Search results for: output coupling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2646

Search results for: output coupling

2376 Solar Cell Degradation by Electron Irradiation Effect of Irradiation Fluence

Authors: H. Mazouz, A. Belghachi, F. Hadjaj

Abstract:

Solar cells used in orbit are exposed to radiation environment mainly protons and high energy electrons. These particles degrade the output parameters of the solar cell. The aim of this work is to characterize the effects of electron irradiation fluence on the J (V) characteristic and output parameters of gaAs solar cell by numerical simulation. The results obtained demonstrate that the electron irradiation-induced degradation of performances of the cells concerns mainly the short circuit current.

Keywords: gaAs solar cell, MeV electron irradiation, irradiation fluence, short circuit

Procedia PDF Downloads 433
2375 Light Emission Enhancement of Silicon Nanocrystals by Gold Layer

Authors: R. Karmouch

Abstract:

A thin gold metal layer was deposited on the top of silicon oxide films containing embedded Si nanocrystals (Si-nc). The sample was annealed in gas containing nitrogen, and subsequently characterized by photoluminescence. We obtained 3-fold enhancement of photon emission from the Si-nc embedded in silicon dioxide covered with a Gold layer as compared with an uncovered sample. We attribute this enhancement to the increase of the spontaneous emission rate caused by the coupling of the Si-nc emitters with the surface plasmons (SP). The evolution of PL emission with laser irradiated time was also collected from covered samples, and compared to that from uncovered samples. In an uncovered sample, the PL intensity decreases with time, approximately with two decay constants. Although the decrease of the initial PL intensity associated with the increase of sample temperature under CW pumping is still observed in samples covered with a gold layer, this film significantly contributes to reduce the permanent deterioration of the PL intensity. The resistance to degradation of light-emitting silicon nanocrystals can be increased by SP coupling to suppress the permanent deterioration. Controlling the permanent photodeterioration can allow to perform a reliable optical gain measurement.

Keywords: photodeterioration, silicon nanocrystals, ion implantation, photoluminescence, surface plasmons

Procedia PDF Downloads 394
2374 Evaluation of Geomechanical and Geometrical Parameters’ Effects on Hydro-Mechanical Estimation of Water Inflow into Underground Excavations

Authors: M. Mazraehli, F. Mehrabani, S. Zare

Abstract:

In general, mechanical and hydraulic processes are not independent of each other in jointed rock masses. Therefore, the study on hydro-mechanical coupling of geomaterials should be a center of attention in rock mechanics. Rocks in their nature contain discontinuities whose presence extremely influences mechanical and hydraulic characteristics of the medium. Assuming this effect, experimental investigations on intact rock cannot help to identify jointed rock mass behavior. Hence, numerical methods are being used for this purpose. In this paper, water inflow into a tunnel under significant water table has been estimated using hydro-mechanical discrete element method (HM-DEM). Besides, effects of geomechanical and geometrical parameters including constitutive model, friction angle, joint spacing, dip of joint sets, and stress factor on the estimated inflow rate have been studied. Results demonstrate that inflow rates are not identical for different constitutive models. Also, inflow rate reduces with increased spacing and stress factor.

Keywords: distinct element method, fluid flow, hydro-mechanical coupling, jointed rock mass, underground excavations

Procedia PDF Downloads 137
2373 The Effect of Measurement Distribution on System Identification and Detection of Behavior of Nonlinearities of Data

Authors: Mohammad Javad Mollakazemi, Farhad Asadi, Aref Ghafouri

Abstract:

In this paper, we considered and applied parametric modeling for some experimental data of dynamical system. In this study, we investigated the different distribution of output measurement from some dynamical systems. Also, with variance processing in experimental data we obtained the region of nonlinearity in experimental data and then identification of output section is applied in different situation and data distribution. Finally, the effect of the spanning the measurement such as variance to identification and limitation of this approach is explained.

