Search results for: picking process
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15253

Search results for: picking process

15253 Double Clustering as an Unsupervised Approach for Order Picking of Distributed Warehouses

Authors: Hsin-Yi Huang, Ming-Sheng Liu, Jiun-Yan Shiau

Abstract:

Planning the order picking lists of warehouses to achieve when the costs associated with logistics on the operational performance is a significant challenge. In e-commerce era, this task is especially important productive processes are high. Nowadays, many order planning techniques employ supervised machine learning algorithms. However, the definition of which features should be processed by such algorithms is not a simple task, being crucial to the proposed technique’s success. Against this background, we consider whether unsupervised algorithms can enhance the planning of order-picking lists. A Zone2 picking approach, which is based on using clustering algorithms twice, is developed. A simplified example is given to demonstrate the merit of our approach.

Keywords: order picking, warehouse, clustering, unsupervised learning

Procedia PDF Downloads 159
15252 Development of Internet of Things (IoT) with Mobile Voice Picking and Cargo Tracing Systems in Warehouse Operations of Third-Party Logistics

Authors: Eugene Y. C. Wong

Abstract:

The increased market competition, customer expectation, and warehouse operating cost in third-party logistics have motivated the continuous exploration in improving operation efficiency in warehouse logistics. Cargo tracing in ordering picking process consumes excessive time for warehouse operators when handling enormous quantities of goods flowing through the warehouse each day. Internet of Things (IoT) with mobile cargo tracing apps and database management systems are developed this research to facilitate and reduce the cargo tracing time in order picking process of a third-party logistics firm. An operation review is carried out in the firm with opportunities for improvement being identified, including inaccurate inventory record in warehouse management system, excessive tracing time on stored products, and product misdelivery. The facility layout has been improved by modifying the designated locations of various types of products. The relationship among the pick and pack processing time, cargo tracing time, delivery accuracy, inventory turnover, and inventory count operation time in the warehouse are evaluated. The correlation of the factors affecting the overall cycle time is analysed. A mobile app is developed with the use of MIT App Inventor and the Access management database to facilitate cargo tracking anytime anywhere. The information flow framework from warehouse database system to cloud computing document-sharing, and further to the mobile app device is developed. The improved performance on cargo tracing in the order processing cycle time of warehouse operators have been collected and evaluated. The developed mobile voice picking and tracking systems brings significant benefit to the third-party logistics firm, including eliminating unnecessary cargo tracing time in order picking process and reducing warehouse operators overtime cost. The mobile tracking device is further planned to enhance the picking time and cycle count of warehouse operators with voice picking system in the developed mobile apps as future development.

Keywords: warehouse, order picking process, cargo tracing, mobile app, third-party logistics

Procedia PDF Downloads 374
15251 Storage Assignment Strategies to Reduce Manual Picking Errors with an Emphasis on an Ageing Workforce

Authors: Heiko Diefenbach, Christoph H. Glock

Abstract:

Order picking, i.e., the order-based retrieval of items in a warehouse, is an important time- and cost-intensive process for many logistic systems. Despite the ongoing trend of automation, most order picking systems are still manual picker-to-parts systems, where human pickers walk through the warehouse to collect ordered items. Human work in warehouses is not free from errors, and order pickers may at times pick the wrong or the incorrect number of items. Errors can cause additional costs and significant correction efforts. Moreover, age might increase a person’s likelihood to make mistakes. Hence, the negative impact of picking errors might increase for an aging workforce currently witnessed in many regions globally. A significant amount of research has focused on making order picking systems more efficient. Among other factors, storage assignment, i.e., the assignment of items to storage locations (e.g., shelves) within the warehouse, has been subject to optimization. Usually, the objective is to assign items to storage locations such that order picking times are minimized. Surprisingly, there is a lack of research concerned with picking errors and respective prevention approaches. This paper hypothesize that the storage assignment of items can affect the probability of pick errors. For example, storing similar-looking items apart from one other might reduce confusion. Moreover, storing items that are hard to count or require a lot of counting at easy-to-access and easy-to-comprehend self heights might reduce the probability to pick the wrong number of items. Based on this hypothesis, the paper discusses how to incorporate error-prevention measures into mathematical models for storage assignment optimization. Various approaches with respective benefits and shortcomings are presented and mathematically modeled. To investigate the newly developed models further, they are compared to conventional storage assignment strategies in a computational study. The study specifically investigates how the importance of error prevention increases with pickers being more prone to errors due to age, for example. The results suggest that considering error-prevention measures for storage assignment can reduce error probabilities with only minor decreases in picking efficiency. The results might be especially relevant for an aging workforce.

