Search results for: polyacrylate hydrogel kaolin
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 206

Search results for: polyacrylate hydrogel kaolin

176 Synthesis of Beetosan's Hydrogels with Yellow Tea

Authors: Jolanta Jaskowska, Anna Drabczyk, Sonia Kudlacik, Agnieszka Sobczak-Kupiec, Bozena Tyliszczak

Abstract:

The aim of the study was to select the best conditions for the synthesis of Beetosan's hydrogels with yellow tea. The study determined recipe hydrogel matrix by selecting the appropriate ratio of substrates and to investigate the effect of yellow tea, on the structure and properties of the hydrogel materials. The scope of the research included both to obtain of raw materials required for the synthesis of hydrogel materials, as well as an assessment of their properties. In the first stage of research Beetosan (chitosan derived from bees), and extract the yellow tea China Kekecha was obtained. The second stage was synthesis hydrogels modified by yellow tea. The synthesis of polymeric matrix was preparation under UV radiation. Obtained hydrogel materials were investigated extensively using incubation investigations, absorption capacity, and spectroscopic (FT-IR) and X-ray diffraction (XRD) methods. Moreover, there was also performed the surface wettability test and a photomicrograph of the structure using scanning electron microscope. Analysis of the obtained results confirms that presence of yellow tea does not significantly affect the behavior of the hydrogels in the incubation fluids. The results show that hydrogel materials exhibit compatibility with the incubatory solutions and they also retain the stability in the tested liquids. Hydrogels obtained in this method might be applied in the cosmetics industry and in the field of medicine. This is possible due to the many interesting properties of tea and biocompatibility and non-toxicity hydrogel materials. The authors would like to thank the The National Centre for Research and Development (Grant no: LIDER/033/697/L-5/13/NCBR/2014) for providing financial support to this project.

Keywords: Beetosan, hygrogels, materials, yellow tea

Procedia PDF Downloads 249
175 Controlled Release of Curcumin from a Thermoresponsive Polypeptide Hydrogel for Anti-Tumor Therapy

Authors: Chieh-Nan Chen, Ji-Yu Lin, I-Ming Chu

Abstract:

Polypeptide thermosensitive hydrogel is an excellent candidate as a smart device to deliver drugs and cells due to its remarkable biocompatibility, low gelation concentration, and respond to temperature stimuli, it can be easily injected as a polymer solution into the patient’s body where it undergoes gelation due to an elevation in temperature. Poly (ethylene glycol) monomethyl ether-poly (ethyl-l-glutamate) (mPEG-PELG) contains a hydrophobic side chain –C2H5 which is useful in encapsulating and stabilizing hydrophobic drugs. In this study, we plan to focus on the hydrophobic anti-carcinogenic and anti-inflammatory drug curcumin, which due its insolubility in water, requires a proper carrier for delivery into the body. Our main concept is to use mPEG-PELG to stabilize curcumin, inject the curcumin-loaded hydrogel into the tumor site, and allow the enzymatically-sensitive hydrogel to be degraded by bodily fluids and release the drug. The polymers of interest have been successfully synthesized and characterized by 1H-NMR, FT-IR, SEM, and CMC. Curcumin loading content and drug release were assayed using HPLC. Preliminary results show that these materials have potential as a delivery vehicle for poorly soluble drugs.

Keywords: curcumin, drug release, hydrogel, polypeptide material

Procedia PDF Downloads 272
174 Nanocellulose Incorporated Polyvinyl Alcohol Hydrogel

Authors: Rosli Mohd Yunus, Zianor Azrina Zianon Abdin, Mohammad Dalour Hossen Beg, Ridzuan Ramli

Abstract:

Recently, nanocrystalline cellulose (NCC) has gained considerable interest as a promising biomaterial due to their outstanding properties such as high surface area, high mechanical properties, hydrophilicity, biocompatibility and biodegradability. The NCC also has good stability in water which is compatible for mixing of water based polymer solution or emulsions with NCC. Oil palm empty fruit bunch (EFB) contained different amount of lignocellulosic materials such as lignin, hemicellulose and cellulose. Cellulose is the most significant materials that can be extracted from EFB as nanocrystalline cellulose (NCC). In this work the nanocrystalline cellulose were produced through acid hydrolysis together with ultrasound technique. The morphology of NCC was characterized by TEM, thermal behavior has been studied with DSC, TGA analysis. Structural properties were illustrated X-Ray diffraction as well as FTIR. The hydrogel was produced using polyvinyl alcohol (PVA) with different concentration of NCC. The hydrogel composite was characterized by swelling ratio, crosslinking density, mechanical properties and morphology.

Keywords: nanocellulose, oil palm, hydrogel, water treatment

Procedia PDF Downloads 241
173 The Effect of Sand Content on Behavior of Kaolin Clay

Authors: Hamed Tohidi, James W. Mahar

Abstract:

One of the unknowns in the design of zoned earth dams is the percentage of sand which can be present in a clay core and still retain the necessary plasticity to prevent cracking in response to deformation. Cracks in the clay core of a dam caused by differential settlement can lead to failure of the dam. In this study, a series of Atterberg Limit tests and unconfined compression strength tests have been conducted in the ISU soil mechanics laboratory on prepared mixes of quartz sand and commercial clays (Kaolin and Smectite) to determine the relationship between sand content, plasticity and squeezing behavior. The prepared mixes have variable percentages of sand ranging between 10 and 90% by weight. Plastic limit test results in which specimens can be rolled into 1/8 in. threads without crumbling and plasticity index values which represent the range of water content over which the specimens can be remolded without cracking were used to evaluate the plasticity of the sand-clay mixtures. The test results show that the design mixes exhibit plastic behavior with sand contents up to 80% by weight. However, the plasticity of the mixes decreases with increasing sand content. For unconfined compression strength tests, the same mixtures of sand and clay (Kaolin) were made in plastic limit. The results which were concluded from the UCC tests represent the relationship between sand-clay content and chance of having squeezing behavior, also according to the results from UCC, strength of different samples and stress-strain curves can be obtained.

