Search results for: optimum distance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3683

Search results for: optimum distance

3533 Sustainable Management of Agricultural Resources in Irrigated Agriculture

Authors: Basil Manos, Parthena Chatzinikolaou, Fedra Kiomourtzi

Abstract:

This paper presents a mathematical model for the sustainable management of agricultural resources in irrigated agriculture. This is a multicriteria mathematical programming model and used as a tool for the planning, analysis and simulation of farm plans in rural irrigated areas, as well as for the study of impacts of the various policies in irrigated agriculture. The model can achieve the optimum farm plan of an agricultural region taking in account different conflicting criteria as the maximization of gross margin and the minimization of fertilizers used, under a set of constraints for land, labor, available capital, common agricultural policy etc. The proposed model was applied to four prefectures in central Greece. The results show that in all prefectures, the optimum farm plans achieve greater income and less environmental impacts (less irrigated water use and less fertilizers use) than the existent plans.

Keywords: sustainable use of agricultural resources, irrigated agriculture, multicriteria analysis, optimum income

Procedia PDF Downloads 294
3532 Psychological Factors Predicting Social Distance during the COVID-19 Pandemic: An Empirical Investigation

Authors: Calogero Lo Destro

Abstract:

Numerous nations around the world are facing exceptional challenges in employing measures to stop the spread of COVID-19. Following the recommendations of the World Health Organization, a series of preventive measures have been adopted. However, individuals must comply with these rules and recommendations in order to make these measures effective. While COVID-19 was climaxing, it seemed of crucial importance to analyze which psychosocial factors contribute to the acceptance of such preventive behavior, thus favoring the management of COVID-19 worldwide health crisis. In particular, the identification of aspects related to obstacles and facilitation of adherence to social distancing has been considered crucial in the containment of the virus spread. Since the virus was firstly detected in China, Asian people could be considered a relevant outgroup targeted for exclusion. We also hypothesized social distance could be influenced by characteristics of the target, such as smiling or coughing. 260 participants participated in this research on a voluntary basis. They filled a survey designed to explore a series of COVID-19 measures (such as exposure to virus and fear of infection). We also assessed participants state and trait anxiety. The dependent variable was social distance, based on a measure of seating distance designed ad hoc for the present work. Our hypothesis that participants could report greater distance in response to Asian people was not confirmed. On the other hand, significantly lower distance in response to smiling compared to coughing targets was reported. Adopting a regression analysis model, we found that participants' social distance, in response to both coughing and smiling targets, was predicted by fear of infection and by the perception COVID-19 could become a pandemic. Social distance in response to the coughing target was also significantly and positively predicted by age and state anxiety. In summary, the present work has sought to identify a set of psychological variables, which may still be predictive of social distancing.

Keywords: COVID-19, social distancing, health, preventive behaviors, risk of infection

Procedia PDF Downloads 98
3531 Study of Some Factors Effecting on Productivity of Solar Distillers

Authors: Keshek M.H, Mohamed M.A, El-Shafey M.A

Abstract:

The aim of this research was increasing the productivity of solar distillation. In order to reach this aim, a solar distiller was created with three glass sides sloping 30o at the horizontal level, and the experiments were carried out on the solar distillation unit during the period from 24th August, 2016 till 24th May, 2017 at the Agricultural Engineering and Bio Systems Department, Faculty of Agriculture, Menoufia University. Three gap lengths were used between the water level and the inner glass cover, those were 3, 6, and 9 cm. As the result of change the gap length between the water level and the inner glass cover the total volume of basins were changed from 15.5, 13, and 11 L, respectively. The total basin volume was divided to three sections, to investigate the effect of water volume. The three water volumes were 100%, 75%, and 50%. Every section was supplied with one, two, or three heaters. The one heater power was 15 W. The results showed that, by increasing the distance between the basins edge and the inner edge of the glass cover, an increase occurs in the percentage of temperature difference with maximum value was 52% at distance 9 cm from each edge, an increase occurs in the productivity with maximum productivity was 3.3 L/m2 at distance 9 cm from each edge and an increase occurs in the efficiency with maximum efficiency was 70% at distance 9 cm from each edge.

Keywords: distillation, solar energy, still productivity, efficiency

Procedia PDF Downloads 82
3530 3D Biomechanical Analysis in Shot Put Techniques of International Throwers

Authors: Satpal Yadav, Ashish Phulkar, Krishna K. Sahu

Abstract:

Aim: The research aims at doing a 3 Dimension biomechanical analysis in the shot put techniques of International throwers to evaluate the performance. Research Method: The researcher adopted the descriptive method and the data was subjected to calculate by using Pearson’s product moment correlation for the correlation of the biomechanical parameters with the performance of shot put throw. In all the analyses, the 5% critical level (p ≤ 0.05) was considered to indicate statistical significance. Research Sample: Eight (N=08) international shot putters using rotational/glide technique in male category was selected as subjects for the study. The researcher used the following methods and tools to obtain reliable measurements the instrument which was used for the purpose of present study namely the tesscorn slow-motion camera, specialized motion analyzer software, 7.260 kg Shot Put (for a male shot-putter) and steel tape. All measurement pertaining to the biomechanical variables was taken by the principal investigator so that data collected for the present study was considered reliable. Results: The finding of the study showed that negative significant relationship between the angular velocity right shoulder, acceleration distance at pre flight (-0.70), (-0.72) respectively were obtained, the angular displacement of knee, angular velocity right shoulder and acceleration distance at flight (0.81), (0.75) and (0.71) respectively were obtained, the angular velocity right shoulder and acceleration distance at transition phase (0.77), (0.79) respectively were obtained and angular displacement of knee, angular velocity right shoulder, release velocity shot, angle of release, height of release, projected distance and measured distance as the values (0.76), (0.77), (-0.83), (-0.79), (-0.77), (0.99) and (1.00) were found higher than the tabulated value at 0.05 level of significance. On the other hand, there exists an insignificant relationship between the performance of shot put and acceleration distance [m], angular displacement shot, C.G at release and horizontal release distance on the technique of shot put.