Keywords: Gaussian process, nonlinearity distribution, particle filter, system identification

Procedia PDF Downloads 482
2372 The Effect Analysis of Monetary Instruments through Islamic Banking Financing Channel toward Economic Growth in Indonesia, Period January 2008-December 2015

Authors: Sobar M. Johari, Ida Putri Anjarsari

Abstract:

In the transmission of monetary instrument towards real sector of the economy, Bank Indonesia as monetary authority has developed Islamic Bank Indonesia Certificate (abbreviated as SBIS) as an instrument in Islamic open market operation. One of the monetary transmission channels could take place through financing channel from which the fund is used as the source of banking financing. This study aims to analyse the impact of Islamic monetary instrument towards output or economic growth. Data used in this research is taken from Bank Indonesia and Central Board of Statistics for the period of January 2008 until December 2015. The study employs Granger Causality Test, Vector Error Correction Model (VECM), Impulse Response Function (IRF) technique and Forecast Error Variance Decomposition (FEVD) as its analytical methods. The results show that, first, the transmission mechanism of banking financing channel are not linked to output. Second, estimation results of VECM show that SBIS, PUAS, and FIN have significant impact in the long term towards output. When there is monetary shock, output or economic growth could be recovered and stabilized in the short term. FEVD results show that Islamic banking financing contributes 1.33 percent to increase economic growth.

Keywords: Islamic monetary instrument, Islamic banking financing channel, economic growth, Vector Error Correction Model (VECM)

Procedia PDF Downloads 244
2371 Design and Characterization of CMOS Readout Circuit for ISFET and ISE Based Sensors

Authors: Yuzman Yusoff, Siti Noor Harun, Noor Shelida Salleh, Tan Kong Yew

Abstract:

This paper presents the design and characterization of analog readout interface circuits for ion sensitive field effect transistor (ISFET) and ion selective electrode (ISE) based sensor. These interface circuits are implemented using MIMOS’s 0.35um CMOS technology and experimentally characterized under 24-leads QFN package. The characterization evaluates the circuit’s functionality, output sensitivity and output linearity. Commercial sensors for both ISFET and ISE are employed together with glass reference electrode during testing. The test result shows that the designed interface circuits manage to readout signals produced by both sensors with measured sensitivity of ISFET and ISE sensor are 54mV/pH and 62mV/decade, respectively. The characterized output linearity for both circuits achieves above 0.999 rsquare. The readout also has demonstrated reliable operation by passing all qualifications in reliability test plan.

Keywords: readout interface circuit (ROIC), analog interface circuit, ion sensitive field effect transistor (ISFET), ion selective electrode (ISE), ion sensor electronics

Procedia PDF Downloads 289
2370 MBR-RO System Operation in Quantitative and Qualitative Promotion of Waste Water Cleaning: Case Study of Shokohieyh Qoms’ Waste Water Cleaning

Authors: A. A. Hassani, M. Nasri Nasrabadi

Abstract:

According to population growth and increasing water needs of industrial and agricultural sections and lack of existing water sources, also increases of wastewater and new wastewater treatment plant construction’s high costs, it is inevitable to reuse wastewater with the approach of increasing wastewater treatment capacity and output sewage quality. In this regard, the first sewage reuse plan in industrial uses was designed with the approach of qualitative and quantitative improvement due to the increased organic load of the output sewage of Qom Shokohieh city’s’ in wastewater treatment plant. This research investigated qualitative factors COD, BOD, TSS, TDS, and input and output heavy metal of MBR-RO system and ability of increase wastewater acceptance capacity by existing in wastewater treatment plant. For this purpose, experimental results of seven-month navigation system have been used from 07/01/2013 to 02/01/2014. Existing data analysis showed that MBR system is able to remove 93.2% COD, 94.4% BOD, 13.8% TDS, 98% heavy metals and RO system is able to remove 98.9% TDS. This study showed that MBR-RO integration system is able to increase the capacity of refinery by 30%.

Keywords: industrial wastewater, wastewater reuse, MBR, RO

Procedia PDF Downloads 252
2369 Policy Effectiveness in the Situation of Economic Recession

Authors: S. K. Ashiquer Rahman

Abstract:

The proper policy handling might not able to attain the target since some of recessions, e.g., pandemic-led crises, the variables shocks of the economics. At the level of this situation, the Central bank implements the monetary policy to choose increase the exogenous expenditure and level of money supply consecutively for booster level economic growth, whether the monetary policy is relatively more effective than fiscal policy in altering real output growth of a country or both stand for relatively effective in the direction of output growth of a country. The dispute with reference to the relationship between the monetary policy and fiscal policy is centered on the inflationary penalty of the shortfall financing by the fiscal authority. The latest variables socks of economics as well as the pandemic-led crises, central banks around the world predicted just about a general dilemma in relation to increase rates to face the or decrease rates to sustain the economic movement. Whether the prices hang about fundamentally unaffected, the aggregate demand has also been hold a significantly negative attitude by the outbreak COVID-19 pandemic. To empirically investigate the effects of economics shocks associated COVID-19 pandemic, the paper considers the effectiveness of the monetary policy and fiscal policy that linked to the adjustment mechanism of different economic variables. To examine the effects of economics shock associated COVID-19 pandemic towards the effectiveness of Monetary Policy and Fiscal Policy in the direction of output growth of a Country, this paper uses the Simultaneous equations model under the estimation of Two-Stage Least Squares (2SLS) and Ordinary Least Squares (OLS) Method.

