Search results for: parental efficacy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2304

Search results for: parental efficacy

54 Leveraging the HDAC Inhibitory Pharmacophore to Construct Deoxyvasicinone Based Tractable Anti-Lung Cancer Agent and pH-Responsive Nanocarrier

Authors: Ram Sharma, Esha Chatterjee, Santosh Kumar Guru, Kunal Nepali

Abstract:

A tractable anti-lung cancer agent was identified via the installation of a Ring C expanded synthetic analogue of the alkaloid vasicinone [7,8,9,10-tetrahydroazepino[2,1-b] quinazolin-12(6H)-one (TAZQ)] as a surface recognition part in the HDAC inhibitory three-component model. Noteworthy to mention that the candidature of TAZQ was deemed suitable for accommodation in HDAC inhibitory pharmacophore as per the results of the fragment recruitment process conducted by our laboratory. TAZQ was pinpointed through the fragment screening program as a synthetically flexible fragment endowed with some moderate cell growth inhibitory activity against the lung cancer cell lines, and it was anticipated that the use of the aforementioned fragment to generate hydroxamic acid functionality (zinc-binding motif) bearing HDAC inhibitors would boost the antitumor efficacy of TAZQ. Consistent with our aim of applying epigenetic targets to the treatment of lung cancer, a strikingly potent anti-lung cancer scaffold (compound 6) was pinpointed through a series of in-vitro experiments. Notably, the compounds manifested a magnificent activity profile against KRAS and EGFR mutant lung cancer cell lines (IC50 = 0.80 - 0.96 µM), and the effects were found to be mediated through preferential HDAC6 inhibition (IC50 = 12.9 nM). In addition to HDAC6 inhibition, the compounds also elicited HDAC1 and HDAC3 inhibitory activity with an IC50 value of 49.9 nM and 68.5 nM, respectively. The HDAC inhibitory ability of compound 6 was also confirmed from the results of the western blot experiment that revealed its potential to decrease the expression levels of HDAC isoforms (HDAC1, HDAC3, and HDAC6). Noteworthy to mention that complete downregulation of the HDAC6 isoform was exerted by compound 6 at 0.5 and 1 µM. Moreover, in another western blot experiment, treatment with hydroxamic acid 6 led to upregulation of H3 acK9 and α-Tubulin acK40 levels, ascertaining its inhibitory activity toward both the class I HDACs and Class II B HDACs. The results of other assays were also encouraging as treatment with compound 6 led to the suppression of the colony formation ability of A549 cells, induction of apoptosis, and increase in autophagic flux. In silico studies led us to rationalize the results of the experimental assay, and some key interactions of compound 6 with the amino acid residues of HDAC isoforms were identified. In light of the impressive activity spectrum of compound 6, a pH-responsive nanocarrier (hyaluronic acid-compound 6 nanoparticles) was prepared. The dialysis bag approach was used for the assessment of the nanoparticles under both normal and acidic circumstances, and the pH-sensitive nature of hyaluronic acid-compound 6 nanoparticles was confirmed. Delightfully, the nanoformulation was devoid of cytotoxicity against the L929 mouse fibroblast cells (normal settings) and exhibited selective cytotoxicity towards the A549 lung cancer cell lines. In a nutshell, compound 6 appears to be a promising adduct, and a detailed investigation of this compound might yield a therapeutic for the treatment of lung cancer.

Keywords: HDAC inhibitors, lung cancer, scaffold, hyaluronic acid, nanoparticles

Procedia PDF Downloads 65
53 The Importance of School Culture in Supporting Student Mental Health Following the COVID-19 Pandemic: Insights from a Qualitative Study

Authors: Rhiannon Barker, Gregory Hartwell, Matt Egan, Karen Lock

Abstract:

Background: Evidence suggests that mental health (MH) issues in children and young people (CYP) in the UK are on the rise. Of particular concern is data that indicates that the pandemic, together with the impact of school closures, have accentuated already pronounced inequalities; children from families on low incomes or from black and minority ethnic groups are reportedly more likely to have been adversely impacted. This study aimed to help identify specific support which may facilitate the building of a positive school climate and protect student mental health, particularly in the wake of school closures following the pandemic. It has important implications for integrated working between schools and statutory health services. Methods: The research comprised of three parts; scoping, case studies, and a stakeholder workshop to explore and consolidate results. The scoping phase included a literature review alongside interviews with a range of stakeholders from government, academia, and the third sector. Case studies were then conducted in two London state schools. Results: Our research identified how student MH was being impacted by a range of factors located at different system levels, both internal to the school and in the wider community. School climate, relating both to a shared system of beliefs and values, as well as broader factors including style of leadership, teaching, discipline, safety, and relationships -all played a role in the experience of school life and, consequently, the MH of both students and staff. Participants highlighted the importance of a whole school approach and ensuring that support for student MH was not separated from academic achievement, as well as the importance of identifying and applying universal measuring systems to establish levels of MH need. Our findings suggest that a school’s climate is influenced by the style and strength of its leadership, while this school climate - together with mechanisms put in place to respond to MH needs (both statutory and non-statutory) - plays a key role in supporting student MH. Implications: Schools in England have a responsibility to decide on the nature of MH support provided for their students, and there is no requirement for them to report centrally on the form this provision takes. The reality on the ground, as our study suggests, is that MH provision varies significantly between schools, particularly in relation to ‘lower’ levels of need which are not covered by statutory requirements. A valid concern may be that in the huge raft of possible options schools have to support CYP wellbeing, too much is left to chance. Work to support schools in rebuilding their cultures post-lockdowns must include the means to identify and promote appropriate tools and techniques to facilitate regular measurement of student MH. This will help establish both the scale of the problem and monitor the effectiveness of the response. A strong vision from a school’s leadership team that emphasises the importance of student wellbeing, running alongside (but not overshadowed by) academic attainment, should help shape a school climate to promote beneficial MH outcomes. The sector should also be provided with support to improve the consistency and efficacy of MH provision in schools across the country.

Keywords: mental health, schools, young people, whole-school culture

Procedia PDF Downloads 34
52 A Hardware-in-the-loop Simulation for the Development of Advanced Control System Design for a Spinal Joint Wear Simulator

Authors: Kaushikk Iyer, Richard M Hall, David Keeling

Abstract:

Hardware-in-the-loop (HIL) simulation is an advanced technique for developing and testing complex real-time control systems. This paper presents the benefits of HIL simulation and how it can be implemented and used effectively to develop, test, and validate advanced control algorithms used in a spinal joint Wear simulator for the Tribological testing of spinal disc prostheses. spinal wear simulator is technologically the most advanced machine currently employed For the in-vitro testing of newly developed spinal Discimplants. However, the existing control techniques, such as a simple position control Does not allow the simulator to test non-sinusoidal waveforms. Thus, there is a need for better and advanced control methods that can be developed and tested Rigorouslybut safely before deploying it into the real simulator. A benchtop HILsetupis was created for experimentation, controller verification, and validation purposes, allowing different control strategies to be tested rapidly in a safe environment. The HIL simulation aspect in this setup attempts to replicate similar spinal motion and loading conditions. The spinal joint wear simulator containsa four-Barlinkpowered by electromechanical actuators. LabVIEW software is used to design a kinematic model of the spinal wear Simulator to Validatehow each link contributes towards the final motion of the implant under test. As a result, the implant articulates with an angular motion specified in the international standards, ISO-18192-1, that define fixed, simplified, and sinusoid motion and load profiles for wear testing of cervical disc implants. Using a PID controller, a velocity-based position control algorithm was developed to interface with the benchtop setup that performs HIL simulation. In addition to PID, a fuzzy logic controller (FLC) was also developed that acts as a supervisory controller. FLC provides intelligence to the PID controller by By automatically tuning the controller for profiles that vary in amplitude, shape, and frequency. This combination of the fuzzy-PID controller is novel to the wear testing application for spinal simulators and demonstrated superior performance against PIDwhen tested for a spectrum of frequency. Kaushikk Iyer is a Ph.D. Student at the University of Leeds and an employee at Key Engineering Solutions, Leeds, United Kingdom, (e-mail: [email protected], phone: +44 740 541 5502). Richard M Hall is with the University of Leeds, the United Kingdom as a professor in the Mechanical Engineering Department (e-mail: [email protected]). David Keeling is the managing director of Key Engineering Solutions, Leeds, United Kingdom (e-mail: [email protected]). Results obtained are successfully validated against the load and motion tolerances specified by the ISO18192-1 standard and fall within limits, that is, ±0.5° at the maxima and minima of the motion and ±2 % of the complete cycle for phasing. The simulation results prove the efficacy of the test setup using HIL simulation to verify and validate the accuracy and robustness of the prospective controller before its deployment into the spinal wear simulator. This method of testing controllers enables a wide range of possibilities to test advanced control algorithms that can potentially test even profiles of patients performing various dailyliving activities.

Keywords: Fuzzy-PID controller, hardware-in-the-loop (HIL), real-time simulation, spinal wear simulator

Procedia PDF Downloads 144
51 The Role of a Biphasic Implant Based on a Bioactive Silk Fibroin for Osteochondral Tissue Regeneration

Authors: Lizeth Fuentes-Mera, Vanessa Perez-Silos, Nidia K. Moncada-Saucedo, Alejandro Garcia-Ruiz, Alberto Camacho, Jorge Lara-Arias, Ivan Marino-Martinez, Victor Romero-Diaz, Adolfo Soto-Dominguez, Humberto Rodriguez-Rocha, Hang Lin, Victor Pena-Martinez

Abstract:

Biphasic scaffolds in cartilage tissue engineering have been designed to influence not only the recapitulation of the osteochondral architecture but also to take advantage of the healing ability of bone to promote the implant integration with the surrounding tissue and then bone restoration and cartilage regeneration. This study reports the development and characterization of a biphasic scaffold based on the assembly of a cartilage phase constituted by fibroin biofunctionalized with bovine cartilage matrix; cellularized with differentiated pre-chondrocytes from adipose tissue stem cells (autologous) and well attached to a bone phase (bone bovine decellularized) to mimic the structure of the nature of native tissue and to promote the cartilage regeneration in a model of joint damage in pigs. Biphasic scaffolds were assembled by fibroin crystallization with methanol. The histological and ultrastructural architectures were evaluated by optical and scanning electron microscopy respectively. Mechanical tests were conducted to evaluate Young's modulus of the implant. For the biological evaluation, pre-chondrocytes were loaded onto the scaffolds and cellular adhesion, proliferation, and gene expression analysis of cartilage extracellular matrix components was performed. The scaffolds that were cellularized and matured for 10 days were implanted into critical 3 mm in diameter and 9-mm in depth osteochondral defects in a porcine model (n=4). Three treatments were applied per knee: Group 1: monophasic cellular scaffold (MS) (single chondral phase), group 2: biphasic scaffold, cellularized only in the chondral phase (BS1), group 3: BS cellularized in both bone and chondral phases (BS2). Simultaneously, a control without treatment was evaluated. After 4 weeks of surgery, integration and regeneration tissues were analyzed by x-rays, histology and immunohistochemistry evaluation. The mechanical assessment showed that the acellular biphasic composites exhibited Young's modulus of 805.01 kPa similar to native cartilage (400-800 kPa). In vitro biological studies revealed the chondroinductive ability of the biphasic implant, evidenced by an increase in sulfated glycosaminoglycan (GAGs) and type II collagen, both secreted by the chondrocytes cultured on the scaffold during 28 days. No evidence of adverse or inflammatory reactions was observed in the in vivo trial; however, In group 1, the defects were not reconstructed. In group 2 and 3 a good integration of the implant with the surrounding tissue was observed. Defects in group 2 were fulfilled by hyaline cartilage and normal bone. Group 3 defects showed fibrous repair tissue. In conclusion; our findings demonstrated the efficacy of biphasic and bioactive scaffold based on silk fibroin, which entwined chondroinductive features and biomechanical capability with appropriate integration with the surrounding tissue, representing a promising alternative for osteochondral tissue-engineering applications.