Keywords: biomechanics, analysis, shot put, international throwers

Procedia PDF Downloads 163
3529 Influence of the Seat Arrangement in Public Reading Spaces on Individual Subjective Perceptions

Authors: Jo-Han Chang, Chung-Jung Wu

Abstract:

This study involves a design proposal. The objective of is to create a seat arrangement model for public reading spaces that enable free arrangement without disturbing the users. Through a subjective perception scale, this study explored whether distance between seats and direction of seats influence individual subjective perceptions in a public reading space. This study also involves analysis of user subjective perceptions when reading in the settings on 3 seats at different directions and with 5 distances between seats. The results may be applied to public chair design. This study investigated that (a) whether different directions of seats and distances between seats influence individual subjective perceptions and (b) the acceptable personal space between 2 strangers in a public reading space. The results are shown as follows: (a) the directions of seats and distances between seats influenced individual subjective perceptions. (b) subjective evaluation scores were higher for back-to-back seat directions with Distances A (10 cm) and B (62 cm) compared with face-to-face and side-by-side seat directions; however, when the seat distance exceeded 114 cm (Distance C), no difference existed among the directions of seats. (c) regarding reading in public spaces, when the distance between seats is 10 cm only, we recommend arranging the seats in a back-to-back fashion to increase user comfort and arrangement of face-to-face and side- by-side seat directions should be avoided. When the seat arrangement is limited to face-to-face design, the distance between seats should be increased to at least 62 cm. Moreover, the distance between seats should be increased to at least 114 cm for side- by-side seats to elevate user comfort.

Keywords: individual subjective perceptions, personal space, seat arrangement, direction, distances

Procedia PDF Downloads 399
3528 Experimental Chevreul’s Salt Production Methods on Copper Recovery

Authors: Turan Çalban, Oral Laçin, Abdüsselam Kurtbaş

Abstract:

The experimental production methods Chevreul’s salt being a intermediate stage product for copper recovery were investigated by dealing with the articles written on this topic. Chevreul’s salt, Cu2SO3.CuSO3.2H2O, being a mixed valence copper sulphite compound has been obtained by using different methods and reagents. Chevreul’s salt has a intense brick-red color. It is a highly stable and expensive salt. The production of Chevreul’s salt plays a key role in hiydrometallurgy. In recent years, researchs on this compound have been intensified. Silva et al. reported that this salt is thermally stable up to 200oC. Çolak et al. precipitated the Chevreul’s salt by using ammonia and sulphur dioxide. Çalban et al. obtained at the optimum conditions by passing SO2 from leach solutions with NH3-(NH4)2SO4. Yeşiryurt and Çalban investigated the optimum precipitation conditions of Chevreul’s salt from synthetic CuSO4 solutions including Na2SO3. Çalban et al. achieved the precipitation of Chevreul’s salt at the optimum conditions by passing SO2 from synthetic CuSO4 solutions. Çalban et al. examined the precipitation conditions of Chevreul’s salt using (NH4)2SO3 from synthetic aqueous CuSO4 solutions. In light of these studies, it can be said that Chevreul’s salt can be produced practically from both a leach solutions including copper and synthetic CuSO4 solutions.

Keywords: Chevreul’s salt, ammonia, copper sulpfite, sodium sülfite, optimum conditions

Procedia PDF Downloads 245
3527 The Effect of Implant Design on the Height of Inter-Implant Bone Crest: A 10-Year Retrospective Study of the Astra Tech Implant and Branemark Implant

Authors: Daeung Jung

Abstract:

Background: In case of patients with missing teeth, multiple implant restoration has been widely used and is inevitable. To increase its survival rate, it is important to understand the influence of different implant designs on inter-implant crestal bone resorption. There are several implant systems designed to minimize loss of crestal bone, and the Astra Tech and Brånemark Implant are two of them. Aim/Hypothesis: The aim of this 10-year study was to compare the height of inter-implant bone crest in two implant systems; the Astra Tech and the Brånemark implant system. Material and Methods: In this retrospective study, 40 consecutively treated patients were utilized; 23 patients with 30 sites for Astra Tech system and 17 patients with 20 sites for Brånemark system. The implant restoration was comprised of splinted crown in partially edentulous patients. Radiographs were taken immediately after 1st surgery, at impression making, at prosthetics setting, and annually after loading. Lateral distance from implant to bone crest, inter-implant distance was gauged, and crestal bone height was measured from the implant shoulder to the first bone contact. Calibrations were performed with known length of thread pitch distance for vertical measurement, and known diameter of abutment or fixture for horizontal measurement using ImageJ. Results: After 10 years, patients treated with Astra Tech implant system demonstrated less inter-implant crestal bone resorption when implants had a distance of 3mm or less between them. In cases of implants that had a greater than 3 mm distance between them, however, there appeared to be no statistically significant difference in crestal bone loss between two systems. Conclusion and clinical implications: In the situation of partially edentulous patients planning to have more than two implants, the inter-implant distance is one of the most important factors to be considered. If it is impossible to make sure of having sufficient inter-implant distance, the implants with less micro gap in the fixture-abutment junction, less traumatic 2nd surgery approach, and the adequate surface topography would be choice of appropriate options to minimize inter-implant crestal bone resorption.

