating of approximately 1-micron thickness is applied to the wafer. However, the use of platinum in coating and the high coating thickness extends the sensor production process time and therefore increases sensor costs. In this study, an attempt was made to develop a low-cost temperature sensor design and production method that meets the technical requirements of white goods applications. For this purpose, a custom design was made, and design parameters (length, width, trim points, and thin film deposition thickness) were optimized by using statistical methods to achieve the desired resistivity value. To develop thin film resistive temperature sensors, one side polished sapphire wafer was used. To enhance adhesion and insulation 100 nm silicon dioxide was coated by inductively coupled plasma chemical vapor deposition technique. The lithography process was performed by a direct laser writer. The lift-off process was performed after the e-beam evaporation of 10 nm titanium and 280 nm platinum layers. Standard four-point probe sheet resistance measurements were done at room temperature. The annealing process was performed. Resistivity measurements were done with a probe station before and after annealing at 600°C by using a rapid thermal processing machine. Temperature dependence between 25-300 °C was also tested. As a result of this study, a temperature sensor has been developed that has a lower coating thickness than commercial sensors but can produce reliable data in the white goods application temperature range. A relatively simplified but optimized production method has also been developed to produce this sensor.

Keywords: thin film resistive sensor, temperature sensor, household appliance, sustainability, energy efficiency

Procedia PDF Downloads 43
2983 Optical Characterization and Surface Morphology of SnO2 Thin Films Prepared by Spin Coating Technique

Authors: J. O. Ajayi, S. S. Oluyamo, D. B. Agunbiade

Abstract:

In this work, tin oxide thin films (SnO2) were prepared using the spin coating technique. The effects of precursor concentration on the thin film properties were investigated. Tin oxide was synthesized from anhydrous Tin (II) Chloride (SnCl2) dispersed in Methanol and Acetic acid. The metallic oxide (SnO2) films deposited were characterized using the UV Spectrophotometer and the Scanning Electron Microscope (SEM). From the absorption spectra, absorption increases with decrease in precursor concentration. Absorbance in the VIS region is lower than 0 % at higher concentration. The optical transmission spectrum shows that transmission increases as the concentration of precursor decreases and the maximum transmission in visible region is about 90% for films prepared with 0.2 M. Also, there is increase in the reflectance of thin films as concentration of precursor increases. The films have high transparency (more than 85%) and low reflectance (less than 40%) in the VIS region. Investigation showed that the direct band gap value increased from 3.79eV, to 3.82eV as the precursor concentration decreased from 0.6 M to 0.2 M. Average direct bandgap energy for all the tin oxide films was estimated to be 3.80eV. The effect of precursor concentration was directly observed in crystal outgrowth and surface particle densification. They were found to increase proportionately with higher concentration.

Keywords: anhydrous TIN (II) chloride, densification, NIS- VIS region, spin coating technique

Procedia PDF Downloads 238
2982 Mechanical Structural and Optical Properties of Lu₂SiO₅ Scintillator-Polymer Composite Films

Authors: M. S. E. Hamroun, K. Bachari, A. Berrayah, L. Mechernene, L. Guerbous

Abstract:

Composite films containing homogeneously dispersed scintillation nano-particles of Lu₂SiO₅:Ce³⁺, in optically transparent polymer matrix, have been prepared and characterized through X-ray diffraction, differential scanning calorimetric (DSC), thermogravimetric analysis (ATG), dynamic mechanical analysis (DMA), electron scanning microscopy morphology (SEM) and photoluminescence (PL). Lu₂SiO₅:Ce³⁺ scintillator powder was successfully synthesized via Sol-Gel method. This study is realized with different mass ratios of nano-particles embedded in polystyrene and polylactic acid polymer matrix (5, 10, 15, 20%) to see the influence of nano-particles on the mechanical, structural and optical properties of films. The composites have been prepared with 400 µm thickness. It has found that the structural proprieties change with mass ratio on each sample. PL photoluminescence shows the characteristic Lu₂SiO₅:Ce³⁺ emission in the blue region and intensity varied for each film.