Keywords: clay's behaviour, plasticity, sand content, Kaolin clay

Procedia PDF Downloads 216
172 Impact of Zeolite NaY Synthesized from Kaolin on the Properties of Pyrolytic Oil Derived from Used Tire

Authors: Julius Ilawe Osayi, Peter Osifo

Abstract:

Solid waste disposal, such as used tires is a global challenge as well as energy crisis due to rising energy demand amidst price uncertainty and depleting fossil fuel reserves. Therefore, the effectiveness of pyrolysis as a disposal method that can transform used tires into liquid fuel and other end-products has made the process attractive to researchers. Although used tires have been converted to liquid fuel using pyrolysis, there is the need to improve on the liquid fuel properties. Hence, this paper reports the investigation of zeolite NaY synthesized from kaolin, a locally abundant soil material in the Benin metropolis as a suitable catalyst and its effect on the properties of pyrolytic oil produced from used tires. The pyrolysis process was conducted for a range of 1 to 10 wt.% of catalyst concentration to used tire at a temperature of 600 oC, a heating rate of 15oC/min and particle size of 6mm. Although no significant increase in pyrolytic oil yield was observed compared to the previously investigated non-catalytic pyrolysis of a used tire. However, the Fourier transform infrared (FTIR), Nuclear Magnetic Resonance (NMR); and Gas chromatography-mass spectrometry (GC-MS) characterization results revealed the pyrolytic oil to possess an improved physicochemical and fuel properties alongside valuable industrial chemical species. This confirms the possibility of transforming kaolin into a catalyst suitable for improved fuel properties of the liquid fraction obtainable from thermal cracking of hydrocarbon materials.

Keywords: catalytic pyrolysis, fossil fuel, kaolin, pyrolytic oil, used tyres, Zeolite NaY

Procedia PDF Downloads 153
171 poly(N-Isopropylacrylamide)-Polyvinyl Alcohol Semi-Interpenetrating Network Hydrogel for Wound Dressing

Authors: Zi-Yan Liao, Shan-Yu Zhang, Ya-Xian Lin, Ya-Lun Lee, Shih-Chuan Huang, Hong-Ru Lin

Abstract:

Traditional wound dressings, such as gauze, bandages, etc., are easy to adhere to the tissue fluid exuded from the wound, causing secondary damage to the wound during removal. This study takes this as the idea to develop a hydrogel dressing, to explore that the dressing will not cause secondary damage to the wound when it is torn off, and at the same time, create an environment conducive to wound healing. First, the temperature-sensitive material N-isopropylacrylamide (NIPAAm) was used as the substrate. Due to its low mechanical properties, the hydrogel would break due to pulling during human activities. Polyvinyl alcohol (PVA) interpenetrates into it to enhance the mechanical properties, and a semi-interpenetration (semi-IPN) composed of poly(N-isopropylacrylamide) (PNIPAAm) and polyvinyl alcohol (PVA) was prepared by free radical polymerization. PNIPAAm was cross-linked with N,N'-methylenebisacrylamide (NMBA) in an ice bath in the presence of linear PVA, and tetramethylhexamethylenediamine (TEMED) was added as a promoter to speed up the gel formation. The polymerization stage was carried out at 16°C for 17 hours and washed with distilled water for three days after gel formation, and the water was changed several times in the middle to complete the preparation of semi-IPN hydrogel. Finally, various tests were used to analyze the effects of different ratios of PNIPAAm and PVA on semi-IPN hydrogels. In the swelling test, it was found that the maximum swelling ratio can reach about 50% under the environment of 21°C, and the higher the ratio of PVA, the more water can be absorbed. The saturated moisture content test results show that when more PVA is added, the higher saturated water content. The water vapor transmission rate test results show that the value of the semi-IPN hydrogel is about 57 g/m²/24hr, which is not much related to the proportion of PVA. It is found in the LCST test compared with the PNIPAAm hydrogel; the semi-IPN hydrogel possesses the same critical solution temperature (30-35°C). The semi-IPN hydrogel prepared in this study has a good effect on temperature response and has the characteristics of thermal sensitivity. It is expected that after improvement, it can be used in the treatment of surface wounds, replacing the traditional dressing shortcoming.

Keywords: hydrogel, N-isopropylacrylamide, polyvinyl alcohol, hydrogel wound dressing, semi-interpenetrating polymer network

Procedia PDF Downloads 56
170 Synthesis and Characterisation of Starch-PVP as Encapsulation Material for Drug Delivery System

Authors: Nungki Rositaningsih, Emil Budianto

Abstract:

Starch has been widely used as an encapsulation material for drug delivery system. However, starch hydrogel is very easily degraded during metabolism in human stomach. Modification of this material is needed to improve the encapsulation process in drug delivery system, especially for gastrointestinal drug. In this research, three modified starch-based hydrogels are synthesized i.e. Crosslinked starch hydrogel, Semi- and Full- Interpenetrating Polymer Network (IPN) starch hydrogel using Poly(N-Vinyl-Pyrrolidone). Non-modified starch hydrogel was also synthesized as a control. All of those samples were compared as biomaterials, floating drug delivery, and their ability in loading drug test. Biomaterial characterizations were swelling test, stereomicroscopy observation, Differential Scanning Calorimetry (DSC), and Fourier Transform Infrared Spectroscopy (FTIR). Buoyancy test and stereomicroscopy scanning were done for floating drug delivery characterizations. Lastly, amoxicillin was used as test drug, and characterized with UV-Vis spectroscopy for loading drug observation. Preliminary observation showed that Full-IPN has the most dense and elastic texture, followed by Semi-IPN, Crosslinked, and Non-modified in the last position. Semi-IPN and Crosslinked starch hydrogel have the most ideal properties and will not be degraded easily during metabolism. Therefore, both hydrogels could be considered as promising candidates for encapsulation material. Further analysis and issues will be discussed in the paper.

Keywords: biomaterial, drug delivery system, interpenetrating polymer network, poly(N-vinyl-pyrrolidone), starch hydrogel

Procedia PDF Downloads 223
169 Effect of Swelling Pressure on Drug Release from Polyelectrolyte Micro-Hydrogel Particles

Authors: Mina Boroujerdi, Javad Tavakoli

Abstract:

Hydrogels are extensively studied as matrices for the controlled release of drugs. To evaluate the mobility of embedded molecules, these drug delivery systems are usually characterized by release studies. In this contribution, an electronic device for swelling pressure measurement during drug release from hydrogel network was developed. Also, poly acrylic acid micro particles were prepared for prolonged and sustained controlled acetaminophen release. Effect of swelling pressure on drug release from micro particles studied under different environment pH in order to predict release profile in gastro-intestine medium. Swelling ratio and swelling pressure were measured in different pH.