Keywords: implant design, crestal bone loss, inter-implant distance, 10-year retrospective study

Procedia PDF Downloads 127
3526 Numerical Analysis of Rainfall-Induced Roadside Slope Failures and Their Stabilizing Solution

Authors: Muhammad Suradi, Sugiarto, Abdullah Latip

Abstract:

Many roadside slope failures occur during the rainy season, particularly in the period of extreme rainfall along Connecting National Road of Salubatu-Mambi, West Sulawesi, Indonesia. These occurrences cause traffic obstacles and endanger people along and around the road. Research collaboration between P2JN (National Road Construction Board) West Sulawesi Province, who authorize to supervise the road condition, and Ujung Pandang State Polytechnic (Applied University) was established to cope with the landslide problem. This research aims to determine factors triggering roadside slope failures and their optimum stabilizing solution. To achieve this objective, site observation and soil investigation were carried out to obtain parameters for analyses of rainfall-induced slope instability and reinforcement design using the SV Flux and SV Slope software. The result of this analysis will be taken into account for the next analysis to get an optimum design of the slope reinforcement. The result indicates some factors such as steep slopes, sandy soils, and unvegetated slope surface mainly contribute to the slope failures during intense rainfall. With respect to the contributing factors as well as construction material and technology, cantilever/butressing retaining wall becomes the optimum solution for the roadside slope reinforcement.

Keywords: roadside slope, failure, rainfall, slope reinforcement, optimum solution

Procedia PDF Downloads 66
3525 Heat Transfer Characteristics of Aluminum Foam Heat Sinks Subject to an Impinging Jet

Authors: So-Ra Jeon, Chan Byon

Abstract:

This study investigates the heat transfer characteristics of aluminum foam heat sink and pin fin heat sink subjected to an impinging air jet under a fixed pumping power condition as well as fixed flow rate condition. The effects of dimensionless pumping power or the Reynolds number and the impinging distance ratio on the Nusselt number are considered. The result shows that the effect of the impinging distance on the Nusselt number is negligible under a fixed pumping power condition, while the Nusselt number increases with decreasing the impinging distance under a fixed pumping power condition. A correlation for the pressure drop is obtained as a function of the flow rate and the impinging distance ratio. And correlations for the stagnation Nusselt number of the impinging jet are developed as a function of the pumping power. The aluminum foam heat sinks did not show higher thermal performance compared to a conventional pin fin heat sink under a fixed pumping power condition.

Keywords: aluminum foam, heat sinks, impinging jet, pumping power

Procedia PDF Downloads 270
3524 Optimum Design of Piled-Raft Systems

Authors: Alaa Chasib Ghaleb, Muntadher M. Abbood

Abstract:

This paper presents a study of the problem of the optimum design of piled-raft foundation systems. The study has been carried out using a hypothetic problem and soil investigations of six sites locations in Basrah city to evaluate the adequacy of using the piled-raft foundation concept. Three dimensional finite element analysis method has been used, to perform the structural analysis. The problem is optimized using Hooke and Jeeves method with the total weight of the foundation as objective function and each of raft thickness, piles length, number of piles and piles diameter as design variables. It is found that the total and differential settlement decreases with increasing the raft thickness, the number of piles, the piles length, and the piles diameter. Finally parametric study for load values, load type and raft dimensions have been studied and the results have been discussed.

Keywords: Hooke and Jeeves, optimum design, piled-raft, foundations

Procedia PDF Downloads 204
3523 Wheeled Robot Stable Braking Process under Asymmetric Traction Coefficients

Authors: Boguslaw Schreyer

Abstract:

During the wheeled robot’s braking process, the extra dynamic vertical forces act on all wheels: left, right, front or rear. Those forces are directed downward on the front wheels while directed upward on the rear wheels. In order to maximize the deceleration, therefore, minimize the braking time and braking distance, we need to calculate a correct torque distribution: the front braking torque should be increased, and rear torque should be decreased. At the same time, we need to provide better transversal stability. In a simple case of all adhesion coefficients being the same under all wheels, the torque distribution may secure the optimal (maximal) control of the robot braking process, securing the minimum braking distance and a minimum braking time. At the same time, the transversal stability is relatively good. At any time, we control the transversal acceleration. In the case of the transversal movement, we stop the braking process and re-apply braking torque after a defined period of time. If we correctly calculate the value of the torques, we may secure the traction coefficient under the front and rear wheels close to its maximum. Also, in order to provide an optimum braking control, we need to calculate the timing of the braking torque application and the timing of its release. The braking torques should be released shortly after the wheels passed a maximum traction coefficient (while a wheels’ slip increases) and applied again after the wheels pass a maximum of traction coefficient (while the slip decreases). The correct braking torque distribution secures the front and rear wheels, passing this maximum at the same time. It guarantees an optimum deceleration control, therefore, minimum braking time. In order to calculate a correct torque distribution, a control unit should receive the input signals of a rear torque value (which changes independently), the robot’s deceleration, and values of the vertical front and rear forces. In order to calculate the timing of torque application and torque release, more signals are needed: speed of the robot: angular speed, and angular deceleration of the wheels. In case of different adhesion coefficients under the left and right wheels, but the same under each pair of wheels- the same under right wheels and the same under left wheels, the Select-Low (SL) and select high (SH) methods are applied. The SL method is suggested if transversal stability is more important than braking efficiency. Often in the case of the robot, more important is braking efficiency; therefore, the SH method is applied with some control of the transversal stability. In the case that all adhesion coefficients are different under all wheels, the front-rear torque distribution is maintained as in all previous cases. However, the timing of the braking torque application and release is controlled by the rear wheels’ lowest adhesion coefficient. The Lagrange equations have been used to describe robot dynamics. Matlab has been used in order to simulate the process of wheeled robot braking, and in conclusion, the braking methods have been selected.

