Search results for: mixer assembly
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 635

Search results for: mixer assembly

245 A Small-Molecular Inhibitor of Influenza Virus via Disrupting the PA and PB1 Interaction of the Viral Polymerase

Authors: Shuofeng Yuan, Bojian Zheng

Abstract:

Assembly of the heterotrimeric polymerase complex of influenza virus from the individual subunits PB1, PA, and PB2 is a prerequisite for viral replication, in which the interaction between the N-terminal of PB1 (PB1N) and the C terminal of PA (PAC) may be a desired target for antiviral development. In this study, we first compared the feasibility of high throughput screening by enzyme-linked immunosorbent assay (ELISA) and fluorescence polarization (FP) assay. Among the two, ELISA was demonstrated to own broader dynamic range so that it was used for screening inhibitors, which blocked PA and PB1 interaction. Several binding inhibitors of PAC-PB1N were identified and subsequently tested for the antiviral efficacy. Apparently, 3-(2-chlorophenyl)-6-ethyl-7-methyl[1,2,4]triazolo[4,3-a]pyrimidin-5-ol, designated ANA-1, was found to be a strong inhibitor of PAC-PB1N interaction and act as a potent antiviral agent against the infections of multiple subtypes of influenza A virus, including H1N1, H3N2, H5N1, H7N7, H7N9 and H9N2 subtypes, in cell cultures. Intranasal administration of ANA-1 protected mice from lethal challenge and reduced lung viral loads in H1N1 virus infected BALB/c mice. Docking analyses predicted that ANA-1 bound to an allosteric site of PAC, which would cause conformational changes thereby disrupting the PAC-PB1N interaction. Overall, our study has identified a novel compound with potential to be developed as an anti-influenza drug.

Keywords: influenza, antiviral, viral polymerase, compounds

Procedia PDF Downloads 323
244 Optical Characterization of Anisotropic Thiophene-Phenylene Co-Oligomer Micro Crystals by Spectroscopic Imaging Ellipsometry

Authors: Christian Röling, Elena Y. Poimanova, Vladimir V. Bruevich

Abstract:

Here we demonstrate a non-destructive optical technique to localize and characterize single crystals of semiconductive organic materials – Spectroscopic Imaging Ellipsometry. With a combination of microscopy and ellipsometry, it is possible to characterize even micro-sized thin film crystals on plane surface regarding anisotropy, optical properties, crystalline domains and thickness. The semiconducting thiophene-phenylene co-oligomer 1,4-bis(5'-hexyl-[2,2'-bithiophen]-5-yl)benzene (dHex-TTPTT) crystals were grown by solvent based self-assembly technique on silicon substrate with 300 nm thermally silicon dioxide. The ellipsometric measurements were performed with an Ep4-SE (Accurion). In an ellipsometric high-contrast image of the complete sample, we have localized high-quality single crystals. After demonstrating the uniaxial anisotropy of the crystal by using Müller-Matrix imaging ellipsometry, we determined the optical axes by rotating the sample and performed spectroscopic measurements (λ = 400-700 nm) in 5 nm intervals. The optical properties were described by using a Lorentz term in the Ep4-Model. After determining the dispersion of the crystals, we converted a recorded Delta and Psi-map into a 2D thickness image. Based on a quantitative analysis of the resulting thickness map, we have calculated the height of a molecular layer (3.49 nm).

Keywords: anisotropy, ellipsometry, SCFET, thin film

Procedia PDF Downloads 220
243 Antibiotic and Fungicide Exposure Reveal the Evolution of Soil-Lettuce System Resistome

Authors: Chenyu Huang, Minrong Cui, Hua Fang, Luqing Zhang, Yunlong Yu

Abstract:

The emergence and spread of antibiotic resistance genes (ARGs) have become a pressing issue in global agricultural production. However, understanding how these ARGs spread across different spatial scales, especially when exposed to both pesticides and antibiotics, has remained a challenge. Here, metagenomic assembly and binning methodologies were used to determine the mechanism of ARG propagation within soil-lettuce systems exposed to both fungicides and antibiotics. The results of our study showed that the presence of fungicide and antibiotic stresses had a significant impact on certain bacterial communities. Notably, we observed that ARGs were primarily transferred from the soil to the plant through plasmids. The selective pressure exerted by fungicides and antibiotics contributed to an increase in unique ARGs present on lettuce leaves. Moreover, ARGs located on chromosomes and plasmids followed different transmission patterns. The presence of diverse selective pressures, a result of compound treatments involving antibiotics and fungicides, amplifies this phenomenon. Consequently, there is a higher probability of bacteria developing multi-antibiotic resistance under the combined pressure of fungicides and antibiotics. In summary, our findings highlight that combined fungicide and antibiotic treatments are more likely to drive the acquisition of ARGs within the soil-plant system and may increase the risk of human ingestion.