Keywords: biphasic scaffold, extracellular cartilage matrix, silk fibroin, osteochondral tissue engineering

Procedia PDF Downloads 124
50 Efficacy of a Social-Emotional Learning Curriculum for Kindergarten and First Grade Students to Improve Social Adjustment within the School Culture

Authors: Ann P. Daunic, Nancy Corbett

Abstract:

Background and Significance: Researchers emphasize the role that motivation, self-esteem, and self-regulation play in children’s early adjustment to the school culture, including skills such as identifying their own feelings and understanding the feelings of others. As social-emotional growth, academic learning, and successful integration within culture and society are inextricably connected, the Social-Emotional Learning Foundations (SELF) curriculum was designed to integrate social-emotional learning (SEL) instruction within early literacy instruction (specifically, reading) for Kindergarten and first-grade students at risk for emotional and behavioral difficulties. Storybook reading is a typically occurring activity in the primary grades; thus SELF provides an intervention that is both theoretically and practically sound. Methodology: The researchers will report on findings from the first two years of a three-year study funded by the US Department of Education’s Institute of Education Sciences to evaluate the effects of the SELF curriculum versus “business as usual” (BAU). SELF promotes the development of self-regulation by incorporating instructional strategies that support children’s use of SEL related vocabulary, self-talk, and critical thinking. The curriculum consists of a carefully coordinated set of materials and pedagogy designed specifically for primary grade children at early risk for emotional and behavioral difficulties. SELF lessons (approximately 50 at each grade level) are organized around 17 SEL topics within five critical competencies. SELF combines whole-group (the first in each topic) and small-group lessons (the 2nd and 3rd in each topic) to maximize opportunities for teacher modeling and language interactions. The researchers hypothesize that SELF offers a feasible and substantial opportunity within the classroom setting to provide a small-group social-emotional learning intervention integrated with K-1 literacy-related instruction. Participating target students (N = 876) were identified by their teachers as potentially at risk for emotional or behavioral issues. These students were selected from 122 Kindergarten and 100 first grade classrooms across diverse school districts in a southern state in the US. To measure the effectiveness of the SELF intervention, the researchers asked teachers to complete assessments related to social-emotional learning and adjustment to the school culture. A social-emotional learning related vocabulary assessment was administered directly to target students receiving small-group instruction. Data were analyzed using a 3-level MANOVA model with full information maximum likelihood to estimate coefficients and test hypotheses. Major Findings: SELF had significant positive effects on vocabulary, knowledge, and skills associated with social-emotional competencies, as evidenced by results from the measures administered. Effect sizes ranged from 0.41 for group (SELF vs. BAU) differences in vocabulary development to 0.68 for group differences in SEL related knowledge. Conclusion: Findings from two years of data collection indicate that SELF improved outcomes related to social-emotional learning and adjustment to the school culture. This study thus supports the integration of SEL with literacy instruction as a feasible and effective strategy to improve outcomes for K-1 students at risk for emotional and behavioral difficulties.

Keywords: Socio-cultural context for learning, social-emotional learning, social skills, vocabulary development

Procedia PDF Downloads 99
49 Species Profiling of White Grub Beetles and Evaluation of Pre and Post Sown Application of Insecticides against White Grub Infesting Soybean

Authors: Ajay Kumar Pandey, Mayank Kumar

Abstract:

White grub (Coleoptera: Scarabaeidae) is a major destructive pest in western Himalayan region of Uttarakhand. Beetles feed on apple, apricot, plum, walnut etc. during night while, second and third instar grubs feed on live roots of cultivated as well as non-cultivated crops. Collection and identification of scarab beetles through light trap was carried out at Crop Research Centre, Govind Ballab Pant University Pantnagar, Udham Singh Nagar (Uttarakhand) during 2018. Field trials were also conducted in 2018 to evaluate pre and post sown application of different insecticides against the white grub infesting soybean. The insecticides like Carbofuran 3 Granule (G) (750 g a.i./ha), Clothianidin 50 Water Dispersal Granule (WG) (120 g a.i./ha), Fipronil 0.3 G (50 g a.i./ha), Thiamethoxam 25 WG (80 g a.i./ha), Imidacloprid 70 WG (300 g a.i./ha), Chlorantraniliprole 0.4% G(100 g a.i./ha) and mixture of Fipronil 40% and Imidacloprid 40% WG (300 g a.i./ha) were applied at the time of sowing in pre sown experiment while same dosage of insecticides were applied in standing soybean crop during (first fortnight of July). Commutative plant mortality data were recorded after 20, 40, 60 days intervals and compared with untreated control. Total 23 species of white grub beetles recorded on the light trap and Holotrichia serrata Fabricious (Coleoptera: Melolonthinae) was found to be predominant species by recording 20.6% relative abundance out of the total light trap catch (i.e. 1316 beetles) followed by Phyllognathus sp. (14.6% relative abundance). H. rosettae and Heteronychus lioderus occupied third and fourth rank with 11.85% and 9.65% relative abundance, respectively. The emergence of beetles of predominant species started from 15th March, 2018. In April, average light trap catch was 382 white grub beetles, however, peak emergence of most of the white grub species was observed from June to July, 2018 i.e. 336 beetles in June followed by 303 beetles in the July. On the basis of the emergence pattern of white grub beetles, it may be concluded that the Peak Emergence Period (PEP) for the beetles of H. serrata was second fortnight of April for the total period of 15 days. In May, June and July relatively low population of H. serrata was observed. A decreasing trend in light trap catch was observed and went on till September during the study. No single beetle of H. serrata was observed on light trap from September onwards. The cumulative plant mortality data in both the experiments revealed that all the insecticidal treatments were significantly superior in protection-wise (6.49-16.82% cumulative plant mortality) over untreated control where highest plant mortality was 17.28 to 39.65% during study. The mixture of Fipronil 40% and Imidacloprid 40% WG applied at the rate of 300 g a.i. per ha proved to be most effective having lowest plant mortality i.e. 9.29 and 10.94% in pre and post sown crop, followed by Clothianidin 50 WG (120 g a.i. per ha) where the plant mortality was 10.57 and 11.93% in pre and post sown treatments, respectively. Both treatments were found significantly at par among each other. Production-wise, all the insecticidal treatments were found statistically superior (15.00-24.66 q per ha grain yields) over untreated control where the grain yield was 8.25 & 9.13 q per ha. Treatment Fipronil 40% + Imidacloprid 40% WG applied at the rate of 300 g a.i. per ha proved to be most effective and significantly superior over Imidacloprid 70WG applied at the rate of 300 g a.i. per ha.

Keywords: bio efficacy, insecticide, soybean, white grub

Procedia PDF Downloads 102
48 Simulation-based Decision Making on Intra-hospital Patient Referral in a Collaborative Medical Alliance

Authors: Yuguang Gao, Mingtao Deng

Abstract:

The integration of independently operating hospitals into a unified healthcare service system has become a strategic imperative in the pursuit of hospitals’ high-quality development. Central to the concept of group governance over such transformation, exemplified by a collaborative medical alliance, is the delineation of shared value, vision, and goals. Given the inherent disparity in capabilities among hospitals within the alliance, particularly in the treatment of different diseases characterized by Disease Related Groups (DRG) in terms of effectiveness, efficiency and resource utilization, this study aims to address the centralized decision-making of intra-hospital patient referral within the medical alliance to enhance the overall production and quality of service provided. We first introduce the notion of production utility, where a higher production utility for a hospital implies better performance in treating patients diagnosed with that specific DRG group of diseases. Then, a Discrete-Event Simulation (DES) framework is established for patient referral among hospitals, where patient flow modeling incorporates a queueing system with fixed capacities for each hospital. The simulation study begins with a two-member alliance. The pivotal strategy examined is a "whether-to-refer" decision triggered when the bed usage rate surpasses a predefined threshold for either hospital. Then, the decision encompasses referring patients to the other hospital based on DRG groups’ production utility differentials as well as bed availability. The objective is to maximize the total production utility of the alliance while minimizing patients’ average length of stay and turnover rate. Thus the parameter under scrutiny is the bed usage rate threshold, influencing the efficacy of the referral strategy. Extending the study to a three-member alliance, which could readily be generalized to multi-member alliances, we maintain the core setup while introducing an additional “which-to-refer" decision that involves referring patients with specific DRG groups to the member hospital according to their respective production utility rankings. The overarching goal remains consistent, for which the bed usage rate threshold is once again a focal point for analysis. For the two-member alliance scenario, our simulation results indicate that the optimal bed usage rate threshold hinges on the discrepancy in the number of beds between member hospitals, the distribution of DRG groups among incoming patients, and variations in production utilities across hospitals. Transitioning to the three-member alliance, we observe similar dependencies on these parameters. Additionally, it becomes evident that an imbalanced distribution of DRG diagnoses and further disparity in production utilities among member hospitals may lead to an increase in the turnover rate. In general, it was found that the intra-hospital referral mechanism enhances the overall production utility of the medical alliance compared to individual hospitals without partnership. Patients’ average length of stay is also reduced, showcasing the positive impact of the collaborative approach. However, the turnover rate exhibits variability based on parameter setups, particularly when patients are redirected within the alliance. In conclusion, the re-structuring of diagnostic disease groups within the medical alliance proves instrumental in improving overall healthcare service outcomes, providing a compelling rationale for the government's promotion of patient referrals within collaborative medical alliances.