Keywords: an aging workforce, error prevention, order picking, storage assignment

Procedia PDF Downloads 204
15250 Enhancing Warehousing Operation In Cold Supply Chain Through The Use Of IOT And Lifi Technologies

Authors: Sarah El-Gamal, Passent Hossam, Ahmed Abd El Aziz, Rojina Mahmoud, Ahmed Hassan, Dalia Hilal, Eman Ayman, Hana Haytham, Omar Khamis

Abstract:

Several concerns fall upon the supply chain, especially the cold supply chain. According to the literature, the main challenges in the cold supply chain are the distribution and storage phases. In this research, researchers focused on the storage area, which contains several activities such as the picking activity that faces a lot of obstacles and challenges The implementation of IoT solutions enables businesses to monitor the temperature of food items, which is perhaps the most critical parameter in cold chains. Therefore, researchers proposed a practical solution that would help in eliminating the problems related to ineffective picking for products, especially fish and seafood products, by using IoT technology, most notably LiFi technology. Thus, guaranteeing sufficient picking, reducing waste, and consequently lowering costs. A prototype was specially designed and examined. This research is a single case study research. Two methods of data collection were used; observation and semi-structured interviews. Semi-structured interviews were conducted with managers and decision maker at Carrefour Alexandria to validate the problem and the proposed practical solution using IoTandLiFi technology. A total of three interviews were conducted. As a result, a SWOT analysis was achieved in order to highlight all the strengths and weaknesses of using the recommended Lifi solution in the picking process. According to the investigations, it was found that the use of IoT and LiFi technology is cost effective, efficient, and reduces human errors, minimize the percentage of product waste and thus save money and cost. Thus, increasing customer satisfaction and profits gained.

Keywords: cold supply chain, picking process, temperature control, IOT, warehousing, LIFI

Procedia PDF Downloads 190
15249 Effect of Weave Structure and Picking Sequence on the Comfort Properties of Woven Fabrics

Authors: Muhammad Umair, Tanveer Hussain, Khubab Shaker, Yasir Nawab, Muhammad Maqsood, Madeha Jabbar

Abstract:

The term comfort is defined as 'the absence of unpleasantness or discomfort' or 'a neutral state compared to the more active state'. Comfort mainly is of three types: sensorial (tactile) comfort, psychological comfort and thermo-physiological comfort. Thermophysiological comfort is determined by the air permeability and moisture management properties of the garment. The aim of this study was to investigate the effect of weave structure and picking sequence on the comfort properties of woven fabrics. Six woven fabrics with two different weave structures i.e. 1/1 plain and 3/1 twill and three different picking sequences: (SPI, DPI, 3PI) were taken as input variables whereas air permeability, wetting time, wicking behavior and overall moisture management capability (OMMC) of fabrics were taken as response variables and a comparison is made of the effect of weave structure and picking sequence on the response variables. It was found that fabrics woven in twill weave design and with simultaneous triple pick insertion (3PI) give significantly better air permeability, shorter wetting time and better water spreading rate, as compared to plain woven fabrics and those with double pick insertion (DPI) or single pick insertion (SPI). It could be concluded that the thermophysiological comfort of woven fabrics may be significantly improved simply by selecting a suitable weave design and picking sequence.

Keywords: air permeability, picking sequence, thermophysiological comfort, weave design

Procedia PDF Downloads 419
15248 Deep Learning Based 6D Pose Estimation for Bin-Picking Using 3D Point Clouds

Authors: Hesheng Wang, Haoyu Wang, Chungang Zhuang

Abstract:

Estimating the 6D pose of objects is a core step for robot bin-picking tasks. The problem is that various objects are usually randomly stacked with heavy occlusion in real applications. In this work, we propose a method to regress 6D poses by predicting three points for each object in the 3D point cloud through deep learning. To solve the ambiguity of symmetric pose, we propose a labeling method to help the network converge better. Based on the predicted pose, an iterative method is employed for pose optimization. In real-world experiments, our method outperforms the classical approach in both precision and recall.

Keywords: pose estimation, deep learning, point cloud, bin-picking, 3D computer vision

Procedia PDF Downloads 161
15247 Proposition of an Intelligent System Based on the Augmented Reality for Warehouse Logistics

Authors: Safa Gharbi, Hayfa Zgaya, Nesrine Zoghlami, Slim Hammadi, Cyril De Barbarin, Laurent Vinatier, Christiane Coupier

Abstract:

Increasing productivity and quality of service, improving the working comfort and ensuring the efficiency of all processes are important challenges for every warehouse. The order picking is recognized to be the most important and costly activity of all the process in warehouses. This paper presents a new approach using Augmented Reality (AR) in the field of logistics. It aims to create a Head-Up Display (HUD) interface with a Warehouse Management System (WMS), using AR glasses. Integrating AR technology allows the optimization of order picking by reducing time of picking process, increasing the efficiency and delivering quickly. The picker will be able to access immediately to all the information needed for his tasks. All the information is displayed when needed in the field of vision (FOV) of the operator, without any action requested from him. These research works are part of the industrial project RASL (Réalité Augmentée au Service de la Logistique) which gathers two major partners: the LAGIS (Laboratory of Automatics, Computer Engineering and Signal Processing in Lille-France) and Genrix Group, European leader in warehouses logistics, who provided his software for implementation, and his logistics expertise.