Keywords: soil-lettuce system, fungicide, antibiotic, ARG, transmission

Procedia PDF Downloads 64
242 Experimental and Analytical Study on the Bending Behavior of Concrete-GFRP Hybrid Beams

Authors: Alaa Koaik, Bruno Jurkiewiez, Sylvain Bel

Abstract:

Recently, the use of GFRP pultruded profiles increased in the domain of civil engineering especially in the construction of sandwiched slabs and footbridges. However, under heavy loads, the risk of using these profiles increases due to their high deformability and instability as a result of their weak stiffness and orthotropic nature. A practical solution proposes the assembly of these profiles with concrete slabs to create a stiffer hybrid element to support higher loads. The connection of these two elements is established either by traditional means of steel studs (bolting in our case) or bonding technique. These two techniques have their advantages and disadvantages regarding the mechanical behavior and in-situ implementation. This paper presents experimental results of interface characterization and bending behavior of two hybrid beams, PB7 and PB8, designed and constructed using both connection techniques. The results obtained are exploited to design and build a hybrid footbridge BPBP1 which is tested within service limits (elastic domain). Analytical methods are also developed to analyze the behavior of these structures in the elastic range and the ultimate phase. Comparisons show acceptable differences mainly due to the sensitivity of the GFRP moduli as well as the non-linearity of concrete elements.

Keywords: analytical model, concrete, flexural behavior, GFRP pultruded profile, hybrid structure, interconnection slip, push-out

Procedia PDF Downloads 206
241 Evaluation of Drilling Performance through Bit-Rock Interaction Using Passive Vibration Assisted Rotation Drilling (PVARD) Tool

Authors: Md. Shaheen Shah, Abdelsalam Abugharara, Dipesh Maharjan, Syed Imtiaz, Stephen Butt

Abstract:

Drilling performance is an essential goal in petroleum and mining industry. Drilling rate of penetration (ROP), which is inversely proportional to the mechanical specific energy (MSE) is influenced by numerous factors among which are the applied parameter: torque (T), weight on bit (WOB), fluid flow rate, revolution per minute (rpm), rock related parameters: rock type, rock homogeneousness, rock anisotropy orientation, and mechanical parameters: bit type, configuration of the bottom hole assembly (BHA). This paper is focused on studying the drilling performance by implementing a passive vibration assisted rotary drilling tool (pVARD) as part of the BHA through using different bit types: coring bit, roller cone bit, and PDC bit and various rock types: rock-like material, granite, sandstone, etc. The results of this study aim to produce a pVARD index for optimal drilling performance considering the recommendations of the pVARD’s spring compression tests and stress-strain analysis of rock samples conducted prior to drilling experiments, analyzing the cutting size distribution, and evaluating the applied drilling parameters as a function of WOB. These results are compared with those obtained from drilling without pVARD, which represents the typical rigid BHA of the conventional drilling.

Keywords: BHA, drilling performance, MSE, pVARD, rate of penetration, ROP, tensile and shear fractures, unconfined compressive strength

Procedia PDF Downloads 125
240 Performance Enhancement of Autopart Manufacturing Industry Using Lean Manufacturing Strategies: A Case Study

Authors: Raman Kumar, Jasgurpreet Singh Chohan, Chander Shekhar Verma

Abstract:

Today, the manufacturing industries respond rapidly to new demands and compete in this continuously changing environment, thus seeking out new methods allowing them to remain competitive and flexible simultaneously. The aim of the manufacturing organizations is to reduce manufacturing costs and wastes through system simplification, organizational potential, and proper infrastructural planning by using modern techniques like lean manufacturing. In India, large number of medium and large scale manufacturing industries has successfully implemented lean manufacturing techniques. Keeping in view the above-mentioned facts, different tools will be involved in the successful implementation of the lean approach. The present work is focused on the auto part manufacturing industry to improve the performance of the recliner assembly line. There is a number of lean manufacturing tools available, but the experience and complete knowledge of manufacturing processes are required to select an appropriate tool for a specific process. Fishbone diagrams (scrap, inventory, and waiting) have been drawn to identify the root cause of different. Effect of cycle time reduction on scrap and inventory is analyzed thoroughly in the case company. Results have shown that there is a decrease in inventory cost by 7 percent after the successful implementation of the lean tool.