Keywords: IS-LM framework, pandemic. Economics variables shocks, simultaneous equations model, output growth

Procedia PDF Downloads 59
2368 Mecano-Reliability Coupled of Reinforced Concrete Structure and Vulnerability Analysis: Case Study

Authors: Kernou Nassim

Abstract:

The current study presents a vulnerability and a reliability-mechanical approach that focuses on evaluating the seismic performance of reinforced concrete structures to determine the probability of failure. In this case, the performance function reflecting the non-linear behavior of the structure is modeled by a response surface to establish an analytical relationship between the random variables (strength of concrete and yield strength of steel) and mechanical responses of the structure (inter-floor displacement) obtained by the pushover results of finite element simulations. The push over-analysis is executed by software SAP2000. The results acquired prove that properly designed frames will perform well under seismic loads. It is a comparative study of the behavior of the existing structure before and after reinforcement using the pushover method. The coupling indirect mechanical reliability by response surface avoids prohibitive calculation times. Finally, the results of the proposed approach are compared with Monte Carlo Simulation. The comparative study shows that the structure is more reliable after the introduction of new shear walls.

Keywords: finite element method, surface response, reliability, reliability mechanical coupling, vulnerability

Procedia PDF Downloads 94
2367 Bridging the Gap between Different Interfaces for Business Process Modeling

Authors: Katalina Grigorova, Kaloyan Mironov

Abstract:

The paper focuses on the benefits of business process modeling. Although this discipline is developing for many years, there is still necessity of creating new opportunities to meet the ever-increasing users’ needs. Because one of these needs is related to the conversion of business process models from one standard to another, the authors have developed a converter between BPMN and EPC standards using workflow patterns as intermediate tool. Nowadays there are too many systems for business process modeling. The variety of output formats is almost the same as the systems themselves. This diversity additionally hampers the conversion of the models. The presented study is aimed at discussing problems due to differences in the output formats of various modeling environments.

Keywords: business process modeling, business process modeling standards, workflow patterns, converting models

Procedia PDF Downloads 557
2366 Improved 3D Structure Prediction of Beta-Barrel Membrane Proteins by Using Evolutionary Coupling Constraints, Reduced State Space and an Empirical Potential Function

Authors: Wei Tian, Jie Liang, Hammad Naveed

Abstract:

Beta-barrel membrane proteins are found in the outer membrane of gram-negative bacteria, mitochondria, and chloroplasts. They carry out diverse biological functions, including pore formation, membrane anchoring, enzyme activity, and bacterial virulence. In addition, beta-barrel membrane proteins increasingly serve as scaffolds for bacterial surface display and nanopore-based DNA sequencing. Due to difficulties in experimental structure determination, they are sparsely represented in the protein structure databank and computational methods can help to understand their biophysical principles. We have developed a novel computational method to predict the 3D structure of beta-barrel membrane proteins using evolutionary coupling (EC) constraints and a reduced state space. Combined with an empirical potential function, we can successfully predict strand register at > 80% accuracy for a set of 49 non-homologous proteins with known structures. This is a significant improvement from previous results using EC alone (44%) and using empirical potential function alone (73%). Our method is general and can be applied to genome-wide structural prediction.

Keywords: beta-barrel membrane proteins, structure prediction, evolutionary constraints, reduced state space

Procedia PDF Downloads 579
2365 Organizational Efficiency in the Age of the Current Financial Crisis Strategies and Tracks Progress

Authors: Aharouay Soumaya

Abstract:

Efficiency is a relative concept. It is measured by comparing the productivity obtained in what is intended as standard or objective criteria. The quantity and quality of output achieved and the level of service are also compared to targets or standards, to determine to what extent they could cause changes in efficiency. Efficiency improves when more outputs of a specified quality are produced with the same resource inputs or less, or when the same amount of output is produced with fewer resources. This article proposes a review of the literature on strategies adopted by firms in the age of the financial crisis to overcome these negative effects, and tracks progress chosen by the organization to remain successful despite the plight of firms.