Keywords: wheeled robots, braking, traction coefficient, asymmetric

Procedia PDF Downloads 139
3522 Assessing the Potential of a Waste Material for Cement Replacement and the Effect of Its Fineness in Soft Soil Stabilisation

Authors: Hassnen M. Jafer, W. Atherton, F. Ruddock

Abstract:

This paper represents the results of experimental work to investigate the suitability of a waste material (WM) for soft soil stabilisation. In addition, the effect of particle size distribution (PSD) of the waste material on its performance as a soil stabiliser was investigated. The WM used in this study is produced from the incineration processes in domestic energy power plant and it is available in two different grades of fineness (coarse waste material (CWM) and fine waste material (FWM)). An intermediate plasticity silty clayey soil with medium organic matter content has been used in this study. The suitability of the CWM and FWM to improve the physical and engineering properties of the selected soil was evaluated dependant on the results obtained from the consistency limits, compaction characteristics (optimum moisture content (OMC) and maximum dry density (MDD)); along with the unconfined compressive strength test (UCS). Different percentages of CWM were added to the soft soil (3, 6, 9, 12 and 15%) to produce various admixtures. Then the UCS test was carried out on specimens under different curing periods (zero, 7, 14, and 28 days) to find the optimum percentage of CWM. The optimum and other two percentages (either side of the optimum content) were used for FWM to evaluate the effect of the fineness of the WM on UCS of the stabilised soil. Results indicated that both types of the WM used in this study improved the physical properties of the soft soil where the index of plasticity (IP) was decreased significantly. IP was decreased from 21 to 13.64 and 13.10 with 12% of CWM and 15% of FWM respectively. The results of the unconfined compressive strength test indicated that 12% of CWM was the optimum and this percentage developed the UCS value from 202kPa to 500kPa for 28 days cured samples, which is equal, approximately 2.5 times the UCS value for untreated soil. Moreover, this percentage provided 1.4 times the value of UCS for stabilized soil-CWA by using FWM which recorded just under 700kPa after 28 days curing.

Keywords: soft soil stabilisation, waste materials, fineness, unconfined compressive strength

Procedia PDF Downloads 239
3521 Vibration Control of Two Adjacent Structures Using a Non-Linear Damping System

Authors: Soltani Amir, Wang Xuan

Abstract:

The advantage of using non-linear passive damping system in vibration control of two adjacent structures is investigated under their base excitation. The base excitation is El Centro earthquake record acceleration. The damping system is considered as an optimum and effective non-linear viscous damper that is connected between two adjacent structures. A Matlab program is developed to produce the stiffness and damping matrices and to determine a time history analysis of the dynamic motion of the system. One structure is assumed to be flexible while the other has a rule as laterally supporting structure with rigid frames. The response of the structure has been calculated and the non-linear damping coefficient is determined using optimum LQR algorithm in an optimum vibration control system. The non-linear parameter of damping system is estimated and it has shown a significant advantage of application of this system device for vibration control of two adjacent tall building.

Keywords: active control, passive control, viscous dampers, structural control, vibration control, tall building

Procedia PDF Downloads 479
3520 Weighted-Distance Sliding Windows and Cooccurrence Graphs for Supporting Entity-Relationship Discovery in Unstructured Text

Authors: Paolo Fantozzi, Luigi Laura, Umberto Nanni

Abstract:

The problem of Entity relation discovery in structured data, a well covered topic in literature, consists in searching within unstructured sources (typically, text) in order to find connections among entities. These can be a whole dictionary, or a specific collection of named items. In many cases machine learning and/or text mining techniques are used for this goal. These approaches might be unfeasible in computationally challenging problems, such as processing massive data streams. A faster approach consists in collecting the cooccurrences of any two words (entities) in order to create a graph of relations - a cooccurrence graph. Indeed each cooccurrence highlights some grade of semantic correlation between the words because it is more common to have related words close each other than having them in the opposite sides of the text. Some authors have used sliding windows for such problem: they count all the occurrences within a sliding windows running over the whole text. In this paper we generalise such technique, coming up to a Weighted-Distance Sliding Window, where each occurrence of two named items within the window is accounted with a weight depending on the distance between items: a closer distance implies a stronger evidence of a relationship. We develop an experiment in order to support this intuition, by applying this technique to a data set consisting in the text of the Bible, split into verses.

Keywords: cooccurrence graph, entity relation graph, unstructured text, weighted distance

Procedia PDF Downloads 115
3519 Development of a Process to Manufacture High Quality Refined Salt from Crude Solar Salt

Authors: Rathnayaka D. D. T. , Vidanage P. W. , Wasalathilake K. C. , Wickramasingha H. W. , Wijayarathne U. P. L. , Perera S. A. S.