Keywords: lean tool, fish-bone diagram, cycle time reduction, case study

Procedia PDF Downloads 107
239 Genome Sequencing of the Yeast Saccharomyces cerevisiae Strain 202-3

Authors: Yina A. Cifuentes Triana, Andrés M. Pinzón Velásco, Marío E. Velásquez Lozano

Abstract:

In this work the sequencing and genome characterization of a natural isolate of Saccharomyces cerevisiae yeast (strain 202-3), identified with potential for the production of second generation ethanol from sugarcane bagasse hydrolysates is presented. This strain was selected because its capability to consume xylose during the fermentation of sugarcane bagasse hydrolysates, taking into account that many strains of S. cerevisiae are incapable of processing this sugar. This advantage and other prominent positive aspects during fermentation profiles evaluated in bagasse hydrolysates made the strain 202-3 a candidate strain to improve the production of second-generation ethanol, which was proposed as a first step to study the strain at the genomic level. The molecular characterization was carried out by genome sequencing with the Illumina HiSeq 2000 platform paired end; the assembly was performed with different programs, finally choosing the assembler ABYSS with kmer 89. Gene prediction was developed with the approach of hidden Markov models with Augustus. The genes identified were scored based on similarity with public databases of nucleotide and protein. Records were organized from ontological functions at different hierarchical levels, which identified central metabolic functions and roles of the S. cerevisiae strain 202-3, highlighting the presence of four possible new proteins, two of them probably associated with the positive consumption of xylose.

Keywords: cellulosic ethanol, Saccharomyces cerevisiae, genome sequencing, xylose consumption

Procedia PDF Downloads 297
238 Deformation of Particle-Laden Droplet in Viscous Liquid under DC Electric Fields

Authors: Khobaib Khobaib, Alexander Mikkelsen, Zbigniew Rozynek

Abstract:

Electric fields have proven useful for inducing droplet deformation and to structure particles adsorbed at droplet interfaces. In this experimental research, direct current electric fields were applied to deform particle-covered droplets made out of silicone oil and immersed in castor oil. The viscosity of the drop and surrounding fluid were changed by external heating. We designed an experimental system in such a way that electric field-induced electrohydrodynamic (EHD) flows were asymmetric and only present on one side of the drop, i.e., the droplet adjoined a washer and adhered to one of the electrodes constituting the sample cell. The study investigated the influence of viscosity on the steady-state deformation magnitude of particle-laden droplets, droplet compression, and relaxation, as well as particle arrangements at drop interfaces. Initially, before the application of an electric field, we changed the viscosity of the fluids by heating the sample cell at different temperatures. The viscosity of the fluids was varied by changing the temperature of the fluids from 25 to 50°C. Under the application of a uniform electric field of strength 290 Vmm⁻¹, electric stress was induced at the drop interface, yielding drop deformation. In our study, we found that by lowering the fluid viscosity, the velocity of the EHD flows was increased, which also increases the deformation of the drop.

Keywords: drop deformation and relaxation, electric field, electrohydrodynamic flow, particle assembly, viscosity

Procedia PDF Downloads 237
237 Design and Development of Multi-Functional Intelligent Robot Arm Gripper

Authors: W. T. Asheber, L. Chyi-Yeu

Abstract:

An intelligent robot arm is expected to recognize the desired object, grasp it with appropriate force without dropping or damaging it, and also manipulate and deliver the object to the desired destination safely. This paper presents an intelligent multi-finger robot arm gripper design along with vision, proximity, and tactile sensor for efficient grasping and manipulation tasks. The generic design of the gripper makes it convenient for improved parts manipulation, multi-tasking and ease for components assembly. The proposed design emulates the human’s hand fingers structure using linkages and direct drive through power screw like transmission. The actuation and transmission mechanism is designed in such a way that it has non-back-drivable capability, which makes the fingers hold their position when even unpowered. The structural elements are optimized for a finest performance in motion and force transmissivity of the gripper fingers. The actuation mechanisms is designed specially to drive each finger and also rotate two of the fingers about the palm to form appropriate configuration to grasp various size and shape objects. The gripper has an automatic tool set fixture incorporated into its palm, which will reduce time wastage and do assembling in one go. It is equipped with camera-in-hand integrated into its palm; subsequently an image based visual-servoing control scheme is employed.