Keywords: effectiveness, efficiency, organizational capacity, strategy, management tool, progress, performance

Procedia PDF Downloads 318
2364 Online Compressor Washing for Gas Turbine Power Output

Authors: Enyia James Diwa, Isaiah Thank-God Ebi, Dodeye Ina Igbong

Abstract:

The privatization of utilities has brought about very strong competition in industries such as petrochemical and gas distribution among others, considering the continuous increase in cost of fuel. This has brought about the intense reason for gas turbine owners and operators to reduce and control performance degradation of the engine in other to minimize cost. The most common and very crucial problem of the gas turbine is the fouling of compressor, which is mostly caused by a reduction in flow capacity, compressor efficiency, and pressure ratio, this, in turn, lead to the engine compressor re-matching and output power and thermal efficiency reduction. The content of this paper encompasses a detailed presentation of the major causes, effects and control mechanism of fouling. The major emphasis is on compressor water washing to enable power augmentation. A modelled gas turbine similar to that of GE LM6000 is modelled for the current study, based on TURBOMATCH which is a Cranfield University software specifically made for gas turbine performance simulation and fouling detection. The compounded and intricate challenges of compressor online water washing of large output gas turbine are carried out. The treatment is applied to axial compressor used in the petrochemical and hydrocarbon industry.

Keywords: gas turbine, fouling, degradation, compressor washing

Procedia PDF Downloads 324
2363 A Grid Synchronization Method Based On Adaptive Notch Filter for SPV System with Modified MPPT

Authors: Priyanka Chaudhary, M. Rizwan

Abstract:

This paper presents a grid synchronization technique based on adaptive notch filter for SPV (Solar Photovoltaic) system along with MPPT (Maximum Power Point Tracking) techniques. An efficient grid synchronization technique offers proficient detection of various components of grid signal like phase and frequency. It also acts as a barrier for harmonics and other disturbances in grid signal. A reference phase signal synchronized with the grid voltage is provided by the grid synchronization technique to standardize the system with grid codes and power quality standards. Hence, grid synchronization unit plays important role for grid connected SPV systems. As the output of the PV array is fluctuating in nature with the meteorological parameters like irradiance, temperature, wind etc. In order to maintain a constant DC voltage at VSC (Voltage Source Converter) input, MPPT control is required to track the maximum power point from PV array. In this work, a variable step size P & O (Perturb and Observe) MPPT technique with DC/DC boost converter has been used at first stage of the system. This algorithm divides the dPpv/dVpv curve of PV panel into three separate zones i.e. zone 0, zone 1 and zone 2. A fine value of tracking step size is used in zone 0 while zone 1 and zone 2 requires a large value of step size in order to obtain a high tracking speed. Further, adaptive notch filter based control technique is proposed for VSC in PV generation system. Adaptive notch filter (ANF) approach is used to synchronize the interfaced PV system with grid to maintain the amplitude, phase and frequency parameters as well as power quality improvement. This technique offers the compensation of harmonics current and reactive power with both linear and nonlinear loads. To maintain constant DC link voltage a PI controller is also implemented and presented in this paper. The complete system has been designed, developed and simulated using SimPower System and Simulink toolbox of MATLAB. The performance analysis of three phase grid connected solar photovoltaic system has been carried out on the basis of various parameters like PV output power, PV voltage, PV current, DC link voltage, PCC (Point of Common Coupling) voltage, grid voltage, grid current, voltage source converter current, power supplied by the voltage source converter etc. The results obtained from the proposed system are found satisfactory.

Keywords: solar photovoltaic systems, MPPT, voltage source converter, grid synchronization technique

Procedia PDF Downloads 566
2362 Progress of Legislation in Post-Colonial, Post-Communist and Socialist Countries for the Intellectual Property Protection of the Autonomous Output of Artificial Intelligence

Authors: Ammar Younas

Abstract:

This paper is an attempt to explore the legal progression in procedural laws related to “intellectual property protection for the autonomous output of artificial intelligence” in Post-Colonial, Post-Communist and Socialist Countries. An in-depth study of legal progression in Pakistan (Common Law), Uzbekistan (Post-Soviet Civil Law) and China (Socialist Law) has been conducted. A holistic attempt has been made to explore that how the ideological context of the legal systems can impact, not only on substantive components but on the procedural components of the formal laws related to IP Protection of autonomous output of Artificial Intelligence. Moreover, we have tried to shed a light on the prospective IP laws and AI Policy in the countries, which are planning to incorporate the concept of “Digital Personality” in their legal systems. This paper will also address the question: “How far IP of autonomous output of AI can be protected with the introduction of “Non-Human Legal Personality” in legislation?” By using the examples of China, Pakistan and Uzbekistan, a case has been built to highlight the legal progression in General Provisions of Civil Law, Artificial Intelligence Policy of the country and Intellectual Property laws. We have used a range of multi-disciplinary concepts and examined them on the bases of three criteria: accuracy of legal/philosophical presumption, applying to the real time situations and testing on rational falsification tests. It has been observed that the procedural laws are designed in a way that they can be seen correlating with the ideological contexts of these countries.