Keywords: Augmented Reality (AR), logistics and optimization, Warehouse Management System (WMS), Head-Up Display (HUD)

Procedia PDF Downloads 483
15246 EQMamba - Method Suggestion for Earthquake Detection and Phase Picking

Authors: Noga Bregman

Abstract:

Accurate and efficient earthquake detection and phase picking are crucial for seismic hazard assessment and emergency response. This study introduces EQMamba, a deep-learning method that combines the strengths of the Earthquake Transformer and the Mamba model for simultaneous earthquake detection and phase picking. EQMamba leverages the computational efficiency of Mamba layers to process longer seismic sequences while maintaining a manageable model size. The proposed architecture integrates convolutional neural networks (CNNs), bidirectional long short-term memory (BiLSTM) networks, and Mamba blocks. The model employs an encoder composed of convolutional layers and max pooling operations, followed by residual CNN blocks for feature extraction. Mamba blocks are applied to the outputs of BiLSTM blocks, efficiently capturing long-range dependencies in seismic data. Separate decoders are used for earthquake detection, P-wave picking, and S-wave picking. We trained and evaluated EQMamba using a subset of the STEAD dataset, a comprehensive collection of labeled seismic waveforms. The model was trained using a weighted combination of binary cross-entropy loss functions for each task, with the Adam optimizer and a scheduled learning rate. Data augmentation techniques were employed to enhance the model's robustness. Performance comparisons were conducted between EQMamba and the EQTransformer over 20 epochs on this modest-sized STEAD subset. Results demonstrate that EQMamba achieves superior performance, with higher F1 scores and faster convergence compared to EQTransformer. EQMamba reached F1 scores of 0.8 by epoch 5 and maintained higher scores throughout training. The model also exhibited more stable validation performance, indicating good generalization capabilities. While both models showed lower accuracy in phase-picking tasks compared to detection, EQMamba's overall performance suggests significant potential for improving seismic data analysis. The rapid convergence and superior F1 scores of EQMamba, even on a modest-sized dataset, indicate promising scalability for larger datasets. This study contributes to the field of earthquake engineering by presenting a computationally efficient and accurate method for simultaneous earthquake detection and phase picking. Future work will focus on incorporating Mamba layers into the P and S pickers and further optimizing the architecture for seismic data specifics. The EQMamba method holds the potential for enhancing real-time earthquake monitoring systems and improving our understanding of seismic events.

Keywords: earthquake, detection, phase picking, s waves, p waves, transformer, deep learning, seismic waves

Procedia PDF Downloads 51
15245 Order Picking Problem: An Exact and Heuristic Algorithms for the Generalized Travelling Salesman Problem With Geographical Overlap Between Clusters

Authors: Farzaneh Rajabighamchi, Stan van Hoesel, Christof Defryn

Abstract:

The generalized traveling salesman problem (GTSP) is an extension of the traveling salesman problem (TSP) where the set of nodes is partitioned into clusters, and the salesman must visit exactly one node per cluster. In this research, we apply the definition of the GTSP to an order picker routing problem with multiple locations per product. As such, each product represents a cluster and its corresponding nodes are the locations at which the product can be retrieved. To pick a certain product item from the warehouse, the picker needs to visit one of these locations during its pick tour. As all products are scattered throughout the warehouse, the product clusters not separated geographically. We propose an exact LP model as well as heuristic and meta-heuristic solution algorithms for the order picking problem with multiple product locations.

Keywords: warehouse optimization, order picking problem, generalised travelling salesman problem, heuristic algorithm

Procedia PDF Downloads 112
15244 Augmented Reality Enhanced Order Picking: The Potential for Gamification

Authors: Stavros T. Ponis, George D. Plakas-Koumadorakis, Sotiris P. Gayialis

Abstract:

Augmented Reality (AR) can be defined as a technology, which takes the capabilities of computer-generated display, sound, text and effects to enhance the user's real-world experience by overlaying virtual objects into the real world. By doing that, AR is capable of providing a vast array of work support tools, which can significantly increase employee productivity, enhance existing job training programs by making them more realistic and in some cases introduce completely new forms of work and task executions. One of the most promising AR industrial applications, as literature shows, is the use of Head Worn, monocular or binocular Displays (HWD) to support logistics and production operations, such as order picking, part assembly and maintenance. This paper presents the initial results of an ongoing research project for the introduction of a dedicated AR-HWD solution to the picking process of a Distribution Center (DC) in Greece operated by a large Telecommunication Service Provider (TSP). In that context, the proposed research aims to determine whether gamification elements should be integrated in the functional requirements of the AR solution, such as providing points for reaching objectives and creating leaderboards and awards (e.g. badges) for general achievements. Up to now, there is a an ambiguity on the impact of gamification in logistics operations since gamification literature mostly focuses on non-industrial organizational contexts such as education and customer/citizen facing applications, such as tourism and health. To the contrary, the gamification efforts described in this study focus in one of the most labor- intensive and workflow dependent logistics processes, i.e. Customer Order Picking (COP). Although introducing AR in COP, undoubtedly, creates significant opportunities for workload reduction and increased process performance the added value of gamification is far from certain. This paper aims to provide insights on the suitability and usefulness of AR-enhanced gamification in the hard and very demanding environment of a logistics center. In doing so, it will utilize a review of the current state-of-the art regarding gamification of production and logistics processes coupled with the results of questionnaire guided interviews with industry experts, i.e. logisticians, warehouse workers (pickers) and AR software developers. The findings of the proposed research aim to contribute towards a better understanding of AR-enhanced gamification, the organizational change it entails and the consequences it potentially has for all implicated entities in the often highly standardized and structured work required in the logistics setting. The interpretation of these findings will support the decision of logisticians regarding the introduction of gamification in their logistics processes by providing them useful insights and guidelines originating from a real life case study of a large DC operating more than 300 retail outlets in Greece.