Keywords: swelling pressure, drug delivery, hydrogel, polyelectrolyte

Procedia PDF Downloads 269
168 Ocular Delivery of Charged Drugs Using Iontophoresis

Authors: Abraham J. Domb

Abstract:

Nearly every eye disorder and treatment of post operated eyes evolve around ocular drug delivery. Most ocular diseases are treated with repeated topical applications administered as eye drops. Various attempts have been made to improve drug bioavailability by increasing both the retention of the drug in the pre-corneal area and the penetration of the drug through the cornea. However, currently marketed products are associated with vision blurring, irritability, patient discomfort, toxicity, low drug bioavailability, manufacturing difficulties and inadequate aqueous stability. It has been suggested to use iontophoresis for the non-invasive delivery of drugs. The iontophoretic device is composed of a control panel, two electrodes, a cylindrical well for the insertion of a disposable hydrogel, and a disposable hydrogel pellet. The drug-loaded hydrogel is attached to a cylindrical well at the edge of the electrode of the device and placed onto the eye. The device applies a variable electrical current that can vary from 0.1 mA to 1.5 mA for pre-set periods from 10 seconds to 300 seconds. The iontophoretic device developed in the lab was found to be effective in the delivery of the drugs: gentamicin, water-soluble steroids, and various anticancer agents. When testing in rabbits for safety, the device was considered to be non-toxic and effective.

Keywords: iontophoresis, eye disorder, drug delivery, hydrogel

Procedia PDF Downloads 49
167 Synthesis of Zeolites from Bauxite and Kaolin: Effect of Synthesis Parameters on Competing Phases

Authors: Bright Kwakye-Awuah, Elizabeth Von-Kiti, Isaac Nkrumah, Baah Sefa-Ntiri, Craig D. Williams

Abstract:

Bauxite and kaolin from Ghana Bauxite Company mine site were used to synthesize zeolites. Bauxite served as the alumina source and kaolin the silica source. Synthesis variations include variation of aging time at constant crystallization time and variation of crystallization times at constant aging time. Characterization techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive x-ray analysis (EDX) and Fourier transform infrared spectroscopy (FTIR) were employed in the characterization of the raw samples as well as the synthesized samples. The results obtained showed that the transformations that occurred and the phase of the resulting products were coordinated by the aging time, crystallization time, alkaline concentration and Si/Al ratio of the system. Zeolites A, X, Y, analcime, Sodalite, and ZK-14 were some of the phases achieved. Zeolite LTA was achieved with short crystallization times of 3, 5, 18 and 24 hours and a maximum aging of 24 hours. Zeolite LSX was synthesized with 24 hr aging followed with 24 hr hydrothermal treatment whilst zeolite Y crystallized after 48 hr of aging and 24 hr crystallization. Prolonged crystallization time produced a mixed phased product. Prolonged aging times, on the other hand, did not yield any zeolite as the sample was amorphous. Increasing the alkaline content of the reaction mixture above 5M introduced sodalite phase in the final product. The properties of the final products were comparable to zeolites synthesized from pure chemical reagents.

Keywords: bauxite, kaolin, aging, crystallization, zeolites

Procedia PDF Downloads 194
166 Vascularized Adipose Tissue Engineering by Using Adipose ECM/Fibroin Hydrogel

Authors: Alisan Kayabolen, Dilek Keskin, Ferit Avcu, Andac Aykan, Fatih Zor, Aysen Tezcaner

Abstract:

Adipose tissue engineering is a promising field for regeneration of soft tissue defects. However, only very thin implants can be used in vivo since vascularization is still a problem for thick implants. Another problem is finding a biocompatible scaffold with good mechanical properties. In this study, the aim is to develop a thick vascularized adipose tissue that will integrate with the host, and perform its in vitro and in vivo characterizations. For this purpose, a hydrogel of decellularized adipose tissue (DAT) and fibroin was produced, and both endothelial cells and adipocytes that were differentiated from adipose derived stem cells were encapsulated in this hydrogel. Mixing DAT with fibroin allowed rapid gel formation by vortexing. It also provided to adjust mechanical strength by changing fibroin to DAT ratio. Based on compression tests, gels of DAT/fibroin ratio with similar mechanical properties to adipose tissue was selected for cell culture experiments. In vitro characterizations showed that DAT is not cytotoxic; on the contrary, it has many natural ECM components which provide biocompatibility and bioactivity. Subcutaneous implantation of hydrogels resulted with no immunogenic reaction or infection. Moreover, localized empty hydrogels gelled successfully around host vessel with required shape. Implantations of cell encapsulated hydrogels and histological analyses are under study. It is expected that endothelial cells inside the hydrogel will form a capillary network and they will bind to the host vessel passing through hydrogel.

Keywords: adipose tissue engineering, decellularization, encapsulation, hydrogel, vascularization

Procedia PDF Downloads 505
165 Development of a Myocardial Patch with 3D Hydrogel Electrical Stimulation System

Authors: Yung-Gi Chen, Pei-Leun Kang, Yu-Hsin Lin, Shwu-Jen Chang

Abstract:

Myocardial tissue has limited self-repair ability due to its loss of differentiation characteristic for most mature cardiomyocytes. Therefore, the effective use of stem cell technology in regenerative medicine is an important development to alleviate the current difficulties in cardiac disease treatment. The main purpose of this project was to develop a 3-D hydrogel electrical stimulating system for promoting the differentiation of stem cells into myocardial cells, and the patch will be used to repair damaged myocardial tissue. This project was focused on the preparation of the electrical stimulation system with carbon/CaCl₂ electrodes covered with carbon nanotube-hydrogel. In this study, we utilized screen imprinting techniques and used Poly(lactic-co-glycolic acid)(PLGA) membranes as printing substrates to fabricate a carbon/CaCl₂ interdigitated electrode that covered with alginate/carbon nanotube hydrogels. The single-walled carbon nanotube was added in the hydrogel to enhance the mechanical strength and conductivity of hydrogel. In this study, we used PLGA (85:15) as electrode preparing substrate. The CaCl₂/ EtOH solution (80% w/v) was mixed into carbon paste to prepare various concentration calcium-containing carbon paste (2.5%, 5%, 7.5%, 10% v/v). Different concentrations of alginate (1%, 1.5%, 2% v/v) and SWCNT(Diameter < 2nm, length between 5-15μm) (1, 1.5, 3 mg/ml) are gently immobilized on the electrode by cross-linking with calcium chloride. The three-dimensional hydrogel electrode was tested for its redox efficiency by cyclic voltammetry to determine the optimal parameters for the hydrogel electrode preparation. From the result of the final electrodes, it indicated that the electrode was not easy to maintain the pattern of the interdigitated electrode when the concentration of calcium of chloride was more than 10%. According to the gel rate test and cyclic voltammetry experiment results showed the SWCNT could increase the electron conduction of hydrogel electrodes significantly. So far the 3D electrode system has been completed, 2% alginate mixed with 3mg SWCNT is the optimal condition to construct the most complete structure for the hydrogel preparation.