Keywords: collaborative medical alliance, disease related group, patient referral, simulation

Procedia PDF Downloads 23
47 Plasma Levels of Collagen Triple Helix Repeat Containing 1 (CTHRC1) as a Potential Biomarker in Interstitial Lung Disease

Authors: Rijnbout-St.James Willem, Lindner Volkhard, Scholand Mary Beth, Ashton M. Tillett, Di Gennaro Michael Jude, Smith Silvia Enrica

Abstract:

Introduction: Fibrosing lung diseases are characterized by changes in the lung interstitium and are classified based on etiology: 1) environmental/exposure-related, 2) autoimmune-related, 3) sarcoidosis, 4) interstitial pneumonia, and 4) idiopathic. Among interstitial lung diseases (ILD) idiopathic forms, idiopathic pulmonary fibrosis (IPF) is the most severe. Pathogenesis of IPF is characterized by an increased presence of proinflammatory mediators, resulting in alveolar injury, where injury to alveolar epithelium precipitates an increase in collagen deposition, subsequently thickening the alveolar septum and decreasing gas exchange. Identifying biomarkers implicated in the pathogenesis of lung fibrosis is key to developing new therapies and improving the efficacy of existing therapies. The transforming growth factor-beta (TGF-B1), a mediator of tissue repair associated with WNT5A signaling, is partially responsible for fibroblast proliferation in ILD and is the target of Pirfenidone, one of the antifibrotic therapies used for patients with IPF. Canonical TGF-B signaling is mediated by the proteins SMAD 2/3, which are, in turn, indirectly regulated by Collagen Triple Helix Repeat Containing 1 (CTHRC1). In this study, we tested the following hypotheses: 1) CTHRC1 is more elevated in the ILD cohort compared to unaffected controls, and 2) CTHRC1 is differently expressed among ILD types. Material and Methods: CTHRC1 levels were measured by ELISA in 171 plasma samples from the deidentified University of Utah ILD cohort. Data represent a cohort of 131 ILD-affected participants and 40 unaffected controls. CTHRC1 samples were categorized by a pulmonologist based on affectation status and disease subtypes: IPF (n = 45), sarcoidosis (4), nonspecific interstitial pneumonia (16), hypersensitivity pneumonitis (n = 7), interstitial pneumonia (n=13), autoimmune (n = 15), other ILD - a category that includes undifferentiated ILD diagnoses (n = 31), and unaffected controls (n = 40). We conducted a single-factor ANOVA of plasma CTHRC1 levels to test whether CTHRC1 variance among affected and non-affected participants is statistically significantly different. In-silico analysis was performed with Ingenuity Pathway Analysis® to characterize the role of CTHRC1 in the pathway of lung fibrosis. Results: Statistical analyses of CTHRC1 in plasma samples indicate that the average CTHRC1 level is significantly higher in ILD-affected participants than controls, with the autoimmune ILD being higher than other ILD types, thus supporting our hypotheses. In-silico analyses show that CTHRC1 indirectly activates and phosphorylates SMAD3, which in turn cross-regulates TGF-B1. CTHRC1 also may regulate the expression and transcription of TGFB-1 via WNT5A and its regulatory relationship with CTNNB1. Conclusion: In-silico pathway analyses demonstrate that CTHRC1 may be an important biomarker in ILD. Analysis of plasma samples indicates that CTHRC1 expression is positively associated with ILD affectation, with autoimmune ILD having the highest average CTHRC1 values. While characterizing CTHRC1 levels in plasma can help to differentiate among ILD types and predict response to Pirfenidone, the extent to which plasma CTHRC1 level is a function of ILD severity or chronicity is unknown.

Keywords: interstitial lung disease, CTHRC1, idiopathic pulmonary fibrosis, pathway analyses

Procedia PDF Downloads 163
46 Using AI Based Software as an Assessment Aid for University Engineering Assignments

Authors: Waleed Al-Nuaimy, Luke Anastassiou, Manjinder Kainth

Abstract:

As the process of teaching has evolved with the advent of new technologies over the ages, so has the process of learning. Educators have perpetually found themselves on the lookout for new technology-enhanced methods of teaching in order to increase learning efficiency and decrease ever expanding workloads. Shortly after the invention of the internet, web-based learning started to pick up in the late 1990s and educators quickly found that the process of providing learning material and marking assignments could change thanks to the connectivity offered by the internet. With the creation of early web-based virtual learning environments (VLEs) such as SPIDER and Blackboard, it soon became apparent that VLEs resulted in higher reported computer self-efficacy among students, but at the cost of students being less satisfied with the learning process . It may be argued that the impersonal nature of VLEs, and their limited functionality may have been the leading factors contributing to this reported dissatisfaction. To this day, often faced with the prospects of assigning colossal engineering cohorts their homework and assessments, educators may frequently choose optimally curated assessment formats, such as multiple-choice quizzes and numerical answer input boxes, so that automated grading software embedded in the VLEs can save time and mark student submissions instantaneously. A crucial skill that is meant to be learnt during most science and engineering undergraduate degrees is gaining the confidence in using, solving and deriving mathematical equations. Equations underpin a significant portion of the topics taught in many STEM subjects, and it is in homework assignments and assessments that this understanding is tested. It is not hard to see that this can become challenging if the majority of assignment formats students are engaging with are multiple-choice questions, and educators end up with a reduced perspective of their students’ ability to manipulate equations. Artificial intelligence (AI) has in recent times been shown to be an important consideration for many technologies. In our paper, we explore the use of new AI based software designed to work in conjunction with current VLEs. Using our experience with the software, we discuss its potential to solve a selection of problems ranging from impersonality to the reduction of educator workloads by speeding up the marking process. We examine the software’s potential to increase learning efficiency through its features which claim to allow more customized and higher-quality feedback. We investigate the usability of features allowing students to input equation derivations in a range of different forms, and discuss relevant observations associated with these input methods. Furthermore, we make ethical considerations and discuss potential drawbacks to the software, including the extent to which optical character recognition (OCR) could play a part in the perpetuation of errors and create disagreements between student intent and their submitted assignment answers. It is the intention of the authors that this study will be useful as an example of the implementation of AI in a practical assessment scenario insofar as serving as a springboard for further considerations and studies that utilise AI in the setting and marking of science and engineering assignments.

Keywords: engineering education, assessment, artificial intelligence, optical character recognition (OCR)

Procedia PDF Downloads 97
45 Exploring Perspectives and Complexities of E-tutoring: Insights from Students Opting out of Online Tutor Service

Authors: Prince Chukwuneme Enwereji, Annelien Van Rooyen

Abstract:

In recent years, technology integration in education has transformed the learning landscape, particularly in online institutions. One technological advancement that has gained popularity is e-tutoring, which offers personalised academic support to students through online platforms. While e-tutoring has become well-known and has been adopted to promote collaborative learning, there are still students who do not use these services for various reasons. However, little attention has been given to understanding the perspectives of students who have not utilized these services. The research objectives include identifying the perceived benefits that non-e-tutoring students believe e-tutoring could offer, such as enhanced academic support, personalized learning experiences, and improved performance. Additionally, the study explored the potential drawbacks or concerns that non-e-tutoring students associate with e-tutoring, such as concerns about efficacy, a lack of face-to-face interaction, and platform accessibility. The study adopted a quantitative research approach with a descriptive design to gather and analyze data on non-e-tutoring students' perspectives. Online questionnaires were employed as the primary data collection method, allowing for the efficient collection of data from many participants. The collected data was analyzed using the Statistical Package for the Social Sciences (SPSS). Ethical concepts such as informed consent, anonymity of responses and protection of respondents against harm were maintained. Findings indicate that non-e-tutoring students perceive a sense of control over their own pace of learning, suggesting a preference for self-directed learning and the ability to tailor their educational experience to their individual needs and learning styles. They also exhibit high levels of motivation, believe in their ability to effectively participate in their studies and organize their academic work, and feel comfortable studying on their own without the help of e-tutors. However, non-e-tutoring students feel that e-tutors do not sufficiently address their academic needs and lack engagement. They also perceive a lack of clarity in the roles of e-tutors, leading to uncertainty about their responsibilities. In terms of communication, students feel overwhelmed by the volume of announcements and find repetitive information frustrating. Additionally, some students face challenges with their internet connection and associated cost, which can hinder their participation in online activities. Furthermore, non-e-tutoring students express a desire for interactions with their peers and a sense of belonging to a group or team. They value opportunities for collaboration, teamwork in their learning experience, the importance of fostering social interactions and creating a sense of community in online learning environments. This study recommended that students seek alternate support systems by reaching out to professors or academic advisors for guidance and clarification. Developing self-directed learning skills is essential, empowering students to take charge of their own learning through setting objectives, creating own study plans, and utilising resources. For HEIs, it was recommended that they should ensure that a variety of support services are available to cater to the needs of all students, including non-e-tutoring students. HEIs should also ensure easy access to online resources, promote a supportive community, and regularly evaluate and adapt their support techniques to meet students' changing requirements.

Keywords: online-tutor;, student support;, online education, educational practices, distance education

Procedia PDF Downloads 48
44 The in Vitro and in Vivo Antifungal Activity of Terminalia Mantaly on Aspergillus Species Using Drosophila melanogaster (UAS-Diptericin) As a Model

Authors: Ponchang Apollos Wuyep, Alice Njolke Mafe, Longchi Satkat Zacheaus, Dogun Ojochogu, Dabot Ayuba Yakubu

Abstract:

Fungi causes huge losses when infections occur both in plants and animals. Synthetic Antifungal drugs are mostly very expensive and highly cytotoxic when taken. This study was aimed at determining the in vitro and in vivo antifungal activities of the leaves and stem extracts of Terminalia mantaly (Umbrella tree)H. Perrier on Aspergillus species in a bid to identify potential sources of cheap starting materials for the synthesis of new drugs to address the growing antimicrobial resistance. T. mantaly leave and stem powdered plant was extracted by fractionation using the method of solvent partition co-efficient in their graded form in the order n-hexane, Ethyl acetate, methanol and distilled water and phytochemical screening of each fraction revealed the presence of alkaloids, saponins, Tannins, flavonoids, carbohydrates, steroids, anthraquinones, cardiac glycosides and terpenoids in varying degrees. The Agar well diffusion technique was used to screen for antifungal activity of the fractions on clinical isolates of Aspergillus species (Aspergillus flavus and Aspergillus fumigatus). Minimum inhibitory concentration (MIC50) of the most active extracts was determined by the broth dilution method. The fractions test indicated a high antifungal activity with zones of inhibition ranging from 6 to 26 mm and 8 to 30mm (leave fractions) and 10mm to 34mm and 14mm to36mm (stem fractions) on A. flavus and A. fumigatus respectively. All the fractions indicated antifungal activity in a dose response relationship at concentrations of 62.5mg/ml, 125mg/ml, 250mg/ml and 500mg/ml. Better antifungal efficacy was shown by the Ethyl acetate, Hexane and Methanol fractions in the in vitro as the most potent fraction with MIC ranging from 62.5 to 125mg/ml. There was no statistically significant difference (P>0.05) in the potency of the Eight fractions from leave and stem (Hexane, Ethyl acetate, methanol and distilled water, antifungal (fluconazole), which served as positive control and 10% DMSO(Dimethyl Sulfoxide)which served as negative control. In the in vivo investigations, the ingestion technique was used for the infectious studies Female Drosophilla melanogaster(UAS-Diptericin)normal flies(positive control),infected and not treated flies (negative control) and infected flies with A. fumigatus and placed on normal diet, diet containing fractions(MSM and HSM each at concentrations of 10mg/ml 20mg/ml, 30mg/ml, 40mg/ml, 50mg/ml, 60mg/ml, 70mg/ml, 80mg/ml, 90mg/ml and 100mg/ml), diet containing control drugs(fluconazole as positive control)and infected flies on normal diet(negative control), the flies were observed for fifteen(15) days. Then the total mortality of flies was recorded each day. The results of the study reveals that the flies were susceptible to infection with A. fumigatus and responded to treatment with more effectiveness at 50mg/ml, 60mg/ml and 70mg/ml for both the Methanol and Hexane stem fractions. Therefore, the Methanol and Hexane stem fractions of T. mantaly contain therapeutically useful compounds, justifying the traditional use of this plant for the treatment of fungal infections.