Keywords: intellectual property, artificial intelligence, digital personality, legal progression

Procedia PDF Downloads 94
2361 1,8-Naphthalimide Substituted 4,4-Difluoroboradiaza-S-Indacene Dyads: Synthesis, Structure, Properties and Live-Cell Imaging

Authors: Madhurima Poddar, Vinay Sharma, Shaikh M. Mobin, Rajneesh Misra

Abstract:

Three 1,8-naphthalimide (NPI) substituted 4,4-difluoroboradiaza-s-indacene (BODIPY) dyads were synthesized via Pd-catalyzed Sonogashira cross-coupling reaction of ethynyl substituted NPI with the meso-, β- and α-halogenated BODIPYs, respectively. The photophysical and electrochemical data reveals considerable electronic communication between the BODIPY and NPI moieties. The electronic absorption spectrum reveals that the substitution of NPI at α position of BODIPY exhibit better electronic communication between the NPI and the BODIPY units. The electronic structures of all the dyads exhibit planar geometries which are in a good correlation with the structures obtained from single crystal X-ray diffraction. The crystal structures of the dyads exhibit interesting supramolecular interactions. The dyads show good cytocompatibility with the potential of multicolor live-cell imaging; making them excellent candidates for biological applications. The work provides an important strategy of screening the substitution pattern at different position of BODIPYs which will be useful for the design of BODIPY based organic molecules for various optoelectronic applications as well as bio-imaging.

Keywords: bio-imaging studies, cross-coupling, cyclic voltammetry, density functional calculations, fluorescence spectra, single crystal XRD, UV/Vis spectroscopy

Procedia PDF Downloads 127
2360 Experimental Assessment of a Grid-Forming Inverter in Microgrid Islanding Operation Mode

Authors: Dalia Salem, Detlef Schulz

Abstract:

As Germany pursues its ambitious plan towards a power system based on renewable energy sources, the necessity to establish steady, robust microgrids becomes more evident. Inside the microgrid, there is at least one grid-forming inverter responsible for generating the coupling voltage and stabilizing the system frequency within the standardized accepted limits when the microgrid is forced to operate as a stand-alone power system. Grid-forming control for distributed inverters is required to enable steady control of a low-inertia power system. In this paper, a designed droop control technique is tested at the controller of an inverter as a component of a hardware test bed to understand the microgrid behavior in two modes of operation: i) grid-connected and ii) operating in islanding mode. This droop technique includes many current and voltage inner control loops, where the Q-V and P-f droop provide the required terminal output voltage and frequency. The technique is tested first in a simulation model of the inverter in MATLAB/SIMULINK, and the results are compared to the results of the hardware laboratory test. The results of this experiment illuminate the pivotal role of the grid-forming inverter in facilitating microgrid resilience during grid disconnection events and how microgrids could provide the functionality formerly provided by synchronous machinery, such as the black start process.

Keywords: microgrid, grid-forming inverters, droop-control, islanding-operation

Procedia PDF Downloads 38
2359 Performance Improvement of Photovoltaic Module at Different Tilt Angle in Kuwait

Authors: Hussain Bunyan, Wesam Ali

Abstract:

In this paper we will study the performance of a Silicon Photovoltaic (PV) system with different tilt angle arrangement in Kuwait (latitude 30˚ N). In this study the PV system is installed facing south, collecting maximum solar radiation at noon, and their angles are from 00 to 900 respectively, during full year at the Solstice and Equinox periods and aiming for a higher angle than 300 with competitive output power. The results show that the performance and the output power of the PV system with 50˚ tilt angle, is equivalent to the latitude tilt angle (30˚) during a full year.