Keywords: myocardial tissue engineering, screen printing technology, poly (lactic-co-glycolic acid), alginate, single walled carbon nanotube

Procedia PDF Downloads 86
164 Poly(N-Vinylcaprolactam-Co-Itaconic Acid-Co-Ethylene Glycol Dimethacrylate)-Based Microgels Embedded in Chitosan Matrix for Controlled Release of Ketoprofen

Authors: Simone F. Medeiros, Jessica M. Fonseca, Gizelda M. Alves, Danilo M. Santos, Sérgio P. Campana-Filho, Amilton M. Santos

Abstract:

Stimuli responsive and biocompatible hydrogel nanoparticles have gained special attention as systems for potential applications in controlled release of drugs to improve their therapeutic efficacy while minimizing side effects. In this work, novel solid dispersions based on thermo- and pH-responsive poly(N-vinylcaprolactam-co-itaconic acid-co-ethylene- glycol dimethacrylate) hydrogel nanoparticles embedded in chitosan matrices were prepared via spray drying for controlled release of ketoprofen. Firstly, the hydrogel nanoparticles containing ketoprofen were prepared via precipitation polymerization and their stimuli-responsive behavior, thermal properties, chemical composition, encapsulation efficiency and morphology were characterized. Then, hydrogel nanoparticles with different particles size were embedded into chitosan matrices via spray-drying. Scanning electron microscopy (SEM) analyses were performed to investigate the particles size, dispersity and morphology. Finally, ketoprofen release profiles were studied as a function of pH and temperature. Chitosan/poly(NVCL-co-IA-co-EGDMA)-ketoprofen microparticles presented spherical shape, rough surface and pronounced agglomeration, indicating that hydrogels nanoparticles loaded with ketoprofen modified the surface of chitosan matrix. The maximum encapsulation efficiency of ketoprofen into hydrogel nanoparticles was 57.8% and the electrostatic interactions between amino groups from chitosan and carboxylic groups from hydrogel nanoparticles were able to control ketoprofen release. The hydrogel nanoparticles themselves were capable to retard the release of ketoprofen-loaded until 48h of in vitro release tests, while their incorporation into chitosan matrix achieved a maximum percentage of drug release of 45%, using a mass ratio of chitosan: poly(NVCL-co-IA-co-EGDMA equal to 10:7, and 69%, using a mass ratio of chitosan: poly(NVCL-co-IA-co-EGDMA equal to 5:2.

Keywords: hydrogel nanoparticles, poly(N-vinylcaprolactam-co-itaconic acid-co-ethylene- glycol dimethacrylate), chitosan, ketoprofen, spray-drying

Procedia PDF Downloads 227
163 Fabrication of Electrospun Carbon Nanofibers-Reinforced Chitosan-Based Hydrogel for Environmental Applications

Authors: Badr M. Thamer

Abstract:

The use of hydrogels as adsorbents for pollutants removal from wastewater is limited due to their high swelling properties and the difficulty in recovering them after the adsorption process. To overcome these problems, a new hydrogel nanocomposite based on chitosan-g-polyacrylic acid/oxidized electrospun carbon nanofibers (CT-g-PAA/O-ECNFs) was prepared by in-situ grafting polymerization process. The prepared hydrogel nanocomposite was used as a novel effective and highly reusable adsorbent for the removal of methylene blue (MB) from polluted water with low cost. The morphology and the structure of CT-g-PAA/O-ECNFs were investigated by numerous techniques. The effect of incorporating O-ECNFs on the swelling capability of the prepared hydrogel was explored in distillated water and MB solution at normal pH. The effect of parameters including the ratio of O-ECNFs, contact time, pH, initial concentration, and temperature on the adsorption process were explored. The adsorption isotherm and kinetic were studied by numerous non-linear models. The obtained results confirmed that the incorporation of O-ECNFs into the hydrogel network improved its ability towards MB dye removal with decreasing their swelling capacity. The adsorption process depends on the pH value of the dye solution. Additionally, the adsorption and kinetic results were fitted using the Freundlich isotherm model and pseudo second order model (PSO), respectively. Moreover, the new adsorbents can be recycled for at least five cycles keeping its adsorption capacity and can be easily recovered without loss in its initial weight.

Keywords: carbon nanofibers, hydrogels, nanocomposites, water treatment

Procedia PDF Downloads 121
162 The Effect and Mechanisms of Electroacupuncture on Motion Sickness in Mice

Authors: Chanya Inprasit, Yi-Wen Lin

Abstract:

Motion sickness (MS) is an acute disorder that occurs in healthy persons without considering gender, age or ethnicity worldwide. All signs and symptoms of MS are the results of confliction and mismatch among neural signal inputs. It is known that no singular remedy works for everybody, and electroacupuncture (EA) is one of the popular alternative therapies used for MS. Our study utilized a mouse model in order to exclude any psychological factors of MS and EA. Mice lack an emetic reflex. Therefore pica behavior, which is a normal consumption of non-nutritive substances, was found to measure the response of MS in mice. In the laboratory, Kaolin was used as a non-nutrient food substance instead of natural substances lacking nutritional value such as wood, cloth, charcoal, soil or grass. It was hypothesized that EA treatment could reduce the symptoms of MS through the TRPV1 pathways. The results of pica behavior showed a significantly increased intake of kaolin in the MS group throughout the experiment period. Moreover, the Kaolin intake of the EA group decreased to the average baseline of the control group. There was no recorded difference in the food and water intake of each group. The results indicated an increase of the TRPV1, pERK, pJNK and pmTOR protein levels in the thalamus after MS stimulation, and a significant decrease in the EA group compared with that of the control group. These findings suggest that TRPV1 pathways are associated in MS mechanisms and can be reduced by EA.