Keywords: Terminalia mantaly, Aspergillus fumigatus, cytotoxic, Drosophila melanogaster, antifungal

Procedia PDF Downloads 52
43 Book Exchange System with a Hybrid Recommendation Engine

Authors: Nilki Upathissa, Torin Wirasinghe

Abstract:

This solution addresses the challenges faced by traditional bookstores and the limitations of digital media, striking a balance between the tactile experience of printed books and the convenience of modern technology. The book exchange system offers a sustainable alternative, empowering users to access a diverse range of books while promoting community engagement. The user-friendly interfaces incorporated into the book exchange system ensure a seamless and enjoyable experience for users. Intuitive features for book management, search, and messaging facilitate effortless exchanges and interactions between users. By streamlining the process, the system encourages readers to explore new books aligned with their interests, enhancing the overall reading experience. Central to the system's success is the hybrid recommendation engine, which leverages advanced technologies such as Long Short-Term Memory (LSTM) models. By analyzing user input, the engine accurately predicts genre preferences, enabling personalized book recommendations. The hybrid approach integrates multiple technologies, including user interfaces, machine learning models, and recommendation algorithms, to ensure the accuracy and diversity of the recommendations. The evaluation of the book exchange system with the hybrid recommendation engine demonstrated exceptional performance across key metrics. The high accuracy score of 0.97 highlights the system's ability to provide relevant recommendations, enhancing users' chances of discovering books that resonate with their interests. The commendable precision, recall, and F1score scores further validate the system's efficacy in offering appropriate book suggestions. Additionally, the curve classifications substantiate the system's effectiveness in distinguishing positive and negative recommendations. This metric provides confidence in the system's ability to navigate the vast landscape of book choices and deliver recommendations that align with users' preferences. Furthermore, the implementation of this book exchange system with a hybrid recommendation engine has the potential to revolutionize the way readers interact with printed books. By facilitating book exchanges and providing personalized recommendations, the system encourages a sense of community and exploration within the reading community. Moreover, the emphasis on sustainability aligns with the growing global consciousness towards eco-friendly practices. With its robust technical approach and promising evaluation results, this solution paves the way for a more inclusive, accessible, and enjoyable reading experience for book lovers worldwide. In conclusion, the developed book exchange system with a hybrid recommendation engine represents a progressive solution to the challenges faced by traditional bookstores and the limitations of digital media. By promoting sustainability, widening access to printed books, and fostering engagement with reading, this system addresses the evolving needs of book enthusiasts. The integration of user-friendly interfaces, advanced machine learning models, and recommendation algorithms ensure accurate and diverse book recommendations, enriching the reading experience for users.

Keywords: recommendation systems, hybrid recommendation systems, machine learning, data science, long short-term memory, recurrent neural network

Procedia PDF Downloads 54
42 Sustainability in the Purchase of Airline Tickets: Analysis of Digital Communication from the Perspective of Neuroscience

Authors: Rodríguez Sánchez Carla, Sancho-Esper Franco, Guillen-Davo Marina

Abstract:

Tourism is one of the most important sectors worldwide since it is an important economic engine for today's society. It is also one of the sectors that most negatively affect the environment in terms of CO₂ emissions due to this expansion. In light of this, airlines are developing Voluntary Carbon Offset (VCO). There is important evidence focused on analyzing the features of these VCO programs and their efficacy in reducing CO₂ emissions, and findings are mixed without a clear consensus. Different research approaches have centered on analyzing factors and consequences of VCO programs, such as economic modelling based on panel data, survey research based on traveler responses or experimental research analyzing customer decisions in a simulated context. This study belongs to the latter group because it tries to understand how different characteristics of an online ticket purchase website affect the willingness of a traveler to choose a sustainable one. The proposed behavioral model is based on several theories, such as the nudge theory, the dual processing ELM and the cognitive dissonance theory. This randomized experiment aims at overcoming previous studies based on self-reported measures that mainly study sustainable behavioral intention rather than actual decision-making. It also complements traditional self-reported independent variables by gathering objective information from an eye-tracking device. This experiment analyzes the influence of two characteristics of the online purchase website: i) the type of information regarding flight CO₂ emissions (quantitative vs. qualitative) and the comparison framework related to the sustainable purchase decision (negative: alternative with more emissions than the average flight of the route vs. positive: alternative with less emissions than the average flight of the route), therefore it is a 2x2 experiment with four alternative scenarios. A pretest was run before the actual experiment to refine the experiment features and to check the manipulations. Afterward, a different sample of students answered the pre-test questionnaire aimed at recruiting the cases and measuring several pre-stimulus measures. One week later, students came to the neurolab at the University setting to be part of the experiment, made their decision regarding online purchases and answered the post-test survey. A final sample of 21 students was gathered. The committee of ethics of the institution approved the experiment. The results show that qualitative information generates more sustainable decisions (less contaminant alternative) than quantitative information. Moreover, evidence shows that subjects are more willing to choose the sustainable decision to be more ecological (comparison of the average with the less contaminant alternative) rather than to be less contaminant (comparison of the average with the more contaminant alternative). There are also interesting differences in the information processing variables from the eye tracker. Both the total time to make the choice and the specific times by area of interest (AOI) differ depending on the assigned scenario. These results allow for a better understanding of the factors that condition the decision of a traveler to be part of a VCO program and provide useful information for airline managers to promote these programs to reduce environmental impact.

Keywords: voluntary carbon offset, airline, online purchase, carbon emission, sustainability, randomized experiment

Procedia PDF Downloads 35
41 Making the Right Call for Falls: Evaluating the Efficacy of a Multi-Faceted Trust Wide Approach to Improving Patient Safety Post Falls

Authors: Jawaad Saleem, Hannah Wright, Peter Sommerville, Adrian Hopper

Abstract:

Introduction: Inpatient falls are the most commonly reported patient safety incidents, and carry a significant burden on resources, morbidity, and mortality. Ensuring adequate post falls management of patients by staff is therefore paramount to maintaining patient safety especially in out of hours and resource stretched settings. Aims: This quality improvement project aims to improve the current practice of falls management at Guys St Thomas Hospital, London as compared to our 2016 Quality Improvement Project findings. Furthermore, it looks to increase current junior doctors confidence in managing falls and their use of new guidance protocols. Methods: Multifaceted Interventions implemented included: the development of new trust wide guidelines detailing management pathways for patients post falls, available for intranet access. Furthermore, the production of 2000 lanyard cards distributed amongst junior doctors and staff which summarised these guidelines. Additionally, a ‘safety signal’ email was sent from the Trust chief medical officer to all staff raising awareness of falls and the guidelines. Formal falls teaching was also implemented for new doctors at induction. Using an established incident database, 189 consecutive falls in 2017were retrospectively analysed electronically to assess and compared to the variables measured in 2016 post interventions. A separate serious incident database was used to analyse 50 falls from May 2015 to March 2018 to ascertain the statistical significance of the impact of our interventions on serious incidents. A similar questionnaire for the 2017 cohort of foundation year one (FY1) doctors was performed and compared to 2016 results. Results: Questionnaire data demonstrated improved awareness and utility of guidelines and increased confidence as well as an increase in training. 97% of FY1 trainees felt that the interventions had increased their awareness of the impact of falls on patients in the trust. Data from the incident database demonstrated the time to review patients post fall had decreased from an average of 130 to 86 minutes. Improvement was also demonstrated in the reduced time to order and schedule X-ray and CT imaging, 3 and 5 hours respectively. Data from the serious incident database show that ‘the time from fall until harm was detected’ was statistically significantly lower (P = 0.044) post intervention. We also showed the incidence of significant delays in detecting harm ( > 10 hours) reduced post intervention. Conclusions: Our interventions have helped to significantly reduce the average time to assess, order and schedule appropriate imaging post falls. Delays of over ten hours to detect serious injuries after falls were commonplace; since the intervention, their frequency has markedly reduced. We suggest this will lead to identifying patient harm sooner, reduced clinical incidents relating to falls and thus improve overall patient safety. Our interventions have also helped increase clinical staff confidence, management, and awareness of falls in the trust. Next steps include expanding teaching sessions, improving multidisciplinary team involvement to aid this improvement.

Keywords: patient safety, quality improvement, serious incidents, falls, clinical care

Procedia PDF Downloads 102
40 Near-Peer Mentoring/Curriculum and Community Enterprise for Environmental Restoration Science

Authors: Lauren B. Birney

Abstract:

The BOP-CCERS (Billion Oyster Project- Curriculum and Community Enterprise for Restoration Science) Near-Peer Mentoring Program provides the long-term (five-year) support network to motivate and guide students toward restoration science-based CTE pathways. Students are selected from middle schools with actively participating BOP-CCERS teachers. Teachers will nominate students from grades 6-8 to join cohorts of between 10 and 15 students each. Cohorts are comprised primarily of students from the same school in order to facilitate mentors' travel logistics as well as to sustain connections with students and their families. Each cohort is matched with an exceptional undergraduate or graduate student, either a BOP research associate or STEM mentor recruited from collaborating City University of New York (CUNY) partner programs. In rare cases, an exceptional high school junior or senior may be matched with a cohort in addition to a research associate or graduate student. In no case is a high school student or minor be placed individually with a cohort. Mentors meet with students at least once per month and provide at least one offsite field visit per month, either to a local STEM Hub or research lab. Keeping with its five-year trajectory, the near-peer mentoring program will seek to retain students in the same cohort with the same mentor for the full duration of middle school and for at least two additional years of high school. Upon reaching the final quarter of 8th grade, the mentor will develop a meeting plan for each individual mentee. The mentee and the mentor will be required to meet individually or in small groups once per month. Once per quarter, individual meetings will be substituted for full cohort professional outings. The mentor will organize the entire cohort on a field visit or educational workshop with a museum or aquarium partner. In addition to the mentor-mentee relationship, each participating student will also be asked to conduct and present his or her own BOP field research. This research is ideally carried out with the support of the students’ regular high school STEM subject teacher; however, in cases where the teacher or school does not permit independent study, the student will be asked to conduct the research on an extracurricular basis. Near-peer mentoring affects students’ social identities and helps them to connect to role models from similar groups, ultimately giving them a sense of belonging. Qualitative and quantitative analytics were performed throughout the study. Interviews and focus groups also ensued. Additionally, an external evaluator was utilized to ensure project efficacy, efficiency, and effectiveness throughout the entire project. The BOP-CCERS Near Peer Mentoring program is a peer support network in which high school students with interest or experience in BOP (Billion Oyster Project) topics and activities (such as classroom oyster tanks, STEM Hubs, or digital platform research) provide mentorship and support for middle school or high school freshmen mentees. Peer mentoring not only empowers those students being taught but also increases the content knowledge and engagement of mentors. This support provides the necessary resources, structure, and tools to assist students in finding success.