Keywords: augmented reality, technology acceptance, warehouse management, vision picking, new forms of work, gamification

Procedia PDF Downloads 150
15243 Improving Paper Mechanical Properties and Printing Quality by Using Carboxymethyl Cellulose as a Strength Agent

Authors: G. N. Simonian, R. F. Basalah, F. T. Abd El Halim, F. F. Abd El Latif, A. M. Adel, A. M. El Shafey.

Abstract:

Carboxymethyl cellulose (CMC) is an anionic water soluble polymer that has been introduced in paper coating as a strength agent. One of the main objectives of this research is to investigate the influence of CMC concentration in improving the strength properties of paper fiber. In this work, we coated the paper sheets; Xerox paper sheets by different concentration of carboxymethyl cellulose solution (0.1, 0.5, 1, 1.5, 2, 3%) w/v. The mechanical properties; breaking length and tearing resistance (tear factor) were measured for the treated and untreated paper specimens. The retained polymer in the coated paper samples were also calculated. The more the concentration of the coating material; CMC increases, the more the mechanical properties; breaking length and tear factor increases. It can be concluded that CMC enhance the improvement of the mechanical properties of paper sheets result in increasing paper stability. The aim of the present research was also to study the effects on the vessel element structure and vessel picking tendency of the coated paper sheets. In addition to the improved strength properties of the treated sheet, a significant decrease in the vessel picking tendency was expected whereas refining of the original paper sheets (untreated paper sheets) improved mainly the bonding ability of fibers, CMC effectively enhanced the bonding of vessels as well. Moreover, film structures were formed in the fibrillated areas of the coated paper specimens, and they were concluded to reinforce the bonding within the sheet. Also, fragmentation of vessel elements through CMC modification was found to be important and results in a decreasing picking tendency which reflects in a good printability. Moreover, Scanning – Electron Microscope (SEM) images are represented to specifically explain the improved bonding ability of vessels and fibers after CMC modification. Finally, CMC modification enhance paper mechanical properties and print quality.

Keywords: carboxymethyl cellulose (CMC), breaking length, tear factor, vessel picking, printing, concentration

Procedia PDF Downloads 424
15242 An Investigation of E. coli Contamination in Fars Province, Iran and Methods of Reducing the Contamination

Authors: Ali Mohagheghzadeh, Samad Vaez Badiegard, Bita Shomali

Abstract:

Nowadays, with the increase in population, the need for protein sources is increasing. Different bacteria can cause food poisoning while most of the symptoms of food poisoning are similar to those of gastrointestinal infections. As a result, the diagnosis of bacteria and viruses causing food poisoning would not be possible without a stool culture. Cases of food poisoning are often accompanied by gastrointestinal disorders such as diarrhea, vomit, and gastrointestinal stomach cramps. Thus, providing enough food, taking into account health issues has always been a concern of authorities. Since E. coli bacterium is one of the important indicators of food hygiene and quality, producing food without being contaminated by this bacterium is desired in the food industry. This study aimed at assessing the E. coli contamination of poultry meat produced in slaughterhouses. Samples were taken from critical areas of slaughterhouses, namely the feather picking area, viscera and carcass evacuation area the area after cooling chillers. The results showed that 60% of contamination occurs in feather picking area. Among antiseptic and detergent materials, the highest reduction belongs to Epimax.

Keywords: slaughterhouse, E. coli, Epimax, contamination

Procedia PDF Downloads 706
15241 Hybrid Deep Learning and FAST-BRISK 3D Object Detection Technique for Bin-Picking Application

Authors: Thanakrit Taweesoontorn, Sarucha Yanyong, Poom Konghuayrob

Abstract:

Robotic arms have gained popularity in various industries due to their accuracy and efficiency. This research proposes a method for bin-picking tasks using the Cobot, combining the YOLOv5 CNNs model for object detection and pose estimation with traditional feature detection (FAST), feature description (BRISK), and matching algorithms. By integrating these algorithms and utilizing a small-scale depth sensor camera for capturing depth and color images, the system achieves real-time object detection and accurate pose estimation, enabling the robotic arm to pick objects correctly in both position and orientation. Furthermore, the proposed method is implemented within the ROS framework to provide a seamless platform for robotic control and integration. This integration of robotics, cameras, and AI technology contributes to the development of industrial robotics, opening up new possibilities for automating challenging tasks and improving overall operational efficiency.