Keywords: nano-particles, sol gel, photoluminescence, Ce³⁺, scintillator, polystyrene

Procedia PDF Downloads 95
2981 Nanoscale Photo-Orientation of Azo-Dyes in Glassy Environments Using Polarized Optical Near-Field

Authors: S. S. Kharintsev, E. A. Chernykh, S. K. Saikin, A. I. Fishman, S. G. Kazarian

Abstract:

Recent advances in improving information storage performance are inseparably linked with circumvention of fundamental constraints such as the supermagnetic limit in heat assisted magnetic recording, charge loss tolerance in solid-state memory and the Abbe’s diffraction limit in optical storage. A substantial breakthrough in the development of nonvolatile storage devices with dimensional scaling has been achieved due to phase-change chalcogenide memory, which nowadays, meets the market needs to the greatest advantage. A further progress is aimed at the development of versatile nonvolatile high-speed memory combining potentials of random access memory and archive storage. The well-established properties of light at the nanoscale empower us to use them for recording optical information with ultrahigh density scaled down to a single molecule, which is the size of a pit. Indeed, diffraction-limited optics is able to record as much information as ~1 Gb/in2. Nonlinear optical effects, for example, two-photon fluorescence recording, allows one to decrease the extent of the pit even more, which results in the recording density up to ~100 Gb/in2. Going beyond the diffraction limit, due to the sub-wavelength confinement of light, pushes the pit size down to a single chromophore, which is, on average, of ~1 nm in length. Thus, the memory capacity can be increased up to the theoretical limit of 1 Pb/in2. Moreover, the field confinement provides faster recording and readout operations due to the enhanced light-matter interaction. This, in turn, leads to the miniaturization of optical devices and the decrease of energy supply down to ~1 μW/cm². Intrinsic features of light such as multimode, mixed polarization and angular momentum in addition to the underlying optical and holographic tools for writing/reading, enriches the storage and encryption of optical information. In particular, the finite extent of the near-field penetration, falling into a range of 50-100 nm, gives the possibility to perform 3D volume (layer-to-layer) recording/readout of optical information. In this study, we demonstrate a comprehensive evidence of isotropic-to-homeotropic phase transition of the azobenzene-functionalized polymer thin film exposed to light and dc electric field using near-field optical microscopy and scanning capacitance microscopy. We unravel a near-field Raman dichroism of a sub-10 nm thick epoxy-based side-chain azo-polymer films with polarization-controlled tip-enhanced Raman scattering. In our study, orientation of azo-chromophores is controlled with a bias voltage gold tip rather than light polarization. Isotropic in-plane and homeotropic out-of-plane arrangement of azo-chromophores in glassy environment can be distinguished with transverse and longitudinal optical near-fields. We demonstrate that both phases are unambiguously visualized by 2D mapping their local dielectric properties with scanning capacity microscopy. The stability of the polar homeotropic phase is strongly sensitive to the thickness of the thin film. We make an analysis of α-transition of the azo-polymer by detecting a temperature-dependent phase jump of an AFM cantilever when passing through the glass temperature. Overall, we anticipate further improvements in optical storage performance, which approaches to a single molecule level.

Keywords: optical memory, azo-dye, near-field, tip-enhanced Raman scattering

Procedia PDF Downloads 157
2980 Polyimide Supported Membrane Made of 2D-Coordination-Crosslinked Polyimide for Rapid Molecular Separation in Multi-Solvent Environments

Authors: Netsanet Kebede Hundessa

Abstract:

Substrate modification of thin film composite (TFC) membranes with various crosslinkers is typically necessary for organic solvent nanofiltration (OSN) applications. This modification is aimed at enhancing membrane stability and solvent resistance, but it often results in a decline in permeance. This study introduces a distinct approach by developing a coordination-crosslinked polyimide substrate, which differs from the covalently-crosslinked substrates traditionally used. This developed substrate achieves enhanced solvent resistance, improved hydrophilicity, and optimized porous microstructure simultaneously. The study investigates the effects of an alkaline coagulation bath, subsequent ion exchange, and further solvent activation. The resulting TFC membrane successfully overcomes the typical permeability-selectivity trade-off of OSN membranes. It demonstrates significantly improved solvent permeance (1.5–2 times higher than previously reported data) with values of 65.2 LMH/bar for methanol, 33.1 LMH/bar for ethanol, and 59.1 LMH/bar for acetone while maintaining competitive solute rejection (>98% for Rose Bengal). This research is expected to provide a new direction for developing high-performance OSN composite membranes and other separation applications.