Keywords: STEM education, environmental science, citizen science, near peer mentoring

Procedia PDF Downloads 63
39 Big Data Applications for Transportation Planning

Authors: Antonella Falanga, Armando Cartenì

Abstract:

"Big data" refers to extremely vast and complex sets of data, encompassing extraordinarily large and intricate datasets that require specific tools for meaningful analysis and processing. These datasets can stem from diverse origins like sensors, mobile devices, online transactions, social media platforms, and more. The utilization of big data is pivotal, offering the chance to leverage vast information for substantial advantages across diverse fields, thereby enhancing comprehension, decision-making, efficiency, and fostering innovation in various domains. Big data, distinguished by its remarkable attributes of enormous volume, high velocity, diverse variety, and significant value, represent a transformative force reshaping the industry worldwide. Their pervasive impact continues to unlock new possibilities, driving innovation and advancements in technology, decision-making processes, and societal progress in an increasingly data-centric world. The use of these technologies is becoming more widespread, facilitating and accelerating operations that were once much more complicated. In particular, big data impacts across multiple sectors such as business and commerce, healthcare and science, finance, education, geography, agriculture, media and entertainment and also mobility and logistics. Within the transportation sector, which is the focus of this study, big data applications encompass a wide variety, spanning across optimization in vehicle routing, real-time traffic management and monitoring, logistics efficiency, reduction of travel times and congestion, enhancement of the overall transportation systems, but also mitigation of pollutant emissions contributing to environmental sustainability. Meanwhile, in public administration and the development of smart cities, big data aids in improving public services, urban planning, and decision-making processes, leading to more efficient and sustainable urban environments. Access to vast data reservoirs enables deeper insights, revealing hidden patterns and facilitating more precise and timely decision-making. Additionally, advancements in cloud computing and artificial intelligence (AI) have further amplified the potential of big data, enabling more sophisticated and comprehensive analyses. Certainly, utilizing big data presents various advantages but also entails several challenges regarding data privacy and security, ensuring data quality, managing and storing large volumes of data effectively, integrating data from diverse sources, the need for specialized skills to interpret analysis results, ethical considerations in data use, and evaluating costs against benefits. Addressing these difficulties requires well-structured strategies and policies to balance the benefits of big data with privacy, security, and efficient data management concerns. Building upon these premises, the current research investigates the efficacy and influence of big data by conducting an overview of the primary and recent implementations of big data in transportation systems. Overall, this research allows us to conclude that big data better provide to enhance rational decision-making for mobility choices and is imperative for adeptly planning and allocating investments in transportation infrastructures and services.

Keywords: big data, public transport, sustainable mobility, transport demand, transportation planning

Procedia PDF Downloads 32
38 Targeting Violent Extremist Narratives: Applying Network Targeting Techniques to the Communication Functions of Terrorist Groups

Authors: John Hardy

Abstract:

Over the last decade, the increasing utility of extremist narratives to the operational effectiveness of terrorist organizations has been evidenced by the proliferation of inspired or affiliated attacks across the world. Famous examples such as regional al-Qaeda affiliates and the self-styled “Islamic State” demonstrate the effectiveness of leveraging communication technologies to disseminate propaganda, recruit members, and orchestrate attacks. Terrorist organizations with the capacity to harness the communicative power offered by digital communication technologies and effective political narratives have held an advantage over their targets in recent years. Terrorists have leveraged the perceived legitimacy of grass-roots actors to appeal to a global audience of potential supporters and enemies alike, and have wielded a proficiency in profile-raising which remains unmatched by counter terrorism narratives around the world. In contrast, many attempts at propagating official counter-narratives have been received by target audiences as illegitimate, top-down and impersonally bureaucratic. However, the benefits provided by widespread communication and extremist narratives have come at an operational cost. Terrorist organizations now face a significant challenge in protecting their access to communications technologies and authority over the content they create and endorse. The dissemination of effective narratives has emerged as a core function of terrorist organizations with international reach via inspired or affiliated attacks. As such, it has become a critical function which can be targeted by intelligence and security forces. This study applies network targeting principles which have been used by coalition forces against a range of non-state actors in the Middle East and South Asia to the communicative function of terrorist organizations. This illustrates both a conceptual link between functional targeting and operational disruption in the abstract and a tangible impact on the operational effectiveness of terrorists by degrading communicative ability and legitimacy. Two case studies highlight the utility of applying functional targeting against terrorist organizations. The first case is the targeted killing of Anwar al-Awlaki, an al-Qaeda propagandist who crafted a permissive narrative and effective propaganda videos to attract recruits who committed inspired terrorist attacks in the US and overseas. The second is a series of operations against Islamic State propagandists in Syria, including the capture or deaths of a cadre of high profile Islamic State members, including Junaid Hussain, Abu Mohammad al-Adnani, Neil Prakash, and Rachid Kassim. The group of Islamic State propagandists were linked to a significant rise in affiliated and enabled terrorist attacks and were subsequently targeted by law enforcement and military agencies. In both cases, the disruption of communication between the terrorist organization and recruits degraded both communicative and operational functions. Effective functional targeting on member recruitment and operational tempo suggests that narratives are a critical function which can be leveraged against terrorist organizations. Further application of network targeting methods to terrorist narratives may enhance the efficacy of a range of counter terrorism techniques employed by security and intelligence agencies.

Keywords: countering violent extremism, counter terrorism, intelligence, terrorism, violent extremism

Procedia PDF Downloads 270
37 Integrating Non-Psychoactive Phytocannabinoids and Their Cyclodextrin Inclusion Complexes into the Treatment of Glioblastoma

Authors: Kyriaki Hatziagapiou, Konstantinos Bethanis, Olti Nikola, Elias Christoforides, Eleni Koniari, Eleni Kakouri, George Lambrou, Christina Kanaka-Gantenbein

Abstract:

Glioblastoma multiforme (GBM) remains a serious health challenge, as current therapeutic modalities continue to yield unsatisfactory results, with the average survival rarely exceeding 1-2 years. Natural compounds still provide some of the most promising approaches for discovering new drugs. The non-psychotropic cannabidiol (CBD) deriving from Cannabis sativa L. provides such promise. CBD is endowed with anticancer, antioxidant, and genoprotective properties as established in vitro and in in vivo experiments. CBD’s selectivity towards cancer cells and its safe profile suggest its usage in cancer therapies. However, the bioavailability of oral CBD is low due to poor aqueous solubility, erratic gastrointestinal absorption, and significant first-pass metabolism, hampering its therapeutic potential and resulting in a variable pharmacokinetic profile. In this context, CBD can take great advantage of nanomedicine-based formulation strategies. Cyclodextrins (CDs) are cyclic oligosaccharides used in the pharmaceutical industry to incorporate apolar molecules inside their hydrophobic cavity, increasing their stability, water solubility, and bioavailability or decreasing their side effects. CBD-inclusion complexes with CDs could be a good strategy to improve its properties, like solubility and stability to harness its full therapeutic potential. The current research aims to study the potential cytotoxic effect of CBD and CBD-CDs complexes CBD-RMβCD (randomly methylated β-cyclodextrin) and CBD-HPβCD (hydroxypropyl-b-CD) on the A172 glioblastoma cell line. CBD is diluted in 10% DMSO, and CBD/CDs solutions are prepared by mixing solid CBD, solid CDs, and dH2O. For the biological assays, A172 cells are incubated at a range of concentrations of CBD, CBD-RMβCD and CBD-HPβCD, RMβCD, and HPβCD (0,03125-4 mg/ml) at 24, 48, and 72 hours. Analysis of cell viability after incubation with the compounds is performed with Alamar Blue viability assay. CBD’s dilution to DMSO 10% was inadequate, as crystals are observed; thus cytotoxicity experiments are not assessed. CBD’s solubility is enhanced in the presence of both CDs. CBD/CDs exert significant cytotoxicity in a dose and time-dependent manner (p < 0.005 for exposed cells to any concentration at 48, 72, and 96 hours versus cells not exposed); as their concentration and time of exposure increases, the reduction of resazurin to resofurin decreases, indicating a reduction in cell viability. The cytotoxic effect is more pronounced in cells exposed to CBD-HPβCD for all concentrations and time-points. RMβCD and HPβCD at the highest concentration of 4 mg/ml also exerted antitumor action per se since manifesting cell growth inhibition. The results of our study could afford the basis of research regarding the use of natural products and their inclusion complexes as anticancer agents and the shift to targeted therapy with higher efficacy and limited toxicity. Acknowledgments: The research is partly funded by ΙΚΥ (State Scholarships Foundation) – Post-doc Scholarships-Partnership Agreement 2014-2020.

Keywords: cannabidiol, cyclodextrins, glioblastoma, hydroxypropyl-b-Cyclodextrin, randomly-methylated-β-cyclodextrin

Procedia PDF Downloads 148
36 Enhancing Photocatalytic Activity of Oxygen Vacancies-Rich Tungsten Trioxide (WO₃) for Sustainable Energy Conversion and Water Purification

Authors: Satam Alotibi, Osama A. Hussein, Aziz H. Al-Shaibani, Nawaf A. Al-Aqeel, Abdellah Kaiba, Fatehia S. Alhakami, Mohammed Alyami, Talal F. Qahtan

Abstract:

The demand for sustainable and efficient energy conversion using solar energy has grown rapidly in recent years. In this pursuit, solar-to-chemical conversion has emerged as a promising approach, with oxygen vacancies-rich tungsten trioxide (WO₃) playing a crucial role. This study presents a method for synthesizing oxygen vacancies-rich WO3, resulting in a significant enhancement of its photocatalytic activity, representing a significant step towards sustainable energy solutions. Experimental results underscore the importance of oxygen vacancies in modifying the properties of WO₃. These vacancies introduce additional energy states within the material, leading to a reduction in the bandgap, increased light absorption, and acting as electron traps, thereby reducing emissions. Our focus lies in developing oxygen vacancies-rich WO₃, which demonstrates unparalleled potential for improved photocatalytic applications. The effectiveness of oxygen vacancies-rich WO₃ in solar-to-chemical conversion was showcased through rigorous assessments of its photocatalytic degradation performance. Sunlight irradiation was employed to evaluate the material's effectiveness in degrading organic pollutants in wastewater. The results unequivocally demonstrate the superior photocatalytic performance of oxygen vacancies-rich WO₃ compared to conventional WO₃ nanomaterials, establishing its efficacy in sustainable and efficient energy conversion. Furthermore, the synthesized material is utilized to fabricate films, which are subsequently employed in immobilized WO₃ and oxygen vacancies-rich WO₃ reactors for water purification under natural sunlight irradiation. This application offers a sustainable and efficient solution for water treatment, harnessing solar energy for effective decontamination. In addition to investigating the photocatalytic capabilities, we extensively analyze the structural and chemical properties of the synthesized material. The synthesis process involves in situ thermal reduction of WO₃ nano-powder in a nitrogen environment, meticulously monitored using thermogravimetric analysis (TGA) to ensure precise control over the synthesis of oxygen vacancies-rich WO₃. Comprehensive characterization techniques such as UV-Vis spectroscopy, X-ray photoelectron spectroscopy (XPS), FTIR, Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED) provide deep insights into the material's optical properties, chemical composition, elemental states, structure, surface properties, and crystalline structure. This study represents a significant advancement in sustainable energy conversion through solar-to-chemical processes and water purification. By harnessing the unique properties of oxygen vacancies-rich WO₃, we not only enhance our understanding of energy conversion mechanisms but also pave the way for the development of highly efficient and environmentally friendly photocatalytic materials. The application of this material in water purification demonstrates its versatility and potential to address critical environmental challenges. These findings bring us closer to a sustainable energy future and cleaner water resources, laying a solid foundation for a more sustainable planet.