Keywords: electroacupuncture, motion sickness, Thalamus, TRPV1

Procedia PDF Downloads 228
161 A Comparative Performance of Polyaspartic Acid and Sodium Polyacrylate on Silicate Scale Inhibition

Authors: Ismail Bin Mohd Saaid, Abubakar Abubakar Umar

Abstract:

Despite the successes recorded by Alkaline/Surfactant/Polymer (ASP) flooding as an effective chemical EOR technique, the combination CEOR is not unassociated with stern glitches, one of which is the scaling of downhole equipment. One of the major issues inside the oil industry is how to control scale formation, regardless of whether it is in the wellhead equipment, down-hole pipelines or even the actual field formation. The best approach to handle the challenge associated with oilfield scale formation is the application of scale inhibitors to avert the scale formation. Chemical inhibitors have been employed in doing such. But due to environmental regulations, the industry have focused on using green scale inhibitors to mitigate the formation of scales. This paper compares the scale inhibition performance of Polyaspartic acid and sodium polyacrylic acid, both commercial green scale inhibitors, in mitigating silicate scales formed during Alkaline/Surfactant/polymer flooding under static conditions. Both PASP and TH5000 are non-threshold inhibitors, therefore their efficiency was only seeing in delaying the deposition of the silicate scales.

Keywords: alkaline/surfactant/polymer flooding (ASP), polyaspartic acid (PASP), sodium polyacrylate (SPA)

Procedia PDF Downloads 315
160 Fabrication of Chitosan/Polyacrylonitrile Blend and SEMI-IPN Hydrogel with Epichlorohydrin

Authors: Muhammad Omer Aijaz, Sajjad Haider, Fahad S. Al Mubddal, Yousef Al-Zeghayer, Waheed A. Al Masry

Abstract:

The present study is focused on the preparation of chitosan-based blend and Semi-Interpenetrating Polymer Network (SEMI-IPN) with polyacrylonitrile (PAN). Blend Chitosan/Polyacrylonitrile (PAN) hydrogel films were prepared by solution blending and casting technique. Chitosan in the blend was cross-linked with epichlorohydrin (ECH) to prepare SEMI-IPN. The developed Chitosan/PAN blend and SEMI-IPN hydrogels were characterized with SEM, FTIR, TGA, and DSC. The result showed good miscibility between chitosan and PAN, crosslinking of chitosan in the blend, and improved thermal properties for SEMI-IPN. The swelling of the different blended and SEMI-IPN hydrogels samples were examined at room temperature. Blend (C80/P20) sample showed highest swelling (2400%) and fair degree of stability (28%) whereas SEMI-IPN hydrogel exhibited relatively low degree of swelling (244%) and high degree of aqueous stability (85.5%).

Keywords: polymer hydrogels, chitosan, SEMI-IPN, polyacrylonitrile, epichlorohydrin

Procedia PDF Downloads 336
159 Swelling Hydrogels on the Base Nitron Fiber Wastes for Water Keeping in Sandy Soils

Authors: Alim Asamatdinov

Abstract:

Superabsorbent polymer hydrogels can swell to absorb huge volumes of water or aqueous solutions. This property has led to many practical applications of these new materials, particularly in agriculture for improving the water retention of soils and the water supply of plants. This article reviews the methods of polymeric hydrogels, measurements and treatments of their properties, as well as their effects on soil and on plant growth. The thermodynamic approach used to describe the swelling behaviour of polymer networks proves to be quite helpful in modelling the hydrogel efficiency of water-absorbing additives. The paper presents the results of a study of the physical and chemical properties of hydrogels based on of the production of "Nitron" (Polyacrylonitrile) wastes fibre and salts of the 3-rd transition metals and formalin. The developed hydrogels HG-Al, HG-Cr and HG-formalin have been tested for water holding the capacity of sand. Such a conclusion was also confirmed by data from the method of determining the wilting point by vegetative thumbnails. In the entering process using a dose of 0.1% of the swelling polymeric hydrogel in sand with a culture of barley the difference between the wilting point in comparison with the control was negligible. This indicates that the moisture which was contained in the hydrogel is involved in moisture availability for plant growth, to the same extent as that in the capillaries.

Keywords: hydrogel, chemical, polymer, sandy, colloid

Procedia PDF Downloads 113
158 Sequential Release of Dual Drugs Using Thermo-Sensitive Hydrogel for Tumor Vascular Inhibition and to Enhance the Efficacy of Chemotherapy

Authors: Haile F. Darge, Hsieh C. Tsai

Abstract:

The tumor microenvironment affects the therapeutic outcomes of cancer disease. In a malignant tumor, overexpression of vascular endothelial growth factor (VEGF) provokes the production of pathologic vascular networks. This results in a hostile tumor environment that hinders anti-cancer drug activities and profoundly fuels tumor progression. In this study, we develop a strategy of sequential sustain release of the anti-angiogenic drug: Bevacizumab(BVZ), and anti-cancer drug: Doxorubicin(DOX) which had a synergistic effect on cancer treatment. Poly (D, L-Lactide)- Poly (ethylene glycol) –Poly (D, L-Lactide) (PDLLA-PEG-PDLLA) thermo-sensitive hydrogel was used as a vehicle for local delivery of drugs in a single platform. The in vitro release profiles of the drugs were investigated and confirmed a relatively rapid release of BVZ (73.56 ± 1.39%) followed by Dox (61.21 ± 0.62%) for a prolonged period. The cytotoxicity test revealed that the copolymer exhibited negligible cytotoxicity up to 2.5 mg ml-1 concentration on HaCaT and HeLa cells. The in vivo study on Hela xenograft nude mice verified that hydrogel co-loaded with BVZ and DOX displayed the highest tumor suppression efficacy for up to 36 days with pronounce anti-angiogenic effect of BVZ and with no noticeable damage on vital organs. Therefore, localized co-delivery of anti-angiogenic drug and anti-cancer drugs by the hydrogel system may be a promising approach for enhanced chemotherapeutic efficacy in cancer treatment.

Keywords: anti-angiogenesis, chemotherapy, controlled release, thermo-sensitive hydrogel

Procedia PDF Downloads 101
157 Development of Nanostructrued Hydrogel for Spatial and Temporal Controlled Release of Active Compounds

Authors: Shaker Alsharif, Xavier Banquy

Abstract:

Controlled drug delivery technology represents one of the most rapidly advancing areas of science in which chemists and chemical engineers are contributing to human health care. Such delivery systems provide numerous advantages compared to conventional dosage forms including improved efficacy, and improved patient compliance and convenience. Such systems often use synthetic polymers as carriers for the drugs. As a result, treatments that would not otherwise be possible are now in conventional use. The role of bilayered vesicles as efficient carriers for drugs, vaccines, diagnostic agents and other bioactive agents have led to a rapid advancement in the liposomal drug delivery system. Moreover, the site avoidance and site-specific drug targeting therapy could be achieved by formulating a liposomal product, so as to reduce the cytotoxicity of many potent therapeutic agents. Our project focuses on developing and building hydrogel with nanoinclusion of liposomes loaded with active compounds such as proteins and growth factors able to release them in a controlled fashion. In order to achieve that, we synthesize several liposomes of two different phospholipids concentrations encapsulating model drug. Then, formulating hydrogel with specific mechanical properties embedding the liposomes to manage the release of active compound.