Keywords: metal coordinatiom, thin film composite membrane, organic solvent nanofiltration, solvent activation

Procedia PDF Downloads 27
2979 Comparison of Structure and Corrosion Properties of Titanium Oxide Films Prepared by Thermal Oxidation, DC Plasma Oxidation, and by the Sol-Gel

Authors: O. Çomaklı, M. Yazıcı, T. Yetim, A. F. Yetim, A. Çelik

Abstract:

In this work, TiO₂ films were deposited on Cp-Ti substrates by thermal oxidation, DC plasma oxidation, and by the sol-gel method. Microstructures of uncoated and TiO₂ film coated samples were examined by X-ray diffraction and SEM. Thin oxide film consisting of anatase (A) and rutile (R) TiO₂ structures was observed on the surface of CP-Ti by under three different treatments. Also, the more intense anatase and rutile peaks appeared at samples plasma oxidized at 700˚C. The thicknesses of films were about 1.8 μm at the TiO₂ film coated samples by sol-gel and about 2.7 μm at thermal oxidated samples, while it was measured as 3.9 μm at the plasma oxidated samples. Electrochemical corrosion behaviour of uncoated and coated specimens was mainly carried out by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) in simulated body fluid (SBF) solution. Results showed that at the plasma oxidated samples exhibited a better resistance property to corrosion than that of other treatments.

Keywords: TiO₂, CP-Ti, corrosion properties, thermal oxidation, plasma oxidation, sol-gel

Procedia PDF Downloads 252
2978 Reagentless Detection of Urea Based on ZnO-CuO Composite Thin Film

Authors: Neha Batra Bali, Monika Tomar, Vinay Gupta

Abstract:

A reagentless biosensor for detection of urea based on ZnO-CuO composite thin film is presented in following work. Biosensors have immense potential for varied applications ranging from environmental to clinical testing, health care, and cell analysis. Immense growth in the field of biosensors is due to the huge requirement in today’s world to develop techniques which are both cost effective and accurate for prevention of disease manifestation. The human body comprises of numerous biomolecules which in their optimum levels are essential for functioning. However mismanaged levels of these biomolecules result in major health issues. Urea is one of the key biomolecules of interest. Its estimation is of paramount significance not only for healthcare sector but also from environmental perspectives. If level of urea in human blood/serum is abnormal, i.e., above or below physiological range (15-40mg/dl)), it may lead to diseases like renal failure, hepatic failure, nephritic syndrome, cachexia, urinary tract obstruction, dehydration, shock, burns and gastrointestinal, etc. Various metal nanoparticles, conducting polymer, metal oxide thin films, etc. have been exploited to act as matrix to immobilize urease to fabricate urea biosensor. Amongst them, Zinc Oxide (ZnO), a semiconductor metal oxide with a wide band gap is of immense interest as an efficient matrix in biosensors by virtue of its natural abundance, biocompatibility, good electron communication feature and high isoelectric point (9.5). In spite of being such an attractive candidate, ZnO does not possess a redox couple of its own which necessitates the use of electroactive mediators for electron transfer between the enzyme and the electrode, thereby causing hindrance in realization of integrated and implantable biosensor. In the present work, an effort has been made to fabricate a matrix based on ZnO-CuO composite prepared by pulsed laser deposition (PLD) technique in order to incorporate redox properties in ZnO matrix and to utilize the same for reagentless biosensing applications. The prepared bioelectrode Urs/(ZnO-CuO)/ITO/glass exhibits high sensitivity (70µAmM⁻¹cm⁻²) for detection of urea (5-200 mg/dl) with high stability (shelf life ˃ 10 weeks) and good selectivity (interference ˂ 4%). The enhanced sensing response obtained for composite matrix is attributed to the efficient electron exchange between ZnO-CuO matrix and immobilized enzymes, and subsequently fast transfer of generated electrons to the electrode via matrix. The response is encouraging for fabricating reagentless urea biosensor based on ZnO-CuO matrix.

Keywords: biosensor, reagentless, urea, ZnO-CuO composite

Procedia PDF Downloads 267