Keywords: sustainable energy conversion, solar-to-chemical conversion, oxygen vacancies-rich tungsten trioxide (WO₃), photocatalytic activity enhancement, water purification

Procedia PDF Downloads 35
35 Chemicals to Remove and Prevent Biofilm

Authors: Cynthia K. Burzell

Abstract:

Aequor's Founder, a Marine and Medical Microbiologist, discovered novel, non-toxic chemicals in the ocean that uniquely remove biofilm in minutes and prevent its formation for days. These chemicals and over 70 synthesized analogs that Aequor developed can replace thousands of toxic biocides used in consumer and industrial products and, as new drug candidates, kill biofilm-forming bacteria and fungi Superbugs -the antimicrobial-resistant (AMR) pathogens for which there is no cure. Cynthia Burzell, PhD., is a Marine and Medical Microbiologist studying natural mechanisms that inhibit biofilm formation on surfaces in contact with water. In 2002, she discovered a new genus and several new species of marine microbes that produce small molecules that remove biofilm in minutes and prevent its formation for days. The molecules include new antimicrobials that can replace thousands of toxic biocides used in consumer and industrial products and can be developed into new drug candidates to kill the biofilm-forming bacteria and fungi -- including the antimicrobial-resistant (AMR) Superbugs for which there is no cure. Today, Aequor has over 70 chemicals that are divided into categories: (1) Novel natural chemicals. Lonza validated that the primary natural chemical removed biofilm in minutes and stated: "Nothing else known can do this at non-toxic doses." (2) Specialty chemicals. 25 of these structural analogs are already approved under the U.S. Environmental Protection Agency (EPA)'s Toxic Substances Control Act, certified as "green" and available for immediate sale. These have been validated for the following agro-industrial verticals: (a) Surface cleaners: The U.S. Department of Agriculture validated that low concentrations of Aequor's formulations provide deep cleaning of inert, nano and organic surfaces and materials; (b) Water treatments: NASA validated that one dose of Aequor's treatment in the International Space Station's water reuse/recycling system lasted 15 months without replenishment. DOE validated that our treatments lower energy consumption by over 10% in buildings and industrial processes. Future validations include pilot projects with the EPA to test efficacy in hospital plumbing systems. (c) Algae cultivation and yeast fermentation: The U.S. Department of Energy (DOE) validated that Aequor's treatment boosted biomass of renewable feedstocks by 40% in half the time -- increasing the profitability of biofuels and biobased co-products. DOE also validated increased yields and crop protection of algae under cultivation in open ponds. A private oil and gas company validated decontamination of oilfield water. (3) New structural analogs. These kill Gram-negative and Gram-positive bacteria and fungi alone, in combinations with each other, and in combination with low doses of existing, ineffective antibiotics (including Penicillin), "potentiating" them to kill AMR pathogens at doses too low to trigger resistance. Both the U.S. National Institutes for Health (NIH) and Department of Defense (DOD) has executed contracts with Aequor to provide the pre-clinical trials needed for these new drug candidates to enter the regulatory approval pipelines. Aequor seeks partners/licensees to commercialize its specialty chemicals and support to evaluate the optimal methods to scale-up of several new structural analogs via activity-guided fractionation and/or biosynthesis in order to initiate the NIH and DOD pre-clinical trials.

Keywords: biofilm, potentiation, prevention, removal

Procedia PDF Downloads 67
34 Antibacterial Nanofibrous Film Encapsulated with 4-terpineol/β-cyclodextrin Inclusion Complexes: Relative Humidity-Triggered Release and Shrimp Preservation Application

Authors: Chuanxiang Cheng, Tiantian Min, Jin Yue

Abstract:

Antimicrobial active packaging enables extensive biological effects to improve food safety. However, the efficacy of antimicrobial packaging hinges on factors including the diffusion rate of the active agent toward the food surface, the initial content in the antimicrobial agent, and the targeted food shelf life. Among the possibilities of antimicrobial packaging design, an interesting approach involves the incorporation of volatile antimicrobial agents into the packaging material. In this case, the necessity for direct contact between the active packaging material and the food surface is mitigated, as the antimicrobial agent exerts its action through the packaging headspace atmosphere towards the food surface. However, it still remains difficult to achieve controlled and precise release of bioactive compounds to the specific target location with required quantity in food packaging applications. Remarkably, the development of stimuli-responsive materials for electrospinning has introduced the possibility of achieving controlled release of active agents under specific conditions, thereby yielding enduring biological effects. Relative humidity (RH) for the storage of food categories such as meat and aquatic products typically exceeds 90%. Consequently, high RH can be used as an abiotic trigger for the release of active agents to prevent microbial growth. Hence, a novel RH - responsive polyvinyl alcohol/chitosan (PVA/CS) composite nanofibrous film incorporated with 4-terpineol/β-cyclodextrin inclusion complexes (4-TA@β-CD ICs) was engineered by electrospinning that can be deposited as a functional packaging materials. The characterization results showed the thermal stability of the films was enhanced after the incorporation due to the hydrogen bonds between ICs and polymers. Remarkably, the 4 wt% 4-TA@β-CD ICs/PVA/CS film exhibited enhanced crystallinity, moderate hydrophilic (Water contact angle of 81.53°), light barrier property (Transparency of 1.96%) and water resistance (Water vapor permeability of 3.17 g mm/m2 h kPa). Moreover, this film also showed optimized mechanical performance with a Young’s modulus of 11.33 MPa, a tensile strength of 19.99 MPa and an elongation at break of 4.44 %. Notably, the antioxidant and antibacterial properties of this packaging material were significantly improved. The film demonstrated the half-inhibitory concentrations (IC50) values of 87.74% and 85.11% for scavenging 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2, 2′-azinobis (3-ethylbenzothiazoline-6-sulfonic) (ABTS) free radicals, respectively, in addition to an inhibition efficiency of 65% against Shewanella putrefaciens, the characteristic bacteria in aquatic products. Most importantly, the film achieved controlled release of 4-TA under high 98% RH by inducing the plasticization of polymers caused by water molecules, swelling of polymer chains, and destruction of hydrogen bonds within the cyclodextrin inclusion complex. Consequently, low relative humidity is suitable for the preservation of nanofibrous film, while high humidity conditions typical in fresh food packaging environments effectively stimulated the release of active compounds in the film. This film with a long-term antimicrobial effect successfully extended the shelf life of Litopenaeus vannamei shrimp to 7 days at 4 °C. This attractive design could pave the way for the development of new food packaging materials.

Keywords: controlled release, electrospinning, nanofibrous film, relative humidity–responsive, shrimp preservation

Procedia PDF Downloads 31
33 Will My Home Remain My Castle? Tenants’ Interview Topics regarding an Eco-Friendly Refurbishment Strategy in a Neighborhood in Germany

Authors: Karin Schakib-Ekbatan, Annette Roser

Abstract:

According to the Federal Government’s plans, the German building stock should be virtually climate neutral by 2050. Thus, the “EnEff.Gebäude.2050” funding initiative was launched, complementing the projects of the Energy Transition Construction research initiative. Beyond the construction and renovation of individual buildings, solutions must be found at the neighborhood level. The subject of the presented pilot project is a building ensemble from the Wilhelminian period in Munich, which is planned to be refurbished based on a socially compatible, energy-saving, innovative-technical modernization concept. The building ensemble, with about 200 apartments, is part of the building cooperative. To create an optimized network and possible synergies between researchers and projects of the funding initiative, a Scientific Accompanying Research was established for cross-project analyses of findings and results in order to identify further research needs and trends. Thus, the project is characterized by an interdisciplinary approach that combines constructional, technical, and socio-scientific expertise based on a participatory understanding of research by involving the tenants at an early stage. The research focus is on getting insights into the tenants’ comfort requirements, attitudes, and energy-related behaviour. Both qualitative and quantitative methods are applied based on the Technology-Acceptance-Model (TAM). The core of the refurbishment strategy is a wall heating system intended to replace conventional radiators. A wall heating provides comfortable and consistent radiant heat instead of convection heat, which often causes drafts and dust turbulence. Besides comfort and health, the advantage of wall heating systems is an energy-saving operation. All apartments would be supplied by a uniform basic temperature control system (around perceived room temperature of 18 °C resp. 64,4 °F), which could be adapted to individual preferences via individual heating options (e. g. infrared heating). The new heating system would affect the furnishing of the walls, in terms of not allowing the wall surface to be covered too much with cupboards or pictures. Measurements and simulations of the energy consumption of an installed wall heating system are currently being carried out in a show apartment in this neighborhood to investigate energy-related, economical aspects as well as thermal comfort. In March, interviews were conducted with a total of 12 people in 10 households. The interviews were analyzed by MAXQDA. The main issue of the interview was the fear of reduced self-efficacy within their own walls (not having sufficient individual control over the room temperature or being very limited in furnishing). Other issues concerned the impact that the construction works might have on their daily life, such as noise or dirt. Despite their basically positive attitude towards a climate-friendly refurbishment concept, tenants were very concerned about the further development of the project and they expressed a great need for information events. The results of the interviews will be used for project-internal discussions on technical and psychological aspects of the refurbishment strategy in order to design accompanying workshops with the tenants as well as to prepare a written survey involving all households of the neighbourhood.

Keywords: energy efficiency, interviews, participation, refurbishment, residential buildings

Procedia PDF Downloads 99
32 Development & Standardization of a Literacy Free Cognitive Rehabilitation Program for Patients Post Traumatic Brain Injury

Authors: Sakshi Chopra, Ashima Nehra, Sumit Sinha, Harsimarpreet Kaur, Ravindra Mohan Pandey

Abstract:

Background: Cognitive rehabilitation aims to retrain brain injured individuals with cognitive deficits to restore or compensate lost functions. As illiterates or people with low literacy levels represent a significant proportion of the world, specific rehabilitation modules for such populations are indispensable. Literacy is significantly associated with all neuropsychological measures and retraining programs widely use written or spoken techniques which essentially require the patient to read or write. So, the aim of the study was to develop and standardize a literacy free neuropsychological rehabilitation program for improving cognitive functioning in patients with mild and moderate Traumatic Brain Injury (TBI). Several studies have pointed out to the impairments seen in memory, executive functioning, and attention and concentration post-TBI, so the rehabilitation program focussed on these domains. Visual item memorization, stick constructions, symbol cancellations, and colouring techniques were used to construct the retraining program. Methodology: The development of the program consisted of planning, preparing, analyzing, and revising the different modules. The construction focussed on areas of retraining immediate and delayed visual memory, planning ability, focused and divided attention, concentration, and response inhibition (to control irritability and aggression). A total of 98 home based retraining modules were prepared in the 4 domains (42 for memory, 42 for executive functioning, 7 for attention and concentration, and 7 for response inhibition). The standardization was done on 20 healthy controls to review, select and edit items. For each module, the time, errors made and errors per second were noted down, to establish the difficulty level of each module and were arranged in increasing level of difficulty over a period of 6 weeks. The retraining tasks were then administered on 11 brain injured individuals (5 after Mild TBI and 6 after Moderate TBI). These patients were referred from the Trauma Centre to Clinical Neuropsychology OPD, All India Institute of Medical Sciences, New Delhi, India. Results: The time was taken, errors made and errors per second were analysed for all domains. Education levels were divided into illiterates, up to 10 years, 10 years to graduation and graduation and above. Mean and standard deviations were calculated. Between group and within group analysis was done using the t-test. The performance of 20 healthy controls was analyzed and only a significant difference was observed on the time taken for the attention tasks and all other domains had non-significant differences in performance between different education levels. Comparing the errors, time taken between patient and control group, there was a significant difference in all the domains at the 0.01 level except the errors made on executive functioning, indicating that the tool can successfully differentiate between healthy controls and patient groups. Conclusions: Apart from the time taken for symbol cancellations, the entire cognitive rehabilitation program is literacy free. As it taps the major areas of impairment post-TBI, it could be a useful tool to rehabilitate the patient population with low literacy levels across the world. The next step is already underway to test its efficacy in improving cognitive functioning in a randomized clinical controlled trial.