Keywords: robotic vision, image processing, applications of robotics, artificial intelligent

Procedia PDF Downloads 96
15240 Order Fulfilment Strategy in E-Commerce Warehouse Based on Simulation: Business Customers Case

Authors: Aurelija Burinskiene

Abstract:

This paper presents the study for an e-commerce warehouse. The study is aiming to improve order fulfillment activity by identifying the strategy presenting the best performance. A simulation model was proposed to reach the target of this research. This model enables various scenario tests in an e-commerce warehouse, allowing them to find out for the best order fulfillment strategy. By using simulation, model authors investigated customers’ orders representing on-line purchases for one month. Experiments were designed to evaluate various order picking methods applicable to the fulfillment of customers’ orders. The research uses cost components analysis and helps to identify the best possible order picking method improving the overall performance of e-commerce warehouse and fulfillment service to the customers. The results presented show that the application of order batching strategy is the most applicable because it brings distance savings of around 6.7 percentage. This result could be improved by taking an assortment clustering action until 8.34 percentage. So, the recommendations were given to apply the method for future e-commerce warehouse operations.

Keywords: e-commerce, order, fulfilment, strategy, simulation

Procedia PDF Downloads 150
15239 Pain and Lumbar Muscle Activation before and after Functional Task in Nonspecific Chronic Low Back Pain

Authors: Lídia E. O. Cruz, Adriano P. C. Calvo, Renato J. Soares, Regiane A. Carvalho

Abstract:

Individuals with non-specific chronic low back pain may present altered movement patterns during functional activities. However, muscle behavior before and after performing a functional task with different load conditions is not yet fully understood. The aim of this study is to analyze lumbar muscle activity before and after performing the functional task of picking up and placing an object on the ground (with and without load) in individuals with nonspecific chronic low back pain. 20 subjects with nonspecific chronic low back pain and 20 healthy subjects participated in this study. A surface electromyography was performed in the ilio-costal, longissimus and multifidus muscles to evaluate lumbar muscle activity before and after performing the functional task of picking up and placing an object on the ground, with and without load. The symptomatic participants had greater lumbar muscle activation compared to the asymptomatic group, more evident in performing the task without load, with statistically significant difference (p = 0,033) between groups for the right multifidus muscle. This study showed that individuals with nonspecific chronic low back pain have higher muscle activation before and after performing a functional task compared to healthy participants.

Keywords: chronic low back pain, functional task, lumbar muscles, muscle activity

Procedia PDF Downloads 197
15238 An Analysis of Pick Travel Distances for Non-Traditional Unit Load Warehouses with Multiple P/D Points

Authors: Subir S. Rao

Abstract:

Existing warehouse configurations use non-traditional aisle designs with a central P/D point in their models, which is mathematically simple but less practical. Many warehouses use multiple P/D points to avoid congestion for pickers, and different warehouses have different flow policies and infrastructure for using the P/D points. Many warehouses use multiple P/D points with non-traditional aisle designs in their analytical models. Standard warehouse models introduce one-sided multiple P/D points in a flying-V warehouse and minimize pick distance for a one-way travel between an active P/D point and a pick location with P/D points, assuming uniform flow rates. A simulation of the mathematical model generally uses four fixed configurations of P/D points which are on two different sides of the warehouse. It can be easily proved that if the source and destination P/D points are both chosen randomly, in a uniform way, then minimizing the one-way travel is the same as minimizing the two-way travel. Another warehouse configuration analytically models the warehouse for multiple one-sided P/D points while keeping the angle of the cross-aisles and picking aisles as a decision variable. The minimization of the one-way pick travel distance from the P/D point to the pick location by finding the optimal position/angle of the cross-aisle and picking aisle for warehouses having different numbers of multiple P/D points with variable flow rates is also one of the objectives. Most models of warehouses with multiple P/D points are one-way travel models and we extend these analytical models to minimize the two-way pick travel distance wherein the destination P/D is chosen optimally for the return route, which is not similar to minimizing the one-way travel. In most warehouse models, the return P/D is chosen randomly, but in our research, the return route P/D point is chosen optimally. Such warehouses are common in practice, where the flow rates at the P/D points are flexible and depend totally on the position of the picks. A good warehouse management system is efficient in consolidating orders over multiple P/D points in warehouses where the P/D is flexible in function. In the latter arrangement, pickers and shrink-wrap processes are not assigned to particular P/D points, which ultimately makes the P/D points more flexible and easy to use interchangeably for picking and deposits. The number of P/D points considered in this research uniformly increases from a single-central one to a maximum of each aisle symmetrically having a P/D point below it.

Keywords: non-traditional warehouse, V cross-aisle, multiple P/D point, pick travel distance

Procedia PDF Downloads 39
15237 Patient Progression at Discharge: A Communication, Coordination, and Accountability Gap among Hospital Teams

Authors: Nana Benma Osei

Abstract:

Patient discharge can be a hectic process. Patients are sometimes sent to the wrong location or forgotten in lounges in the waiting room. This ends up compromising patient care because the delay in picking the patients can affect how they adhere to medication. Patients may fail to take their medication, and this will lead to negative outcomes. The situation highlights the demands of modern-day healthcare, and the use of technology can help in reducing such challenges and in enhancing the patient’s experience, leading to greater satisfaction with the care provided. The paper contains the proposed changes to a healthcare facility by introducing the clinical decision support system, which will be needed to improve coordination and communication during patient discharge. This will be done under Kurt Lewin’s Change Management Model, which recognizes the different phases in the change process. A pilot program is proposed initially before the program can be implemented in the entire organization. This allows for the identification of challenges and ways of managing them. The paper anticipates some of the possible challenges that may arise during implementation, and a multi-disciplinary approach is considered the most effective. Opposition to the change is likely to arise because staff members may lack information on how the changes will affect them and the skills they will need to learn to use the new system. Training will occur before the technology can be implemented. Every member will go for training, and adequate time is allocated for training purposes. A comparison of data will determine whether the project has succeeded.