Keywords: controlled release, hydrogel, liposomes, active compounds

Procedia PDF Downloads 420
156 Efficient Photodegradation of Methyl Red Dye by Kaolin Clay Supported Zinc Oxide Nanoparticles with Their Antibacterial and Antioxidant Activities

Authors: Idrees Khan, Zhang Baoliang

Abstract:

Kaolin clay (KC) supported Zinc oxide (ZnO/KC) and ZnO nanoparticles (NPs) were prepared by a chemical reduction process and used for the photodegradation of methyl red (MR) as photocatalysts. Due to the interlayered porous structure of KC, we achieved a perfect association between ZnO NPs and KC. SEM image showed the irregular morphology of ZnO NPs, while ZnO/KC NCs were predominately round-shaped. Moreover, in both cases, NPs were present in dispersed and agglomerated forms with an average particle size way below 100 nm. The results acquired from photodegradation analyses showed that ZnO NPs and ZnO/KC NCs degraded about 82% and 99% of MR under UV light in a short irradiation time within 10 min. The recovered and re-recovered ZnO NPs and ZnO/KC NCs were also considerably photodegraded MR in an aqueous medium. The same NPs also exhibit promising bioactivities against two pathogenic bacteria, i.e., Citrobacter and Providencia. ZnO/KC NCs' antioxidant activity reached a reasonable 70% compared to the 88% activity of the standard ascorbic acid.

Keywords: nanoparticles, photocatalyst, photodegradation, zinc oxide, methyl red

Procedia PDF Downloads 47
155 Competitive Adsorption of Al, Ga and In by Gamma Irradiation Induced Pectin-Acrylamide-(Vinyl Phosphonic Acid) Hydrogel

Authors: Md Murshed Bhuyan, Hirotaka Okabe, Yoshiki Hidaka, Kazuhiro Hara

Abstract:

Pectin-Acrylamide- (Vinyl Phosphonic Acid) Hydrogels were prepared from their blend by using gamma radiation of various doses. It was found that the gel fraction of hydrogel increases with increasing the radiation dose reaches a maximum and then started decreasing with increasing the dose. The optimum radiation dose and the composition of raw materials were determined on the basis of equilibrium swelling which resulted in 20 kGy absorbed dose and 1:2:4 (Pectin:AAm:VPA) composition. Differential scanning calorimetry reveals the gel strength for using them as the adsorbent. The FTIR-spectrum confirmed the grafting/ crosslinking of the monomer on the backbone of pectin chain. The hydrogels were applied in adsorption of Al, Ga, and In from multielement solution where the adsorption capacity order for those three elements was found as – In>Ga>Al. SEM images of hydrogels and metal adsorbed hydrogels indicate the gel network and adherence of the metal ions in the interpenetrating network of the hydrogel which were supported by EDS spectra. The adsorption isotherm models were studied and found that the Langmuir adsorption isotherm model was well fitted with the data. Adsorption data were also fitted to different adsorption kinetic and diffusion models. Desorption of metal adsorbed hydrogels was performed in 5% nitric acid where desorption efficiency was found around 90%.

Keywords: hydrogel, gamma radiation, vinyl phosphonic acid, metal adsorption

Procedia PDF Downloads 127
154 Co-pyrolysis of Sludge and Kaolin/Zeolite to Stabilize Heavy Metals

Authors: Qian Li, Zhaoping Zhong

Abstract:

Sewage sludge, a typical solid waste, has inevitably been produced in enormous quantities in China. Still worse, the amount of sewage sludge produced has been increasing due to rapid economic development and urbanization. Compared to the conventional method to treat sewage sludge, pyrolysis has been considered an economic and ecological technology because it can significantly reduce the sludge volume, completely kill pathogens, and produce valuable solid, gas, and liquid products. However, the large-scale utilization of sludge biochar has been limited due to the considerable risk posed by heavy metals in the sludge. Heavy metals enriched in pyrolytic biochar could be divided into exchangeable, reducible, oxidizable, and residual forms. The residual form of heavy metals is the most stable and cannot be used by organisms. Kaolin and zeolite are environmentally friendly inorganic minerals with a high surface area and heat resistance characteristics. So, they exhibit the enormous potential to immobilize heavy metals. In order to reduce the risk of leaching heavy metals in the pyrolysis biochar, this study pyrolyzed sewage sludge mixed with kaolin/zeolite in a small rotary kiln. The influences of additives and pyrolysis temperature on the leaching concentration and morphological transformation of heavy metals in pyrolysis biochar were investigated. The potential mechanism of stabilizing heavy metals in the co-pyrolysis of sludge blended with kaolin/zeolite was explained by scanning electron microscopy, X-ray diffraction, and specific surface area and porosity analysis. The European Community Bureau of Reference sequential extraction procedure has been applied to analyze the forms of heavy metals in sludge and pyrolysis biochar. All the concentrations of heavy metals were examined by flame atomic absorption spectrophotometry. Compared with the proportions of heavy metals associated with the F4 fraction in pyrolytic carbon prepared without additional agents, those in carbon obtained by co-pyrolysis of sludge and kaolin/zeolite increased. Increasing the additive dosage could improve the proportions of the stable fraction of various heavy metals in biochar. Kaolin exhibited a better effect on stabilizing heavy metals than zeolite. Aluminosilicate additives with excellent adsorption performance could capture more released heavy metals during sludge pyrolysis. Then heavy metal ions would react with the oxygen ions of additives to form silicate and aluminate, causing the conversion of heavy metals from unstable fractions (sulfate, chloride, etc.) to stable fractions (silicate, aluminate, etc.). This study reveals that the efficiency of stabilizing heavy metals depends on the formation of stable mineral compounds containing heavy metals in pyrolysis biochar.