Keywords: photovoltaic model, tilt angle, solar collector, PV system performance, State of Kuwait

Procedia PDF Downloads 488
2358 Performance of Photovoltaic Module at Different Tilt Angles

Authors: Hussain Bunyan, Wesam Ali

Abstract:

In this paper we will study the performance of a Silicon Photovoltaic (PV) system with different tilt angle arrangement in Kuwait (latitude 30˚ N). In the study the PV system is installed facing South, collecting maximum solar radiation at noon, and their angles are from 00 to 900 respectively, during full year at the Solstice and Equinox periods, aiming for a higher angle than 300 with competitive output power. The results show that the performance and the output power of the PV system with 50˚ tilt angle, is equivalent to the latitude tilt angle (30˚) during a full year.

Keywords: photovoltaic model, tilt angle, solar collector, PV system performance, State of Kuwait

Procedia PDF Downloads 462
2357 Least Squares Solution for Linear Quadratic Gaussian Problem with Stochastic Approximation Approach

Authors: Sie Long Kek, Wah June Leong, Kok Lay Teo

Abstract:

Linear quadratic Gaussian model is a standard mathematical model for the stochastic optimal control problem. The combination of the linear quadratic estimation and the linear quadratic regulator allows the state estimation and the optimal control policy to be designed separately. This is known as the separation principle. In this paper, an efficient computational method is proposed to solve the linear quadratic Gaussian problem. In our approach, the Hamiltonian function is defined, and the necessary conditions are derived. In addition to this, the output error is defined and the least-square optimization problem is introduced. By determining the first-order necessary condition, the gradient of the sum squares of output error is established. On this point of view, the stochastic approximation approach is employed such that the optimal control policy is updated. Within a given tolerance, the iteration procedure would be stopped and the optimal solution of the linear-quadratic Gaussian problem is obtained. For illustration, an example of the linear-quadratic Gaussian problem is studied. The result shows the efficiency of the approach proposed. In conclusion, the applicability of the approach proposed for solving the linear quadratic Gaussian problem is highly demonstrated.

Keywords: iteration procedure, least squares solution, linear quadratic Gaussian, output error, stochastic approximation

Procedia PDF Downloads 138
2356 Application of Fractional Model Predictive Control to Thermal System

Authors: Aymen Rhouma, Khaled Hcheichi, Sami Hafsi

Abstract:

The article presents an application of Fractional Model Predictive Control (FMPC) to a fractional order thermal system using Controlled Auto Regressive Integrated Moving Average (CARIMA) model obtained by discretization of a continuous fractional differential equation. Moreover, the output deviation approach is exploited to design the K -step ahead output predictor, and the corresponding control law is obtained by solving a quadratic cost function. Experiment results onto a thermal system are presented to emphasize the performances and the effectiveness of the proposed predictive controller.

Keywords: fractional model predictive control, fractional order systems, thermal system, predictive control

Procedia PDF Downloads 382
2355 Increasing of Gain in Unstable Thin Disk Resonator

Authors: M. Asl. Dehghan, M. H. Daemi, S. Radmard, S. H. Nabavi

Abstract:

Thin disk lasers are engineered for efficient thermal cooling and exhibit superior performance for this task. However the disk thickness and large pumped area make the use of this gain format in a resonator difficult when constructing a single-mode laser. Choosing an unstable resonator design is beneficial for this purpose. On the other hand, the low gain medium restricts the application of unstable resonators to low magnifications and therefore to a poor beam quality. A promising idea to enable the application of unstable resonators to wide aperture, low gain lasers is to couple a fraction of the out coupled radiation back into the resonator. The output coupling gets dependent on the ratio of the back reflection and can be adjusted independently from the magnification. The excitation of the converging wave can be done by the use of an external reflector. The resonator performance is numerically predicted. First of all the threshold condition of linear, V and 2V shape resonator is investigated. Results show that the maximum magnification is 1.066 that is very low for high quality purposes. Inserting an additional reflector covers the low gain. The reflectivity and the related magnification of a 350 micron Yb:YAG disk are calculated. The theoretical model was based on the coupled Kirchhoff integrals and solved numerically by the Fox and Li algorithm. Results show that with back reflection mechanism in combination with increasing the number of beam incidents on disk, high gain and high magnification can occur.

Keywords: unstable resonators, thin disk lasers, gain, external reflector

Procedia PDF Downloads 385
2354 Output Voltage Analysis of CMOS Colpitts Oscillator with Short Channel Device

Authors: Maryam Ebrahimpour, Amir Ebrahimi

Abstract:

This paper presents the steady-state amplitude analysis of MOS Colpitts oscillator with short channel device. The proposed method is based on a large signal analysis and the nonlinear differential equations that govern the oscillator circuit behaviour. Also, the short channel effects are considered in the proposed analysis and analytical equations for finding the steady-state oscillation amplitude are derived. The output voltage calculated from this analysis is in excellent agreement with simulations for a wide range of circuit parameters.