Abstract:

This paper describes the research carried out to develop a process to increase the NaCl percentage of crude salt which is obtained from the conventional solar evaporation process. In this study refined salt was produced from crude solar salt by a chemico-physical method which consists of coagulation, precipitation and filtration. Initially crude salt crystals were crushed and dissolved in water. Optimum amounts of calcium hydroxide, sodium carbonate and Poly Aluminium Chloride (PAC) were added to the solution respectively. Refined NaCl solution was separated out by a filtration process. The solution was tested for Total Suspended Solids, SO42-, Mg2+, Ca2+. With optimum dosage of reagents, the results showed that a level of 99.60% NaCl could be achieved. Further this paper discusses the economic viability of the proposed process. A 83% profit margin can be achieved by this process and it is an increase of 112.3% compared to the traditional process.

Keywords: chemico-physical, economic, optimum, refined, solar salt

Procedia PDF Downloads 225
3518 The Impact of COVID-19 Pandemic on Educators in South Africa: Self-Efficacy and Anxiety

Authors: Mostert Jacques, Gulseven Osman, Williams Courtney

Abstract:

The Covid-19 pandemic caused unparalleled disruption in the lives of the majority of the world. This included school closures and introduction of Online Learning. In this article we investigated the impact of distance learning on the self-efficacy and anxiety levels experienced by educators in South Africa. We surveyed 60 respondents from Independent Schools using a Likert Scale rating of 0 to 4. The results suggested that despite experiencing moderate anxiety, educators showed a sense of high self-efficacy during distance learning. This was specifically true for those with underlying health concerns. There was no significant difference between how the different genders experienced anxiety and self-efficacy. Further research into the impact on learners’ anxiety levels during distance learning will provide policymakers and educators with a better understanding of how the use of technology is influencing the effectiveness of teaching, learning, and assessment.

Keywords: COVID-19, education, self-efficacy, anxiety

Procedia PDF Downloads 178
3517 Band Characterization and Development of Hyperspectral Indices for Retrieving Chlorophyll Content

Authors: Ramandeep Kaur M. Malhi, Prashant K. Srivastava, G.Sandhya Kiran

Abstract:

Quantitative estimates of foliar biochemicals, namely chlorophyll content (CC), serve as key information for the assessment of plant productivity, stress, and the availability of nutrients. This also plays a critical role in predicting the dynamic response of any vegetation to altering climate conditions. The advent of hyperspectral data with an enhanced number of available wavelengths has increased the possibility of acquiring improved information on CC. Retrieval of CC is extensively carried through well known spectral indices derived from hyperspectral data. In the present study, an attempt is made to develop hyperspectral indices by identifying optimum bands for CC estimation in Butea monosperma (Lam.) Taub growing in forests of Shoolpaneshwar Wildlife Sanctuary, Narmada district, Gujarat State, India. 196 narrow bands of EO-1 Hyperion images were screened, and the best optimum wavelength from blue, green, red, and near infrared (NIR) regions were identified based on the coefficient of determination (R²) between band reflectance and laboratory estimated CC. The identified optimum wavelengths were then employed for developing 12 hyperspectral indices. These spectral index values and CC values were then correlated to investigate the relation between laboratory measured CC and spectral indices. Band 15 of blue range and Band 22 of green range, Band 40 of the red region, and Band 79 of NIR region were found to be optimum bands for estimating CC. The optimum band based combinations on hyperspectral data proved to be the most effective indices for quantifying Butea CC with NDVI and TVI identified as the best (R² > 0.7, p < 0.01). The study demonstrated the significance of band characterization in the development of the best hyperspectral indices for the chlorophyll estimation, which can aid in monitoring the vitality of forests.

Keywords: band, characterization, chlorophyll, hyperspectral, indices

Procedia PDF Downloads 121
3516 Software-Defined Architecture and Front-End Optimization for DO-178B Compliant Distance Measuring Equipment

Authors: Farzan Farhangian, Behnam Shakibafar, Bobda Cedric, Rene Jr. Landry

Abstract:

Among the air navigation technologies, many of them are capable of increasing aviation sustainability as well as accuracy improvement in Alternative Positioning, Navigation, and Timing (APNT), especially avionics Distance Measuring Equipment (DME), Very high-frequency Omni-directional Range (VOR), etc. The integration of these air navigation solutions could make a robust and efficient accuracy in air mobility, air traffic management and autonomous operations. Designing a proper RF front-end, power amplifier and software-defined transponder could pave the way for reaching an optimized avionics navigation solution. In this article, the possibility of reaching an optimum front-end to be used with single low-cost Software-Defined Radio (SDR) has been investigated in order to reach a software-defined DME architecture. Our software-defined approach uses the firmware possibilities to design a real-time software architecture compatible with a Multi Input Multi Output (MIMO) BladeRF to estimate an accurate time delay between a Transmission (Tx) and the reception (Rx) channels using the synchronous scheduled communication. We could design a novel power amplifier for the transmission channel of the DME to pass the minimum transmission power. This article also investigates designing proper pair pulses based on the DO-178B avionics standard. Various guidelines have been tested, and the possibility of passing the certification process for each standard term has been analyzed. Finally, the performance of the DME was tested in the laboratory environment using an IFR6000, which showed that the proposed architecture reached an accuracy of less than 0.23 Nautical mile (Nmi) with 98% probability.