Keywords: patient discharge, clinical decision support system, communication, collaboration

Procedia PDF Downloads 103
15236 Current Harvesting Methods for Jatropha curcas L.

Authors: Luigi Pari, Alessandro Suardi, Enrico Santangelo

Abstract:

In the last decade Jatropha curcas L. (an oleaginous crop native to Central America and part of South America) has raised particular interest owing to of its properties and uses. Its capsules may contain up to 40% in oil and can be used as feedstock for biodiesel production. The harvesting phase is made difficult by the physiological traits of the specie, because fruits are in bunches and do not ripen simultaneously. Three harvesting methodologies are currently diffused and differ for the level of mechanization applied: manual picking, semi-mechanical harvesting, and mechanical harvesting. The manual picking is the most common in the developing countries but it is also the most time consuming and inefficient. Mechanical harvesting carried out with modified grape harvesters has the higher productivity, but it is very costly as initial investment and requires appropriate schemes of cultivation. The semi-mechanical harvesting method is achieved with shaker tools employed to facilitate the fruit detachment. This system resulted much cheaper than the fully mechanized one and quite flexible for small and medium scale applications, but it still requires adjustments for improving the productive performance. CRA-ING, within the European project Jatromed (http://www.jatromed.aua.gr) has carried out preliminary studies on the applicability of such approach, adapting an olive shaker to harvest Jatropha fruits. The work is a survey of the harvesting methods currently available for Jatropha, show the pros and cons of each system, and highlighting the criteria to be considered for choosing one respect another. The harvesting of Jatropha curcas L. remains a big constrains for the spread of the species as energy crop. The approach pursued by CRA-ING can be considered a good compromise between the fully mechanized harvesters and the exclusive manual intervention. It is an attempt to promote a sustainable mechanization suited to the social context of developing countries by encouraging the concrete involvement of local populations.

Keywords: jatropha curcas, energy crop, harvesting, central america, south america

Procedia PDF Downloads 387
15235 Can Urbanisation Be the Cause for Increasing Urban Poverty: An Exploratory Analysis for India

Authors: Sarmistha Singh

Abstract:

An analysis of trend of urbanization and urban poverty in recent decades is showing that a distinctly reducing rural poverty and increasing in urban areas. It can be argued that the higher the urbanization fuelled by the urban migration to city, which is picking up people from less skilled, education so they faced obstacle to enter into the mainstream economy of city. The share of workforce in economy is higher; in contrast it remains as negligence. At the same time, less wages, absence of social security, social dialogue make them insecure. The vulnerability in their livelihood found. So the paper explores the relation of urbanization and urban poverty in the city, in other words how the urbanization process affecting the urban space in creating the number of poor people in the city. The central focus is the mobility of people with less education and skilled with motive of job search and better livelihood. In many studies found the higher the urbanization and higher the urban poverty in city. In other words, poverty is the impact of urbanization. The strategy of urban inequality through ‘dispersal of concentration’ by the World Bank and others, need to be examined.

Keywords: urbanization, mobility, urban poverty, informal settlements, informal worker

Procedia PDF Downloads 414
15234 Basic Modal Displacements (BMD) for Optimizing the Buildings Subjected to Earthquakes

Authors: Seyed Sadegh Naseralavi, Mohsen Khatibinia

Abstract:

In structural optimizations through meta-heuristic algorithms, analyses of structures are performed for many times. For this reason, performing the analyses in a time saving way is precious. The importance of the point is more accentuated in time-history analyses which take much time. To this aim, peak picking methods also known as spectrum analyses are generally utilized. However, such methods do not have the required accuracy either done by square root of sum of squares (SRSS) or complete quadratic combination (CQC) rules. The paper presents an efficient technique for evaluating the dynamic responses during the optimization process with high speed and accuracy. In the method, first by using a static equivalent of the earthquake, an initial design is obtained. Then, the displacements in the modal coordinates are achieved. The displacements are herein called basic modal displacements (MBD). For each new design of the structure, the responses can be derived by well scaling each of the MBD along the time and amplitude and superposing them together using the corresponding modal matrices. To illustrate the efficiency of the method, an optimization problems is studied. The results show that the proposed approach is a suitable replacement for the conventional time history and spectrum analyses in such problems.