Keywords: colpitts oscillator, CMOS, electronics, circuits

Procedia PDF Downloads 320
2353 Large-Scale Photovoltaic Generation System Connected to HVDC Grid with Centralized High Voltage and High Power DC/DC Converter

Authors: Xinke Huang, Huan Wang, Lidong Guo, Changbin Ju, Runbiao Liu, Shanshan Meng, Yibo Wang, Honghua Xu

Abstract:

Large-scale photovoltaic (PV) generation system connected to HVDC grid has many advantages compared to its counterpart of AC grid. DC connection can solve many problems that AC connection faces, such as the grid-connection and power transmission, and DC connection is the tendency. DC/DC converter as the most important device in the system has become one of the hot spots recently. The paper proposes a centralized DC/DC converter which uses Boost Full Bridge Isolated DC/DC Converter(BFBIC) topology and combination through input parallel output series(IPOS) method to improve power capacity and output voltage to match with the HVDC grid voltage. Meanwhile, it adopts input current sharing control strategy to realize input current and output voltage balance. A ±30kV/1MW system is modeled in MATLAB/SIMULINK, and a downscaled ±10kV/200kW DC/DC converter platform is built to verify the proposed topology and control strategy.

Keywords: photovoltaic generation, cascaded dc/dc converter, galvanic isolation, high-voltage, direct current (HVDC)

Procedia PDF Downloads 412
2352 A Mathematical Model of Pulsatile Blood Flow through a Bifurcated Artery

Authors: D. Srinivasacharya, G. Madhava Rao

Abstract:

In this article, the pulsatile flow of blood flow in bifurcated artery with mild stenosis is investigated. Blood is treated to be a micropolar fluid with constant density. The arteries forming bifurcation are assumed to be symmetric about its axes and straight cylinders of restricted length. As the geometry of the stenosed bifurcated artery is irregular, it is changed to regular geometry utilizing the appropriate transformations. The numerical solutions, using the finite difference method, are computed for the flow rate, the shear stress, and the impedance. The influence of time, coupling number, half of the bifurcated angle and Womersley number on shear stress, flow rate and impedance (resistance to the flow) on both sides of the flow divider is shown graphically. It has been observed that the shear stress and flow rate are increasing with increase in the values of Womersley number and bifurcation angle on both sides of the apex. The shear stress is increasing along the inner wall and decreasing along the outer wall of the daughter artery with an increase in the value of coupling number. Further, it has been noticed that the shear stress, flow rate, and impedance are perturbed largely near to the apex in the parent artery due to the presence of backflow near the apex.

Keywords: micropolar fluid, bifurcated artery, stenosis, back flow, secondary flow, pulsatile flow, Womersley number

Procedia PDF Downloads 168
2351 Experimental and Theoretical Analysis of the Electromagnetic Environment in the Vicinity of Two 220Kv Power Lines

Authors: Wafa Tourab, Abdessalem Babouri, Mohamed Nemamcha

Abstract:

This work presents an experimental and theoretical characterization of electromagnetic environment in the vicinity of EL-HADJAR high voltage substation located in the eastern Algerian within a very high populated zone. There have been analyses on the effects of electromagnetic fields emanating from coupled multi-lines power systems on the health of the workers and people living in proximity of substations. An experimental investigation has been conducted around a circuit of two 220Kv lines running in parallel. The experimental results are validated by a flexible code of calculus developed in the environment Matlab. The implications of the results are discussed and are in very good agreement with the ICNIRP reference levels for occupational and non-occupational exposures. In a case of study, the separation between the two structures “S” is varied to demonstrate its influence on the electric and magnetic charges quantities generated by the circuit of lines proposed. It is found that increasing S decreases the electric and magnetic fields which occur at the center of the structure then reduces the coupling between lines. We concluded that the evaluation of the spacing between the phase conductors is of paramount interest in the preparation of the line’s implantation inside the electrical posts to reduce them radiations in the environment.