Keywords: co-pyrolysis, heavy metals, immobilization mechanism, sewage sludge

Procedia PDF Downloads 41
153 Spontaneous Generation of Wrinkled Patterns on pH-Sensitive Smart-Hydrogel Films

Authors: Carmen M. Gonzalez-Henriquez, Mauricio A. Sarabia-Vallejos, Juan Rodriguez-Hernandez

Abstract:

DMAEMA, as a monomer, has been widely studied and used in several application fields due to their pH-sensitive capacity (tertiary amine protonation), being relevant in the biomedical area as a potential carrier for drugs focused on the treatment of genetic or acquired diseases (efficient gene transfection), among others. Additionally, the inhibition of bacterial growth and, therefore, their antimicrobial activity, can be used as dual-functional antifogging/antimicrobial polymer coatings. According to their interesting physicochemical characteristics and biocompatible properties, DMAEMA was used as a monomer to synthesize a smart pH-sensitive hydrogel, namely poly(HEMA-co-PEGDA575-co-DMAEMA). Thus, different mole ratios (ranging from 5:1:0 to 0:1:5, according to the mole ratio between HEMA, PEGDA, and DEAEMA, respectively) were used in this research. The surface patterns formed via a two-step polymerization (redox- and photo-polymerization) were first chemically studied via 1H-NMR and elemental analysis. Secondly, the samples were morphologically analyzed by using Field-Emission Scanning Electron Microscopy (FE-SEM) and Atomic Force Microscopy (AFM) techniques. Then, a particular relation between HEMA, PEGDA, and DEAEMA (0:1:5) was also characterized at three different pH (5.4, 7.4 and 8.3). The hydrodynamic radius and zeta potential of the micro-hydrogel particles (emulsion) were carried out as a possible control for morphology, exploring the effect that produces hydrogel micelle dimensions in the wavelength, height, and roughness of the wrinkled patterns. Finally, contact angle and cross-hatch adhesion test was carried out for the hydrogels supported on glass using TSM-silanized surfaces in order to measure their mechanical properties.

Keywords: wrinkled patterns, smart pH-sensitive hydrogels, hydrogel micelle diameter, adhesion tests

Procedia PDF Downloads 180
152 Effect of Irrigation and Hydrogel on the Water Use Efficiency of Zeto-Tiled Green-Gram Relay System in the Eastern Indo Gangetic-Plain

Authors: Benukar Biswas, S. Banerjee, P. K. Bandhyopadhyaya, S. K. Patra, S. Sarkar

Abstract:

Jute can be sown as relay crop in between the lines of 15-20 days old green gram for additional pulse yield without reducing the yield of jute. The main problem of this system is water use efficiency (WUE). The increase in water productivity and reduction in production cost were reported in the zero-tilled crop. The hydrogel can hold water up to 400 times of its weight and can release 95 % of the retained water. The present field study was carried out during 2015-16 at BCKV (tropical sub-humid, 1560 mm annual rainfall, 22058/ N, 88051/ E, 9.75 m AMSL, sandy loam soil, aeric Haplaquept, pH 6.75, organic carbon 5.4 g kg-1, available N 85 kg ha-1, P2O5 15.3 kg ha-1 and K2O 40 kg ha-1) with four levels of irrigation regimes: no irrigation - RF, cumulative pan evaporation 250mm (CPE250), CPE125 and CPE83 and three levels of hydrogel: no hydrogel (H0), 2.5 kg ha-1 (H2.5) and 5 kg ha-1 (H5). Throughout the crop growing period a linear positive relationship remained between Leaf Area Index (LAI) and evapotranspiration rate. The strength of the relationship between ETa and LAI started increasing and reached its peak at 7 WAS (R2=0.78) when green gram was at its maturity, and both the crops covered the nearly entire base area. This relation starts weakening from 13 WAS due to jute leaf shading. A linear relationship between system yield and ET was also obtained in the present study. The variation in system yield might be predicted 75% with ET alone. Effective rainfall was reduced with increasing irrigation frequency due to enhanced water supply in contrast to hydrogel application due to the difference in water storage capacity. Irrigation contributed a major source of variability of ET. Higher irrigation frequency resulted in higher ET loss ranging from 574 mm in RF to 764 mm in CPE83. Hydrogel application also increased water storage on a sustained basis and supplied to crops resulting higher ET from 639 mm in H0 to 671mm in H5. WUE ranged between 0.4 kg m-3 (RF) to 0.63 kg m-3 (CPE83 H5). WUE increased with increased application of irrigation water from 0.42 kg m-3 in RF to 0.57 kg m-3 in CPE 83. Hydrogel application significantly improves the WUE from 0.45 kg m-3 in H0 to 0.50 in H2.5 and 0.54 in H5. Under relatively dry root zone (RF), both evaporation and transpiration remain at suboptimal level resulting in lower ET as well as lower system yield. Green gram – jute relay system can be water use efficient with 38% higher yield with application of hydrogel @ 2.5 kg ha-1 under deficit irrigation regime of CPE 125 over rainfed system without application of the gel. Application of gel conditioner improved water storage, checked excess water loss from the system, and mitigated ET demand of the relay system for a longer time. Hence, irrigation frequency was reduced from five times at CPE 83 to only three times in CPE 125.

Keywords: zero tillage, deficit irrigation, hydrogel, relay system

Procedia PDF Downloads 203
151 Formulation and Ex Vivo Evaluation of Solid Lipid Nanoparticles Based Hydrogel for Intranasal Drug Delivery

Authors: Pramod Jagtap, Kisan Jadhav, Neha Dand

Abstract:

Risperidone (RISP) is an antipsychotic agent and has low water solubility and nontargeted delivery results in numerous side effects. Hence, an attempt was made to develop SLNs hydrogel for intranasal delivery of RISP to achieve maximum bioavailability and reduction of side effects. RISP loaded SLNs composed of 1.65% (w/v) lipid mass were produced by high shear homogenization (HSH) coupled ultrasound (US) method using glyceryl monostearate (GMS) or Imwitor 900K (solid lipid). The particles were loaded with 0.2% (w/v) of the RISP & surface-tailored with a 2.02% (w/v) non-ionic surfactant Tween® 80. Optimization was done using 32 factorial design using Design Expert® software. The prepared SLNs dispersion incorporated into Polycarbophil AA1 hydrogel (0.5% w/v). The final gel formulation was evaluated for entrapment efficiency, particle size, rheological properties, X ray diffraction, in vitro diffusion, ex vivo permeation using sheep nasal mucosa and histopathological studies for nasocilliary toxicity. The entrapment efficiency of optimized SLNs was found to be 76 ± 2 %, polydispersity index <0.3., particle size 278 ± 5 nm. This optimized batch was incorporated into hydrogel. The pH was found to be 6.4 ± 0.14. The rheological behaviour of hydrogel formulation revealed no thixotropic behaviour. In histopathology study, there was no nasocilliary toxicity observed in nasal mucosa after ex vivo permeation. X-ray diffraction data shows drug was in amorphous form. Ex vivo permeation study shows controlled release profile of drug.