Keywords: basic modal displacements, earthquake, optimization, spectrum

Procedia PDF Downloads 361
15233 Object-Centric Process Mining Using Process Cubes

Authors: Anahita Farhang Ghahfarokhi, Alessandro Berti, Wil M.P. van der Aalst

Abstract:

Process mining provides ways to analyze business processes. Common process mining techniques consider the process as a whole. However, in real-life business processes, different behaviors exist that make the overall process too complex to interpret. Process comparison is a branch of process mining that isolates different behaviors of the process from each other by using process cubes. Process cubes organize event data using different dimensions. Each cell contains a set of events that can be used as an input to apply process mining techniques. Existing work on process cubes assume single case notions. However, in real processes, several case notions (e.g., order, item, package, etc.) are intertwined. Object-centric process mining is a new branch of process mining addressing multiple case notions in a process. To make a bridge between object-centric process mining and process comparison, we propose a process cube framework, which supports process cube operations such as slice and dice on object-centric event logs. To facilitate the comparison, the framework is integrated with several object-centric process discovery approaches.

Keywords: multidimensional process mining, mMulti-perspective business processes, OLAP, process cubes, process discovery, process mining

Procedia PDF Downloads 255
15232 Production Process of Coconut-Shell Product in Amphawa District

Authors: Wannee Sutthachaidee

Abstract:

The study of the production process of coconut-shell product in Amphawa, Samutsongkram Province is objected to study the pattern of the process of coconut-shell product by focusing in the 3 main processes which are inbound logistics process, production process and outbound process. The result of the research: There were 4 main results from the study. Firstly, most of the manufacturer of coconut-shell product is usually owned by a single owner and the quantity of the finished product is quite low and the main labor group is local people. Secondly, the production process can be divided into 4 stages which are pre-production process, production process, packaging process and distribution process. Thirdly, each 3 of the logistics process of coconut shell will find process which may cause the problem to the business but the process which finds the most problem is the production process because the production process needs the skilled labor and the quantity of the labor does not match with the demand from the customers. Lastly, the factors which affect the production process of the coconut shell can be founded in almost every process of the process such as production design, packaging design, sourcing supply and distribution management.

Keywords: production process, coconut-shell product, Amphawa District, inbound logistics process

Procedia PDF Downloads 522
15231 People Abandoning Mobile Social Games: Using Candy Crush Saga as an Example

Authors: Pei-Shan Wei, Szu-Ying Lee, Hsi-Peng Lu, Jen-Chuen Tzou, Chien-I Weng

Abstract:

Mobile social games recently become extremely popular, spawning a whole new entertainment culture. However, mobile game players are fickle, quickly and easily picking up and abandoning games. This pilot study seeks to identify factors that influence users to discontinue playing mobile social games. We identified three sacrifices which can prompt users to abandon games: monetary sacrifice, time sacrifice and privacy sacrifice. The results showed that monetary sacrifice has a greater impact than the other two factors in causing players to discontinue usage intention.

Keywords: abandon, mobile devices, mobile social games, perceived sacrifice

Procedia PDF Downloads 495
15230 Model Reference Adaptive Control and LQR Control for Quadrotor with Parametric Uncertainties

Authors: Alia Abdul Ghaffar, Tom Richardson

Abstract:

A model reference adaptive control and a fixed gain LQR control were implemented in the height controller of a quadrotor that has parametric uncertainties due to the act of picking up an object of unknown dimension and mass. It is shown that an adaptive control, unlike a fixed gain control, is capable of ensuring a stable tracking performance under such condition, although adaptive control suffers from several limitations. The combination of both adaptive and fixed gain control in the controller architecture results in an enhanced tracking performance in the presence of parametric uncertainties.

Keywords: UAV, quadrotor, robotic arm augmentation, model reference adaptive control, LQR control

Procedia PDF Downloads 472
15229 A Study on Unix Process Crash Based on Efficient Process Management Method

Authors: Guo Haonan, Chen Peiyu, Zhao Hanyu, Burra Venkata Durga Kumar

Abstract:

Unix and Unix-like operating systems are widely used due to their high stability but are limited by the parent-child process structure, and the child process depends on the parent process, so the crash of a single process may cause the entire process group or even the entire system to fail. Another possibility of unexpected process termination is that the system administrator inadvertently closed the terminal or pseudo-terminal where the application was launched, causing the application process to terminate unexpectedly. This paper mainly analyzes the reasons for the problems and proposes two solutions.

Keywords: process management, daemon, login-bash and non-login bash, process group

Procedia PDF Downloads 136
15228 Mining Diagnostic Investigation Process

Authors: Sohail Imran, Tariq Mahmood

Abstract:

In complex healthcare diagnostic investigation process, medical practitioners have to focus on ways to standardize their processes to perform high quality care and optimize the time and costs. Process mining techniques can be applied to extract process related knowledge from data without considering causal and dynamic dependencies in business domain and processes. The application of process mining is effective in diagnostic investigation. It is very helpful where a treatment gives no dispositive evidence favoring it. In this paper, we applied process mining to discover important process flow of diagnostic investigation for hepatitis patients. This approach has some benefits which can enhance the quality and efficiency of diagnostic investigation processes.