Keywords: avionics, DME, software defined radio, navigation

Procedia PDF Downloads 47
3515 Kinect Station: Using Microsoft Kinect V2 as a Total Station Theodolite for Distance and Angle Determination in a 3D Cartesian Environment

Authors: Amin Amini

Abstract:

A Kinect sensor has been utilized as a cheap and accurate alternative to 3D laser scanners and electronic distance measurement (EDM) systems. This research presents an inexpensive and easy-to-setup system that utilizes the Microsoft Kinect v2 sensor as a surveying and measurement tool and investigates the possibility of using such a device as a replacement for conventional theodolite systems. The system was tested in an indoor environment where its accuracy in distance and angle measurements was tested using virtual markers in a 3D Cartesian environment. The system has shown an average accuracy of 97.94 % in measuring distances and 99.11 % and 98.84 % accuracy for area and perimeter, respectively, within the Kinect’s surveying range of 1.5 to 6 meters. The research also tested the system competency for relative angle determination between two objects.

Keywords: kinect v2, 3D measurement, depth map, ToF

Procedia PDF Downloads 40
3514 Effect of Moisture Content Compaction in the Geometry Definition of Earth Dams

Authors: Julian B. García, Virginie Q. R. Pinto, André P. Assis

Abstract:

This paper presents numerical flow and slope stability simulations in three typical sections of earth dams built in tropical regions, two homogeneous with different slope inclinations, and the other one heterogeneous with impermeable core. The geotechnical material parameters used in this work were obtained from a lab testing of physical characterization, compaction, consolidation, variable load permeability and saturated triaxial type CD for compacted soil samples with standard proctor energy at optimum moisture content (23%), optimum moisture content + 2% and optimum moisture content +5%. The objective is to analyze the general behavior of earth dams built in rainy regions where optimum moisture is exceeded. The factor of safety is satisfactory for the three sections compacted in all moisture content during the stages of operation and end of construction. On The other hand, the rapid drawdown condition is the critical phase for homogeneus dams configuration, the factor of safety obtained were unsatisfactory. In general, the heterogeneous dam behavior is more efficient due to the fact that the slopes are made up of gravel, which favors the dissipation of pore pressures during the rapid drawdown. For the critical phase, the slopes should have lower inclinations of the upstream and downstream slopes to guarantee stability, although it increases the costs.

Keywords: earth dams, flow, moisture content, slope stability

Procedia PDF Downloads 157
3513 Characterization and Design of a Crumb Rubber Modified Asphalt Mix Formulation

Authors: H. Al-Baghli

Abstract:

Laboratory trial results of mixing crumb rubber produced from discarded tires with 60/70 pen grade Kuwaiti bitumen are presented on this paper. PG grading and multiple stress creep recovery tests were conducted on Kuwaiti bitumen blended with 15% and 18% crumb rubber at temperatures ranging from 40 to 70 °C. The results from elastic recovery and non-recoverable creep presented optimum performance at 18% rubber content. The optimum rubberized-bitumen mix was next transformed into a pelletized form (PelletPave®), and was used as a partial replacement to the conventional bitumen in the manufacture of continuously graded hot mix asphalts at a number of binder contents. The trialed PelletPave® contents were at 2.5%, 3.0%, and 3.5% by mass of asphalt mix. In this investigation, it was not possible to utilize the results of standard Marshall method of mix design (i.e. volumetric, stability and flow tests) and subsequently additional assessment of mix compactability was carried out using gyratory compactor in order to determine the optimum PelletPave® and total binder contents.

Keywords: crumb rubber, Marshall mix design, PG grading, rubberized-bitumen

Procedia PDF Downloads 191
3512 A Similarity/Dissimilarity Measure to Biological Sequence Alignment

Authors: Muhammad A. Khan, Waseem Shahzad

Abstract:

Analysis of protein sequences is carried out for the purpose to discover their structural and ancestry relationship. Sequence similarity determines similar protein structures, similar function, and homology detection. Biological sequences composed of amino acid residues or nucleotides provide significant information through sequence alignment. In this paper, we present a new similarity/dissimilarity measure to sequence alignment based on the primary structure of a protein. The approach finds the distance between the two given sequences using the novel sequence alignment algorithm and a mathematical model. The algorithm runs at a time complexity of O(n²). A distance matrix is generated to construct a phylogenetic tree of different species. The new similarity/dissimilarity measure outperforms other existing methods.

Keywords: alignment, distance, homology, mathematical model, phylogenetic tree

Procedia PDF Downloads 152
3511 Enhancing Spatial Interpolation: A Multi-Layer Inverse Distance Weighting Model for Complex Regression and Classification Tasks in Spatial Data Analysis

Authors: Yakin Hajlaoui, Richard Labib, Jean-François Plante, Michel Gamache

Abstract:

This study introduces the Multi-Layer Inverse Distance Weighting Model (ML-IDW), inspired by the mathematical formulation of both multi-layer neural networks (ML-NNs) and Inverse Distance Weighting model (IDW). ML-IDW leverages ML-NNs' processing capabilities, characterized by compositions of learnable non-linear functions applied to input features, and incorporates IDW's ability to learn anisotropic spatial dependencies, presenting a promising solution for nonlinear spatial interpolation and learning from complex spatial data. it employ gradient descent and backpropagation to train ML-IDW, comparing its performance against conventional spatial interpolation models such as Kriging and standard IDW on regression and classification tasks using simulated spatial datasets of varying complexity. the results highlight the efficacy of ML-IDW, particularly in handling complex spatial datasets, exhibiting lower mean square error in regression and higher F1 score in classification.