Keywords: cognitive rehabilitation, illiterates, India, traumatic brain injury

Procedia PDF Downloads 309
31 Gene Expression Meta-Analysis of Potential Shared and Unique Pathways Between Autoimmune Diseases Under anti-TNFα Therapy

Authors: Charalabos Antonatos, Mariza Panoutsopoulou, Georgios K. Georgakilas, Evangelos Evangelou, Yiannis Vasilopoulos

Abstract:

The extended tissue damage and severe clinical outcomes of autoimmune diseases, accompanied by the high annual costs to the overall health care system, highlight the need for an efficient therapy. Increasing knowledge over the pathophysiology of specific chronic inflammatory diseases, namely Psoriasis (PsO), Inflammatory Bowel Diseases (IBD) consisting of Crohn’s disease (CD) and Ulcerative colitis (UC), and Rheumatoid Arthritis (RA), has provided insights into the underlying mechanisms that lead to the maintenance of the inflammation, such as Tumor Necrosis Factor alpha (TNF-α). Hence, the anti-TNFα biological agents pose as an ideal therapeutic approach. Despite the efficacy of anti-TNFα agents, several clinical trials have shown that 20-40% of patients do not respond to treatment. Nowadays, high-throughput technologies have been recruited in order to elucidate the complex interactions in multifactorial phenotypes, with the most ubiquitous ones referring to transcriptome quantification analyses. In this context, a random effects meta-analysis of available gene expression cDNA microarray datasets was performed between responders and non-responders to anti-TNFα therapy in patients with IBD, PsO, and RA. Publicly available datasets were systematically searched from inception to 10th of November 2020 and selected for further analysis if they assessed the response to anti-TNFα therapy with clinical score indexes from inflamed biopsies. Specifically, 4 IBD (79 responders/72 non-responders), 3 PsO (40 responders/11 non-responders) and 2 RA (16 responders/6 non-responders) datasetswere selected. After the separate pre-processing of each dataset, 4 separate meta-analyses were conducted; three disease-specific and a single combined meta-analysis on the disease-specific results. The MetaVolcano R package (v.1.8.0) was utilized for a random-effects meta-analysis through theRestricted Maximum Likelihood (RELM) method. The top 1% of the most consistently perturbed genes in the included datasets was highlighted through the TopConfects approach while maintaining a 5% False Discovery Rate (FDR). Genes were considered as Differentialy Expressed (DEGs) as those with P ≤ 0.05, |log2(FC)| ≥ log2(1.25) and perturbed in at least 75% of the included datasets. Over-representation analysis was performed using Gene Ontology and Reactome Pathways for both up- and down-regulated genes in all 4 performed meta-analyses. Protein-Protein interaction networks were also incorporated in the subsequentanalyses with STRING v11.5 and Cytoscape v3.9. Disease-specific meta-analyses detected multiple distinct pro-inflammatory and immune-related down-regulated genes for each disease, such asNFKBIA, IL36, and IRAK1, respectively. Pathway analyses revealed unique and shared pathways between each disease, such as Neutrophil Degranulation and Signaling by Interleukins. The combined meta-analysis unveiled 436 DEGs, 86 out of which were up- and 350 down-regulated, confirming the aforementioned shared pathways and genes, as well as uncovering genes that participate in anti-inflammatory pathways, namely IL-10 signaling. The identification of key biological pathways and regulatory elements is imperative for the accurate prediction of the patient’s response to biological drugs. Meta-analysis of such gene expression data could aid the challenging approach to unravel the complex interactions implicated in the response to anti-TNFα therapy in patients with PsO, IBD, and RA, as well as distinguish gene clusters and pathways that are altered through this heterogeneous phenotype.

Keywords: anti-TNFα, autoimmune, meta-analysis, microarrays

Procedia PDF Downloads 142
30 Oncolytic Efficacy of Thymidine Kinase-Deleted Vaccinia Virus Strain Tiantan (oncoVV-TT) in Glioma

Authors: Seyedeh Nasim Mirbahari, Taha Azad, Mehdi Totonchi

Abstract:

Oncolytic viruses, which only replicate in tumor cells, are being extensively studied for their use in cancer therapy. A particular virus known as the vaccinia virus, a member of the poxvirus family, has demonstrated oncolytic abilities glioma. Treating Glioma with traditional methods such as chemotherapy and radiotherapy is quite challenging. Even though oncolytic viruses have shown immense potential in cancer treatment, their effectiveness in glioblastoma treatment is still low. Therefore, there is a need to improve and optimize immunotherapies for better results. In this study, we have designed oncoVV-TT, which can more effectively target tumor cells while minimizing replication in normal cells by replacing the thymidine kinase gene with a luc-p2a-GFP gene expression cassette. Human glioblastoma cell line U251 MG, rat glioblastoma cell line C6, and non-tumor cell line HFF were plated at 105 cells in a 12-well plates in 2 mL of DMEM-F2 medium with 10% FBS added to each well. Then incubated at 37°C. After 16 hours, the cells were treated with oncoVV-TT at an MOI of 0.01, 0.1 and left in the incubator for a further 24, 48, 72 and 96 hours. Viral replication assay, fluorescence imaging and viability tests, including trypan blue and crystal violet, were conducted to evaluate the cytotoxic effect of oncoVV-TT. The finding shows that oncoVV-TT had significantly higher cytotoxic activity and proliferation rates in tumor cells in a dose and time-dependent manner, with the strongest effect observed in U251 MG. To conclude, oncoVV-TT has the potential to be a promising oncolytic virus for cancer treatment, with a more cytotoxic effect in human glioblastoma cells versus rat glioma cells. To assess the effectiveness of vaccinia virus-mediated viral therapy, we have tested U251mg and C6 tumor cell lines taken from human and rat gliomas, respectively. The study evaluated oncoVV-TT's ability to replicate and lyse cells and analyzed the survival rates of the tested cell lines when treated with different doses of oncoVV-TT. Additionally, we compared the sensitivity of human and mouse glioma cell lines to the oncolytic vaccinia virus. All experiments regarding viruses were conducted under biosafety level 2. We engineered a Vaccinia-based oncolytic virus called oncoVV-TT to replicate specifically in tumor cells. To propagate the oncoVV-TT virus, HeLa cells (5 × 104/well) were plated in 24-well plates and incubated overnight to attach to the bottom of the wells. Subsequently, 10 MOI virus was added. After 48 h, cells were harvested by scraping, and viruses were collected by 3 sequential freezing and thawing cycles followed by removal of cell debris by centrifugation (1500 rpm, 5 min). The supernatant was stored at −80 ◦C for the following experiments. To measure the replication of the virus in Hela, cells (5 × 104/well) were plated in 24-well plates and incubated overnight to attach to the bottom of the wells. Subsequently, 5 MOI virus or equal dilution of PBS was added. At the treatment time of 0 h, 24 h, 48 h, 72 h and 96 h, the viral titers were determined under the fluorescence microscope (BZ-X700; Keyence, Osaka, Japan). Fluorescence intensity was quantified using the imagej software according to the manufacturer’s protocol. For the isolation of single-virus clones, HeLa cells seeded in six-well plates (5×105 cells/well). After 24 h (100% confluent), the cells were infected with a 10-fold dilution series of TianTan green fluorescent protein (GFP)virus and incubated for 4 h. To examine the cytotoxic effect of oncoVV-TT virus ofn U251mg and C6 cell, trypan blue and crystal violet assay was used.

Keywords: oncolytic virus, immune therapy, glioma, vaccinia virus

Procedia PDF Downloads 51
29 Improvements and Implementation Solutions to Reduce the Computational Load for Traffic Situational Awareness with Alerts (TSAA)

Authors: Salvatore Luongo, Carlo Luongo

Abstract:

This paper discusses the implementation solutions to reduce the computational load for the Traffic Situational Awareness with Alerts (TSAA) application, based on Automatic Dependent Surveillance-Broadcast (ADS-B) technology. In 2008, there were 23 total mid-air collisions involving general aviation fixed-wing aircraft, 6 of which were fatal leading to 21 fatalities. These collisions occurred during visual meteorological conditions, indicating the limitations of the see-and-avoid concept for mid-air collision avoidance as defined in the Federal Aviation Administration’s (FAA). The commercial aviation aircraft are already equipped with collision avoidance system called TCAS, which is based on classic transponder technology. This system dramatically reduced the number of mid-air collisions involving air transport aircraft. In general aviation, the same reduction in mid-air collisions has not occurred, so this reduction is the main objective of the TSAA application. The major difference between the original conflict detection application and the TSAA application is that the conflict detection is focused on preventing loss of separation in en-route environments. Instead TSAA is devoted to reducing the probability of mid-air collision in all phases of flight. The TSAA application increases the flight crew traffic situation awareness providing alerts of traffic that are detected in conflict with ownship in support of the see-and-avoid responsibility. The relevant effort has been spent in the design process and the code generation in order to maximize the efficiency and performances in terms of computational load and memory consumption reduction. The TSAA architecture is divided into two high-level systems: the “Threats database” and the “Conflict detector”. The first one receives the traffic data from ADS-B device and provides the memorization of the target’s data history. Conflict detector module estimates ownship and targets trajectories in order to perform the detection of possible future loss of separation between ownship and each target. Finally, the alerts are verified by additional conflict verification logic, in order to prevent possible undesirable behaviors of the alert flag. In order to reduce the computational load, a pre-check evaluation module is used. This pre-check is only a computational optimization, so the performances of the conflict detector system are not modified in terms of number of alerts detected. The pre-check module uses analytical trajectories propagation for both target and ownship. This allows major accuracy and avoids the step-by-step propagation, which requests major computational load. Furthermore, the pre-check permits to exclude the target that is certainly not a threat, using an analytical and efficient geometrical approach, in order to decrease the computational load for the following modules. This software improvement is not suggested by FAA documents, and so it is the main innovation of this work. The efficiency and efficacy of this enhancement are verified using fast-time and real-time simulations and by the execution on a real device in several FAA scenarios. The final implementation also permits the FAA software certification in compliance with DO-178B standard. The computational load reduction allows the installation of TSAA application also on devices with multiple applications and/or low capacity in terms of available memory and computational capabilities

Keywords: traffic situation awareness, general aviation, aircraft conflict detection, computational load reduction, implementation solutions, software certification

Procedia PDF Downloads 251
28 Comparative Assessment of the Thermal Tolerance of Spotted Stemborer, Chilo partellus Swinhoe (Lepidoptera: Crambidae) and Its Larval Parasitoid, Cotesia sesamiae Cameron (Hymenoptera: Braconidae)

Authors: Reyard Mutamiswa, Frank Chidawanyika, Casper Nyamukondiwa

Abstract:

Under stressful thermal environments, insects adjust their behaviour and physiology to maintain key life-history activities and improve survival. For interacting species, mutual or antagonistic, thermal stress may affect the participants in differing ways, which may then affect the outcome of the ecological relationship. In agroecosystems, this may be the fate of relationships between insect pests and their antagonistic parasitoids under acute and chronic thermal variability. Against this background, we therefore investigated the thermal tolerance of different developmental stages of Chilo partellus Swinhoe (Lepidoptera: Crambidae) and its larval parasitoid Cotesia sesamiae Cameron (Hymenoptera: Braconidae) using both dynamic and static protocols. In laboratory experiments, we determined lethal temperature assays (upper and lower lethal temperatures) using direct plunge protocols in programmable water baths (Systronix, Scientific, South Africa), effects of ramping rate on critical thermal limits following standardized protocols using insulated double-jacketed chambers (‘organ pipes’) connected to a programmable water bath (Lauda Eco Gold, Lauda DR.R. Wobser GMBH and Co. KG, Germany), supercooling points (SCPs) following dynamic protocols using a Pico logger connected to a programmable water bath, heat knock-down time (HKDT) and chill-coma recovery (CCRT) time following static protocols in climate chambers (HPP 260, Memmert GmbH + Co.KG, Germany) connected to a camera (HD Covert Network Camera, DS-2CD6412FWD-20, Hikvision Digital Technology Co., Ltd, China). When exposed for two hours to a static temperature, lower lethal temperatures ranged -9 to 6; -14 to -2 and -1 to 4ºC while upper lethal temperatures ranged from 37 to 48; 41 to 49 and 36 to 39ºC for C. partellus eggs, larvae and C. sesamiae adults respectively. Faster heating rates improved critical thermal maxima (CTmax) in C. partellus larvae and adult C. partellus and C. sesamiae. Lower cooling rates improved critical thermal minima (CTmin) in C. partellus and C. sesamiae adults while compromising CTmin in C. partellus larvae. The mean SCPs for C. partellus larvae, pupae and adults were -11.82±1.78, -10.43±1.73 and -15.75±2.47 respectively with adults having the lowest SCPs. Heat knock-down time and chill-coma recovery time varied significantly between C. partellus larvae and adults. Larvae had higher HKDT than adults, while the later recovered significantly faster following chill-coma. Current results suggest developmental stage differences in C. partellus thermal tolerance (with respect to lethal temperatures and critical thermal limits) and a compromised temperature tolerance of parasitoid C. sesamiae relative to its host, suggesting potential asynchrony between host-parasitoid population phenology and consequently biocontrol efficacy under global change. These results have broad implications to biological pest management insect-natural enemy interactions under rapidly changing thermal environments.

Keywords: chill-coma recovery time, climate change, heat knock-down time, lethal temperatures, supercooling point

Procedia PDF Downloads 212
27 Made on Land, Ends Up in the Water "I-Clare" Intelligent Remediation System for Removal of Harmful Contaminants in Water using Modified Reticulated Vitreous Carbon Foam

Authors: Sabina Żołędowska, Tadeusz Ossowski, Robert Bogdanowicz, Jacek Ryl, Paweł Rostkowski, Michał Kruczkowski, Michał Sobaszek, Zofia Cebula, Grzegorz Skowierzak, Paweł Jakóbczyk, Lilit Hovhannisyan, Paweł Ślepski, Iwona Kaczmarczyk, Mattia Pierpaoli, Bartłomiej Dec, Dawid Nidzworski

Abstract:

The circular economy of water presents a pressing environmental challenge in our society. Water contains various harmful substances, such as drugs, antibiotics, hormones, and dioxides, which can pose silent threats. Water pollution has severe consequences for aquatic ecosystems. It disrupts the balance of ecosystems by harming aquatic plants, animals, and microorganisms. Water pollution poses significant risks to human health. Exposure to toxic chemicals through contaminated water can have long-term health effects, such as cancer, developmental disorders, and hormonal imbalances. However, effective remediation systems can be implemented to remove these contaminants using electrocatalytic processes, which offer an environmentally friendly alternative to other treatment methods, and one of them is the innovative iCLARE system. The project's primary focus revolves around a few main topics: Reactor design and construction, selection of a specific type of reticulated vitreous carbon foams (RVC), analytical studies of harmful contaminants parameters and AI implementation. This high-performance electrochemical reactor will be build based on a novel type of electrode material. The proposed approach utilizes the application of reticulated vitreous carbon foams (RVC) with deposited modified metal oxides (MMO) and diamond thin films. The following setup is characterized by high surface area development and satisfactory mechanical and electrochemical properties, designed for high electrocatalytic process efficiency. The consortium validated electrode modification methods that are the base of the iCLARE product and established the procedures for the detection of chemicals detection: - deposition of metal oxides WO3 and V2O5-deposition of boron-doped diamond/nanowalls structures by CVD process. The chosen electrodes (porous Ferroterm electrodes) were stress tested for various parameters that might occur inside the iCLARE machine–corosis, the long-term structure of the electrode surface during electrochemical processes, and energetic efficacy using cyclic polarization and electrochemical impedance spectroscopy (before and after electrolysis) and dynamic electrochemical impedance spectroscopy (DEIS). This tool allows real-time monitoring of the changes at the electrode/electrolyte interphase. On the other hand, the toxicity of iCLARE chemicals and products of electrolysis are evaluated before and after the treatment using MARA examination (IBMM) and HPLC-MS-MS (NILU), giving us information about the harmfulness of using electrode material and the efficiency of iClare system in the disposal of pollutants. Implementation of data into the system that uses artificial intelligence and the possibility of practical application is in progress (SensDx).

Keywords: waste water treatement, RVC, electrocatalysis, paracetamol

Procedia PDF Downloads 48
26 Pathophysiological Implications in Immersion Treatment Methods of Icthyophthiriasis Disease in African Catfish (Clarias gariepinus) Using Moringa oleifera Extract

Authors: Ikele Chika Bright, Mgbenka Bernard Obialo, Ikele Chioma Faith

Abstract:

Icthyophthiriasis is a prevalent protozoan (ectoparasite) mostly affecting cultured and aquarium fishes. The majority of the chemotherapeutants lack efficacy for completely eliminating Ich parasite without affecting the environment and they are not safe for human health. The present work is focused on the evaluating different immersion treatments of African catfish (Clarias gariepinus) infected with ichthyophthiriasis and treated with a non-chemical and environmental friendly parasiticides Moringa oleifera. A total number of 800 apparently healthy parasites free (examined) post juvenile catfish were obtained from a reputable farm, disinfected with potassium permanganate in a quarantine tank to remove any possible external parasites. The fish were further challenged with approximately 44,000 infective stages of theronts which were obtained through serial passages by cohabitation. Seven groups (A-G) of post Juvenile were used for the experiment which was carried out into three stages; Dips (60minutes), short term treatment (24-96h) and prolong bath treatment (0-15 days). The concentrations selected were dependent on the outcome of the LC50 of the plant material from which dose-dependent factors were used to select various concentrations of the treatment. In Dips treatment, group D-G were treated with 1,500mg/L, 2500mg/L., 3500mg/L and 4500mg/L, short-term treatment was treated with 150mg/L, 250mg/L, 350mg/L and 450mg/L and prolong bath was treated with 15mg/L, 25mg/L, 35mg/L and 45mg/L of the plant extract whereas group A, B and C were normal control, Ich- infested not treated and Ich- infested treated with standard drug (Acriflavin), respectively. The various types of treatment applied with corresponding concentrations showed almost complete elimination of the adult parasites (trophonts) both in the gills and the body smear, thereby making M. oleifera a potential parasiticides. There were serious pathological alterations in the skin and gills which are usually the main point for Ich parasites invasion but no significant morphological characteristics was noted among the treated groups subjected to different immersion treatment patterns. Epitheliocystis, aneurysm, oedema, hemorrhage, and localization of the adult parasite in the gills were the overall common observations made in the gills whereas degeneration of muscle fibre, dermatitis, hemorrhage, oedema, abscess formation and keratinisation were observed in the skin. However, there are no pathological changes in the control group. Moreover, biochemical parameters such as urea, creatinine, albumin., globulin, total protein, ALT, AST), blood chemistry (sodium, chloride, potassium, bicarbonate), antioxidants (CAT, SOD, GPx, LPO), enzymatic activities (myeloperoxidase, thioreadoxin reductase), Inflammatory response (C-reactive protein), Stress markers (lactate dehydrogenase), heamatological parameters (RBC, PCV, WBC, HB and differential count), lipid profile (total cholesterol, tryglycerides , high density lipoprotein and low density lipoprotein) all showed various significant (P<0.05) and no significant (P>0.05) responses among the Ich-infested fish treated under three immersion treatments. It is suggested that M. oleifera may serve as an alternatives to chemotherapeutants for control of Ichthyophthiriasis in African catfish Clarias gariepinus.

Keywords: Icthyophthirius multifilis, immersion treatment, pathophysiology, African catfish

Procedia PDF Downloads 358
25 Italian Speech Vowels Landmark Detection through the Legacy Tool 'xkl' with Integration of Combined CNNs and RNNs

Authors: Kaleem Kashif, Tayyaba Anam, Yizhi Wu

Abstract:

This paper introduces a methodology for advancing Italian speech vowels landmark detection within the distinctive feature-based speech recognition domain. Leveraging the legacy tool 'xkl' by integrating combined convolutional neural networks (CNNs) and recurrent neural networks (RNNs), the study presents a comprehensive enhancement to the 'xkl' legacy software. This integration incorporates re-assigned spectrogram methodologies, enabling meticulous acoustic analysis. Simultaneously, our proposed model, integrating combined CNNs and RNNs, demonstrates unprecedented precision and robustness in landmark detection. The augmentation of re-assigned spectrogram fusion within the 'xkl' software signifies a meticulous advancement, particularly enhancing precision related to vowel formant estimation. This augmentation catalyzes unparalleled accuracy in landmark detection, resulting in a substantial performance leap compared to conventional methods. The proposed model emerges as a state-of-the-art solution in the distinctive feature-based speech recognition systems domain. In the realm of deep learning, a synergistic integration of combined CNNs and RNNs is introduced, endowed with specialized temporal embeddings, harnessing self-attention mechanisms, and positional embeddings. The proposed model allows it to excel in capturing intricate dependencies within Italian speech vowels, rendering it highly adaptable and sophisticated in the distinctive feature domain. Furthermore, our advanced temporal modeling approach employs Bayesian temporal encoding, refining the measurement of inter-landmark intervals. Comparative analysis against state-of-the-art models reveals a substantial improvement in accuracy, highlighting the robustness and efficacy of the proposed methodology. Upon rigorous testing on a database (LaMIT) speech recorded in a silent room by four Italian native speakers, the landmark detector demonstrates exceptional performance, achieving a 95% true detection rate and a 10% false detection rate. A majority of missed landmarks were observed in proximity to reduced vowels. These promising results underscore the robust identifiability of landmarks within the speech waveform, establishing the feasibility of employing a landmark detector as a front end in a speech recognition system. The synergistic integration of re-assigned spectrogram fusion, CNNs, RNNs, and Bayesian temporal encoding not only signifies a significant advancement in Italian speech vowels landmark detection but also positions the proposed model as a leader in the field. The model offers distinct advantages, including unparalleled accuracy, adaptability, and sophistication, marking a milestone in the intersection of deep learning and distinctive feature-based speech recognition. This work contributes to the broader scientific community by presenting a methodologically rigorous framework for enhancing landmark detection accuracy in Italian speech vowels. The integration of cutting-edge techniques establishes a foundation for future advancements in speech signal processing, emphasizing the potential of the proposed model in practical applications across various domains requiring robust speech recognition systems.

Keywords: landmark detection, acoustic analysis, convolutional neural network, recurrent neural network

Procedia PDF Downloads 16