Keywords: process mining, healthcare, diagnostic investigation process, process flow

Procedia PDF Downloads 522
15227 Injury Prediction for Soccer Players Using Machine Learning

Authors: Amiel Satvedi, Richard Pyne

Abstract:

Injuries in professional sports occur on a regular basis. Some may be minor, while others can cause huge impact on a player's career and earning potential. In soccer, there is a high risk of players picking up injuries during game time. This research work seeks to help soccer players reduce the risk of getting injured by predicting the likelihood of injury while playing in the near future and then providing recommendations for intervention. The injury prediction tool will use a soccer player's number of minutes played on the field, number of appearances, distance covered and performance data for the current and previous seasons as variables to conduct statistical analysis and provide injury predictive results using a machine learning linear regression model.

Keywords: injury predictor, soccer injury prevention, machine learning in soccer, big data in soccer

Procedia PDF Downloads 182
15226 Simulation of a Fluid Catalytic Cracking Process

Authors: Sungho Kim, Dae Shik Kim, Jong Min Lee

Abstract:

Fluid catalytic cracking (FCC) process is one of the most important process in modern refinery indusrty. This paper focuses on the fluid catalytic cracking (FCC) process. As the FCC process is difficult to model well, due to its nonlinearities and various interactions between its process variables, rigorous process modeling of whole FCC plant is demanded for control and plant-wide optimization of the plant. In this study, a process design for the FCC plant includes riser reactor, main fractionator, and gas processing unit was developed. A reactor model was described based on four-lumped kinetic scheme. Main fractionator, gas processing unit and other process units are designed to simulate real plant data, using a process flowsheet simulator, Aspen PLUS. The custom reactor model was integrated with the process flowsheet simulator to develop an integrated process model.

Keywords: fluid catalytic cracking, simulation, plant data, process design

Procedia PDF Downloads 455
15225 A Comparison of YOLO Family for Apple Detection and Counting in Orchards

Authors: Yuanqing Li, Changyi Lei, Zhaopeng Xue, Zhuo Zheng, Yanbo Long

Abstract:

In agricultural production and breeding, implementing automatic picking robot in orchard farming to reduce human labour and error is challenging. The core function of it is automatic identification based on machine vision. This paper focuses on apple detection and counting in orchards and implements several deep learning methods. Extensive datasets are used and a semi-automatic annotation method is proposed. The proposed deep learning models are in state-of-the-art YOLO family. In view of the essence of the models with various backbones, a multi-dimensional comparison in details is made in terms of counting accuracy, mAP and model memory, laying the foundation for realising automatic precision agriculture.

Keywords: agricultural object detection, deep learning, machine vision, YOLO family

Procedia PDF Downloads 197
15224 Prevalence of Hemorrhagic Septicemia in Dromedary Camel (Camelus Dromedarius) for Some Selected Farms in Benadir Region, Somalia

Authors: Abdirahman Barre, Abdihamid Salad Hassan, Iftin Abdi Mohamud, Abdirahman Mohamed Mohamud, Ahmed Adan Mohamed, Mukhtaar Mohamed Idow

Abstract:

Pasteurellosis (Hemorrhagic septicemia) is a common respiratory disease of camel that is an acutely fatal disease caused by Pasteurella multocida type A or several serotypes of Mannheimia hemolytic, which also affect other animals. The disease had shown to spread between animals, across herds and to humans. Meaning that the disease is Zoonosis. The study aimed at establishment of sero-prevalence of Pasteurellosis in some selected Districts of camel rearing in the Benadir Region. It was a cross-sectional study, where the study population was purposively chosen to consist of animals taken within three sub-Districts of Benadir Region, namely Sub-District (Daynile Township), Sub-District (Yaaqshid) Sub-District (kaxda). This was because they normally handle many camels in a day, thus making it easy for the investigator to access the required number conveniently; it was also assumed that data collected from these for-slaughter camels was representative of the situation in the sub-District/county. A total of one hundred and sixty camels were tested using four serological tests: Rose Bengal Plate Test (RBPT),) and Complex Fixation Test (CFT). The serological tests were purposively chosen to increase the chances of picking positive cases and also to compare their sensitivities with respect to camel serum since they were originally meant for use on bovine serum. Blood samples (15 ml) were collected for serum harvesting from the jugular veins of the animals as they were waiting to be examined. Rose Bengal plate test and CFT were run at a laboratory within the Department of Veterinary Medicine, University of Horsed, 21 October campus; serum samples having been transported in a cool box. On average, out of an overall total of 300 serum samples tested, 180 samples were selected as sample procedures and were given eleven (11) positive results, amounting to a prevalence of 6.67%. For the three Districts, respective prevalence (averaged from the two (2) serological tests run) were: 7% (3/50) for Yaqshiid; 8% (3/60) for Deyniile and 10% (3/70) for Kaxda. When sensitivities of the two (2) serological tests were compared, there was no significant difference between them with respect to the picking of positive cases (p=0.05). The study has demonstrated presence of Pasterolosis in camels in Benadir Region and the authors are recommending the usage of RBPT and CFT as screening tests, since they are cheap, quick, and easy to carry out. Any of the other three involving tests can then be used if one wants to establish respective titers. Therefore, further detailed investigation needs to be conducted so as to understand specific etiological agents causing pasteurollosis in camel and can be instituted to optimize the benefit obtained from the camel sector.

Keywords: hemorrhagic septicemia, camel, prevalence, Benadir region, Somalia

Procedia PDF Downloads 72