Keywords: deep learning, multi-layer neural networks, gradient descent, spatial interpolation, inverse distance weighting

Procedia PDF Downloads 5
3510 New Approaches for the Handwritten Digit Image Features Extraction for Recognition

Authors: U. Ravi Babu, Mohd Mastan

Abstract:

The present paper proposes a novel approach for handwritten digit recognition system. The present paper extract digit image features based on distance measure and derives an algorithm to classify the digit images. The distance measure can be performing on the thinned image. Thinning is the one of the preprocessing technique in image processing. The present paper mainly concentrated on an extraction of features from digit image for effective recognition of the numeral. To find the effectiveness of the proposed method tested on MNIST database, CENPARMI, CEDAR, and newly collected data. The proposed method is implemented on more than one lakh digit images and it gets good comparative recognition results. The percentage of the recognition is achieved about 97.32%.

Keywords: handwritten digit recognition, distance measure, MNIST database, image features

Procedia PDF Downloads 434
3509 Automation of Pneumatic Seed Planter for System of Rice Intensification

Authors: Tukur Daiyabu Abdulkadir, Wan Ishak Wan Ismail, Muhammad Saufi Mohd Kassim

Abstract:

Seed singulation and accuracy in seed spacing are the major challenges associated with the adoption of mechanical seeder for system of rice intensification. In this research the metering system of a pneumatic planter was modified and automated for increase precision to meet the demand of system of rice intensification SRI. The chain and sprocket mechanism of a conventional vacuum planter were now replaced with an electro mechanical system made up of a set of servo motors, limit switch, micro controller and a wheel divided into 10 equal angles. The circumference of the planter wheel was determined based on which seed spacing was computed and mapped to the angles of the metering wheel. A program was then written and uploaded to arduino micro controller and it automatically turns the seed plates for seeding upon covering the required distance. The servo motor was calibrated with the aid of labVIEW. The machine was then calibrated using a grease belt and varying the servo rpm through voltage variation between 37 rpm to 47 rpm until an optimum value of 40 rpm was obtained with a forward speed of 5 kilometers per hour. A pressure of 1.5 kpa was found to be optimum under which no skip or double was recorded. Precision in spacing (coefficient of variation), miss index, multiple index, doubles and skips were investigated. No skip or double was recorded both at laboratory and field levels. The operational parameters under consideration were both evaluated at laboratory and field. Even though there was little variation between the laboratory and field values of precision in spacing, multiple index and miss index, the different is not significant as both laboratory and field values fall within the acceptable range.

Keywords: automation, calibration, pneumatic seed planter, system of rice intensification

Procedia PDF Downloads 612
3508 Measurement of the Quadriceps Angle with Respect to Various Body Parameters in Arab Countries

Authors: Ramada R. Khasawneh, Mohammed Z. Allouh, Ejlal Abu-El Rub

Abstract:

The quadriceps angle (Q angle), formed between the quadriceps muscles and the patella tendon, is considered clinically as a very important parameter which displays the biomechanical effect of the quadriceps muscle on the knee, and it is also regarded as a crucial factor for the proper posture and movement of the knee patella. This study had been conducted to measure the normal Q angle values range in the Arab nationalities and determine the correlation between Q angle values and several body parameters, including gender, height, weight, dominant side, and the condylar distance of the femur. The study includes 500 healthy Arab students from Yarmouk University and Jordan University of Science and Technology. The Q angle of those volunteers was measured using a universal manual Goniometer with the subjects in the upright weight-bearing position. It was found that the Q angle was greater in women than in men. The analysis of the data revealed an insignificant increase in the dominant side of the Q angle. In addition, the Q was significantly higher in the taller people of both sexes. However, the Q angle did not present any considerable correlation with weight in the study population; conversely, it was observed that there was a link with the condylar distance of the femur in both sexes. It was also noticed that the Q angle increased remarkably when there was an increase in the condylar distance. Consequently, it turned out that the gender, height, and the condylar distance were momentous factors that had an impact on the Q angle in our study samples. However, weight and dominance factors did not show to have any influence on the values in our study.

Keywords: Q angle, Jordanian, anatomy, condylar distance

Procedia PDF Downloads 115
3507 Phytoremediation; Pb, Cr and Cd Accumulation in Fruits and Leaves of Vitis Vinifera L. From Air Pollutions and Intraction between Their Uptake Based on the Distance from the Main Road

Authors: Fatemeh Mohsennezhad

Abstract:

Air pollution is one of major problems for environment. Providing healthy food and protecting water sources from pollution has been one of the concerns of human societies and decision-making centers so that protecting food from pollution, detecting sources of pollution and measuring them become important. Nutritive and political significance of grape in this area, extensive use of leaf and fruit of this plant and development of urban areas around grape gardens and construction of Tabriz – Miandoab road, which is the most important link between East and West Azarbaijan, led us to examine the impact of this road construction and urban environment pollutants such as lead chromium and cadmium on the quality of this valuable crop. First, the samples were taken from different adjacent places and medium distances from the road, each place being located exactly by Google earth and GPS. Digestion was done through burning dry material and hydrochloric acid and their ashes were analyzed by atomic absorption to determine (Pb, Cr, Cd) accumulations. In this experiments effects of 2 following factors were examined as a variable: Garden distance from the main road with levels 1: For 50 meters, 2: For 120-200 meters, 3: For above 800 meters, and plant organ with levels 1: For fruit, 2: For leaves. At the end, the results were processed by SPSS software. 3.54 ppm, the most lead quantity, was at sample No. 54 in fruits with 800 meters distance from the road and 1.00 ppm was the least lead quantity at sample No. 50 in fruits with 1000 meters from the road. In leaves, the most lead quantity was 19.16 ppm at sample No. 15 with 50 meters distance from the road and the least quantity was 1.41 ppm at sample No. 31 with 50 meters from the road. Pb uptake is significantly different at 50 meters and 200 meters distance. It means that Pb uptake near the main road is the highest. But this result is not true for others elements. Distance has not a meaningful effect on Cr uptake. The result of analysis of variation in distance and plant organ for Cd showed that between fruit and leaf, Cd uptake is significantly different. But distance and interaction between distance and plant organ is not meaningful. There is neither meaningful interaction between these elements uptakes in fruits nor in leaves. If leaves and fruits, assumed all together, showed a very meaningful integration between heavy metal accumulations. It means that each of these elements causes uptake others without considering special organs. In the tested area, it became clear that, from the accumulation of heavy metals perspective, there is no meaningful difference in existing distance between road and garden. There is a meaningful difference among heavy metals accumulation. In other words, increase ratio of one metal to another was different from the resulted differences shown in corresponding graphs. Interaction among elements and distance between garden and road was not meaningful.