Keywords: ex vivo, particle size, risperidone, solid lipid nanoparticles

Procedia PDF Downloads 392
150 Hydrogel Based on Cellulose Acetate Used as Scaffold for Cell Growth

Authors: A. Maria G. Melero, A. M. Senna, J. A. Domingues, M. A. Hausen, E. Aparecida R. Duek, V. R. Botaro

Abstract:

A hydrogel from cellulose acetate cross linked with ethylenediaminetetraacetic dianhydride (HAC-EDTA) was synthesized by our research group, and submitted to characterization and biological tests. Cytocompatibility analysis was performed by confocal microscopy using human adipocyte derived stem cells (ASCs). The FTIR analysis showed characteristic bands of cellulose acetate and hydroxyl groups and the tensile tests evidence that HAC-EDTA present a Young’s modulus of 643.7 MPa. The confocal analysis revealed that there was cell growth at the surface of HAC-EDTA. After one day of culture the cells presented spherical morphology, which may be caused by stress of the sequestration of Ca2+ and Mg2+ ions at the cell medium by HAC-EDTA, as demonstrated by ICP-MS. However, after seven days and 14 days of culture, the cells present fibroblastoid morphology, phenotype expected by this cellular type. The results give efforts to indicate this new material as a potential biomaterial for tissue engineering, in the future in vivo approach.

Keywords: cellulose acetate, hydrogel, biomaterial, cellular growth

Procedia PDF Downloads 170
149 Behavior of hFOB 1.19 Cells in Injectable Scaffold Composing of Pluronic F127 and Carboxymethyl Hexanoyl Chitosan

Authors: Lie-Sian Yap, Ming-Chien Yang

Abstract:

This study demonstrated a novel injectable hydrogel scaffold composing of Pluronic F127, carboxymethyl hexanoyl chitosan (CA) and glutaraldehyde (GA) for encapsulating human fetal osteoblastic cells (hFOB) 1.19. The hydrogel was prepared by mixing F127 and GA in CA solution at 4°C. The mechanical properties and cytotoxicity of this hydrogel were determined through rheological measurements and MTT assay, respectively. After encapsulation process, the hFOB 1.19 cells morphology was examined using fluorescent and confocal imaging. The results indicated that the Tgel of this system was around 30°C, where sol-gel transformation occurred within 90s and F127/CA/GA gel was able to remain intact in the medium for more than 1 month. In vitro cell culture assay revealed that F127/CA/GA hydrogels were non-cytotoxic. Encapsulated hFOB 1.19 cells not only showed the spherical shape and formed colonies, but also reduced their size. Moreover, the hFOB 1.19 cells showed that cells remain alive after the encapsulation process. Based on these results, these F127/CA/GA hydrogels can be used to encapsulate cells for tissue engineering applications.

Keywords: carboxymethyl hexanoyl chitosan, cell encapsulation, hFOB 1.19, Pluronic F127

Procedia PDF Downloads 219
148 Advanced Catechol-Modified Chitosan Hydrogels with the Inducement of Iron (III) Ion at Acidic Condition

Authors: Ngoc Quang Nguyen, Daewon Sohn

Abstract:

Chitosan (CS) is a natural polycationic polysaccharide and pH-sensitive polymer with incomplete deacetylation from claiming chitin. It is also a guaranteeing material in terms of pharmaceutical, chemical, and sustenance industry due to its exceptional structure (reactive –OH and –NH2 groups). In this study, a catechol-functionalized chitosan (CCS, for an eminent level for substitution) was synthesized and propelled by marine mussel cuticles in place on research those intricate connections between Fe³⁺ and catechol under acidic conditions. The ratios of catechol, chitosan and other reagents decide the structure of the hydrogel. The gel formation is then well-maintained by dual cross-linking through electrostatic interactions between Fe³⁺ and CCS and covalent catechol-coupling-based coordinate bonds. The hydrogels showed enhanced cohesiveness and shock-absorbing properties with increasing pH due to coordinate bonds inspired by mussel byssal threads. Thus, the gelation time, rheological properties, UV-vis and ¹H-Nuclear Magnetic Resonance spectroscopy, and the morphologic aspects were elucidated to describe those crosslinking components and the physical properties of the chitosan backbones and hydrogel frameworks.

Keywords: catechol, chitosan, iron ion, gelation, hydrogel

Procedia PDF Downloads 114
147 Controlled Release of Glucosamine from Pluronic-Based Hydrogels for the Treatment of Osteoarthritis

Authors: Papon Thamvasupong, Kwanchanok Viravaidya-Pasuwat

Abstract:

Osteoarthritis affects a lot of people worldwide. Local injection of glucosamine is one of the alternative treatment methods to replenish the natural lubrication of cartilage. However, multiple injections can potentially lead to possible bacterial infection. Therefore, a drug delivery system is desired to reduce the frequencies of injections. A hydrogel is one of the delivery systems that can control the release of drugs. Thermo-reversible hydrogels can be beneficial to the drug delivery system especially in the local injection route because this formulation can change from liquid to gel after getting into human body. Once the gel is in the body, it will slowly release the drug in a controlled manner. In this study, various formulations of Pluronic-based hydrogels were synthesized for the controlled release of glucosamine. One of the challenges of the Pluronic controlled release system is its fast dissolution rate. To overcome this problem, alginate and calcium sulfate (CaSO4) were added to the polymer solution. The characteristics of the hydrogels were investigated including the gelation temperature, gelation time, hydrogel dissolution and glucosamine release mechanism. Finally, a mathematical model of glucosamine release from Pluronic-alginate-hyaluronic acid hydrogel was developed. Our results have shown that crosslinking Pluronic gel with alginate did not significantly extend the dissolution rate of the gel. Moreover, the gel dissolution profiles and the glucosamine release mechanisms were best described using the zeroth-order kinetic model, indicating that the release of glucosamine was primarily governed by the gel dissolution.

Keywords: controlled release, drug delivery system, glucosamine, pluronic, thermoreversible hydrogel

Procedia PDF Downloads 242