Keywords: low frequency, electromagnetic fields, electromagnetic coupling, high voltage power lines

Procedia PDF Downloads 367
2350 Analog Input Output Buffer Information Specification Modelling Techniques for Single Ended Inter-Integrated Circuit and Differential Low Voltage Differential Signaling I/O Interfaces

Authors: Monika Rawat, Rahul Kumar

Abstract:

Input output Buffer Information Specification (IBIS) models are used for describing the analog behavior of the Input Output (I/O) buffers of a digital device. They are widely used to perform signal integrity analysis. Advantages of using IBIS models include simple structure, IP protection and fast simulation time with reasonable accuracy. As design complexity of driver and receiver increases, capturing exact behavior from transistor level model into IBIS model becomes an essential task to achieve better accuracy. In this paper, an improvement in existing methodology of generating IBIS model for complex I/O interfaces such as Inter-Integrated Circuit (I2C) and Low Voltage Differential Signaling (LVDS) is proposed. Furthermore, the accuracy and computational performance of standard method and proposed approach with respect to SPICE are presented. The investigations will be useful to further improve the accuracy of IBIS models and to enhance their wider acceptance.

Keywords: IBIS, signal integrity, open-drain buffer, low voltage differential signaling, behavior modelling, transient simulation

Procedia PDF Downloads 161
2349 Approach to Quantify Groundwater Recharge Using GIS Based Water Balance Model

Authors: S. S. Rwanga, J. M. Ndambuki

Abstract:

Groundwater quantification needs a method which is not only flexible but also reliable in order to accurately quantify its spatial and temporal variability. As groundwater is dynamic and interdisciplinary in nature, an integrated approach of remote sensing (RS) and GIS technique is very useful in various groundwater management studies. Thus, the GIS water balance model (WetSpass) together with remote sensing (RS) can be used to quantify groundwater recharge. This paper discusses the concept of WetSpass in combination with GIS on the quantification of recharge with a view to managing water resources in an integrated framework. The paper presents the simulation procedures and expected output after simulation. Preliminary data are presented from GIS output only.

Keywords: groundwater, recharge, GIS, WetSpass

Procedia PDF Downloads 426
2348 Evaluation of a 50MW Two-Axis Tracking Photovoltaic Power Plant for Al-Jagbob, Libya: Energetic, Economic, and Environmental Impact Analysis

Authors: Yasser Aldali, Farag Ahwide

Abstract:

This paper investigates the application of large scale (LS-PV) two-axis tracking photovoltaic power plant in Al-Jagbob, Libya. A 50MW PV-grid connected (two-axis tracking) power plant design in Al-Jagbob, Libya has been carried out presently. A hetero-junction with intrinsic thin layer (HIT) type PV module has been selected and modeled. A Microsoft Excel-VBA program has been constructed to compute slope radiation, dew-point, sky temperature, and then cell temperature, maximum power output and module efficiency for this system, for tracking system. The results for energy production show that the total energy output is 128.5 GWh/year. The average module efficiency is 16.6%. The electricity generation capacity factor (CF) and solar capacity factor (SCF) were found to be 29.3% and 70.4% respectively. A 50MW two axis tracking power plant with a total energy output of 128.5 GWh/year would reduce CO2 pollution by 85,581 tonnes of each year. The payback time for the proposed LS-PV photovoltaic power plant was found to be 4 years.

Keywords: large PV power plant, solar energy, environmental impact, dual-axis tracking system

Procedia PDF Downloads 371
2347 Residual Dipolar Couplings in NMR Spectroscopy Using Lanthanide Tags

Authors: Elias Akoury

Abstract:

Nuclear Magnetic Resonance (NMR) spectroscopy is an indispensable technique used in structure determination of small and macromolecules to study their physical properties, elucidation of characteristic interactions, dynamics and thermodynamic processes. Quantum mechanics defines the theoretical description of NMR spectroscopy and treatment of the dynamics of nuclear spin systems. The phenomenon of residual dipolar coupling (RDCs) has become a routine tool for accurate structure determination by providing global orientation information of magnetic dipole-dipole interaction vectors within a common reference frame. This offers accessibility of distance-independent angular information and insights to local relaxation. The measurement of RDCs requires an anisotropic orientation medium for the molecules to partially align along the magnetic field. This can be achieved by introduction of liquid crystals or attaching a paramagnetic center. Although anisotropic paramagnetic tags continue to mark achievements in the biomolecular NMR of large proteins, its application in small organic molecules remains unspread. Here, we propose a strategy for the synthesis of a lanthanide tag and the measurement of RDCs in organic molecules using paramagnetic lanthanide complexes.

Keywords: lanthanide tags, NMR spectroscopy, residual dipolar coupling, quantum mechanics of spin dynamics

Procedia PDF Downloads 157