Keywords: Vitis vinifera L., phytoremediation, heavy metals accumulation, lead, chromium, cadmium

Procedia PDF Downloads 326
3506 An Optimization Algorithm for Reducing the Liquid Oscillation in the Moving Containers

Authors: Reza Babajanivalashedi, Stefania Lo Feudo, Jean-Luc Dion

Abstract:

Liquid sloshing is a crucial problem for the dynamic of moving containers in the packaging industries. Sloshing issues have been so far mainly modeled within the framework of fluid dynamics or by using equivalent mechanical models with different kinds of movements and shapes of containers. Nevertheless, these approaches do not allow to determinate the shape of the free surface of the liquid in case of the irregular shape of the moving containers, so that experimental measurements may be required. If there is too much slosh in the moving tank, the liquid can be splashed out on the packages. So, the free surface oscillation must be controlled/reduced to eliminate the splashing. The purpose of this research is to propose an optimization algorithm for finding an optimum command law to reduce surface elevation. In the first step, the free surface of the liquid is simulated based on the separation variable and weak formulation models. Then Genetic and Gradient algorithms are developed for finding the optimum command law. The optimum command law is compared with existing command laws, and the results show that there is a significant difference in surface oscillation between optimum and existing command laws. This algorithm is applicable for different varieties of bottles in case of using the camera for detecting the liquid elevation, and it can produce new command laws for different kinds of tanks to reduce the surface oscillation and remove the splashing phenomenon.

Keywords: sloshing phenomenon, separation variables, weak formulation, optimization algorithm, command law

Procedia PDF Downloads 117
3505 Impact of Social Distancing on the Correlation Between Adults’ Participation in Learning and Acceptance of Technology

Authors: Liu Yi Hui

Abstract:

The COVID-19 pandemic in 2020 has globally affected all aspects of life, with social distancing and quarantine orders causing turmoil and learning in community colleges being temporarily paused. In fact, this is the first time that adult education has faced such a severe challenge. It forces researchers to reflect on the impact of pandemics on adult education and ways to respond. Distance learning appears to be one of the pedagogical tools capable of dealing with interpersonal isolation and social distancing caused by the pandemic. This research aims to examine whether the impact of social distancing during COVID-19 will lead to increased acceptance of technology and, subsequently, an increase in adults ’ willingness to participate in distance learning. The hypothesis that social distancing and the desire to participate in distance learning affects learners’ tendency to accept technology is investigated. Teachers ’ participation in distance education and acceptance of technology are used as adjustment variables with the relationship to “social distancing,” “participation in distance learning,” and “acceptance of technology” of learners. A questionnaire survey was conducted over a period of twelve months for teachers and learners at all community colleges in Taiwan who enrolled in a basic unit course. Community colleges were separated using multi-stage cluster sampling, with their locations being metropolitan, non-urban, south, and east as criteria. Using the G*power software, 660 samples were selected and analyzed. The results show that through appropriate pedagogical strategies or teachers ’ own acceptance of technology, adult learners’ willingness to participate in distance learning could be influenced. A diverse model of participation can be developed, improving adult education institutions’ ability to plan curricula to be flexible to avoid the risk associated with epidemic diseases.

Keywords: social distancing, adult learning, community colleges, technology acceptance model

Procedia PDF Downloads 111
3504 Improving the Teaching of Mathematics at University Using the Inverted Classroom Model: A Case in Greece

Authors: G. S. Androulakis, G. Deli, M. Kaisari, N. Mihos

Abstract:

Teaching practices at the university level have changed and developed during the last decade. Implementation of inverted classroom method in secondary education consists of a well-formed basis for academic teachers. On the other hand, distance learning is a well-known field in education research and widespread as a method of teaching. Nonetheless, the new pandemic found many Universities all over the world unprepared, which made adaptations to new methods of teaching a necessity. In this paper, we analyze a model of an inverted university classroom in a distance learning context. Thus, the main purpose of our research is to investigate students’ difficulties as they transit to a new style of teaching and explore their learning development during a semester totally different from others. Our teaching experiment took place at the Business Administration department of the University of Patras, in the context of two courses: Calculus, a course aimed at first-year students, and Statistics, a course aimed at second-year students. Second-year students had the opportunity to attend courses in the university classroom. First-year students started their semester with distance learning. Using a comparative study of these two groups, we explored significant differences in students’ learning procedures. Focused group interviews, written tests, analyses of students’ dialogues were used in a mixed quantity and quality research. Our analysis reveals students’ skills, capabilities but also a difficulty in following, non-traditional style of teaching. The inverted classroom model, according to our findings, offers benefits in the educational procedure, even in a distance learning environment.

Keywords: distance learning, higher education, inverted classroom, mathematics teaching

Procedia PDF Downloads 111