Keywords: gripper, intelligent gripper, transmissivity, vision sensor

Procedia PDF Downloads 337
236 Influence of Power Flow Controller on Energy Transaction Charges in Restructured Power System

Authors: Manisha Dubey, Gaurav Gupta, Anoop Arya

Abstract:

The demand for power supply increases day by day in developing countries like India henceforth demand of reactive power support in the form of ancillary services provider also has been increased. The multi-line and multi-type Flexible alternating current transmission system (FACTS) controllers are playing a vital role to regulate power flow through the transmission line. Unified power flow controller and interline power flow controller can be utilized to control reactive power flow through the transmission line. In a restructured power system, the demand of such controller is being popular due to their inherent capability. The transmission pricing by using reactive power cost allocation through modified matrix methodology has been proposed. The FACTS technologies have quite costly assembly, so it is very useful to apportion the expenses throughout the restructured electricity industry. Therefore, in this work, after embedding the FACTS devices into load flow, the impact on the costs allocated to users in fraction to the transmission framework utilization has been analyzed. From the obtained results, it is clear that the total cost recovery is enhanced towards the Reactive Power flow through the different transmission line for 5 bus test system. The fair pricing policy towards reactive power can be achieved by the proposed method incorporating FACTS controller towards cost recovery of the transmission network.

Keywords: interline power flow controller, transmission pricing, unified power flow controller, cost allocation

Procedia PDF Downloads 119
235 Independent Control over Surface Charge and Wettability Using Polyelectrolyte Architecture

Authors: Shanshan Guo, Xiaoying Zhu, Dominik Jańczewski, Koon Gee Neoh

Abstract:

Surface charge and wettability are two prominent physical factors governing cell adhesion and have been extensively studied in the literature. However, a comparison between the two driving forces in terms of their independent and cooperative effects in affecting cell adhesion is rarely explored on a systematic and quantitative level. Herein, we formulate a protocol which allows two-dimensional and independent control over both surface charge and wettability. This protocol enables the unambiguous comparison of the effects of these two properties on cell adhesion. This strategy is implemented by controlling both the relative thickness of polyion layers in the layer-by-layer assembly and the polyion side chain chemical structures. The 2D property matrix spans surface isoelectric point ranging from 5 to 9 and water contact angle from 35º to 70º, with other interferential factors (e.g. roughness) eliminated. The interplay between these two surface variables influences 3T3 fibroblast cell adhesion. The results show that both surface charge and wettability have an effect on its adhesion. The combined effects of positive charge and hydrophilicity led to the highest cell adhesion whereas negative charge and hydrophobicity led to the lowest cell adhesion. Our design strategy can potentially form the basis for studying the distinct behaviors of electrostatic force or wettability driven interfacial phenomena and serving as a reference in future studies assessing cell adhesion to surfaces with known charge and wettability within the property range studied here.

Keywords: cell adhesion, layer-by-layer, surface charge, surface wettability

Procedia PDF Downloads 240
234 The Effect of a Reactive Poly (2-Vinyl-2-Oxazoline) Monolayer of Carbon Fiber Surface on the Mechanical Property of Carbon Fiber/Polypropylene Composite Using Maleic Anhydride Grafted Polypropylene

Authors: Teruya Goto, Hokuto Chiba, Tatsuhiro Takahashi

Abstract:

Carbon fiber reinforced thermoplastic resin using short carbon fiber has been produced by melt mixing and the improvement of mechanical properties has been frequently reported up to now. One of the most frequently reported enhancement has been seen in carbon fiber / polypropylene (PP) composites by adding small amount of maleic anhydride grafted polypropylene (MA-g-PP) into PP matrix. However, the further enhancement of tensile strength and tensile modules has been expected for lightning the composite more. Our present research aims to improve the mechanical property by using a highly reactive monolayer polymer, which can react with both COOH of carbon fiber surface and maleic anhydride of MA-g-PP in the matrix, on carbon fiber for PP/CF composite. It has been known that oxazoline has much higher reactivity with COOH without catalysts, compared with amine group and alcohol OH group. However, oxazoline group has not been used for the interface. To achieve the purpose, poly-2-vinyl-2-oxazoline (Pvozo), having highly reactivity with COOH and maleic anhydride, has been originally synthesized through radical polymerization using 2-vinyl-2-oxazoline as a monomer, resulting in the Mw around 140,000. Monolayer Pvozo chemically reacted on CF was prepared in 1-methoxy-2-propanol solution of Pvozo by heating at 100oC for 3 hours. After this solution treatment, unreacted Pvozo was completely washed out by methanol, resulting the uniform formation of the monolayer Pvozo on CF. Monolayer Pvozo coated CF was melt mixed by with PP and a small amount of MA-g-PP for the preparation of the composite samples using a batch type melt mixer. With performing the tensile strength tests of the composites, the tensile strength of CF/MA-g-PP/PP showed 40% increase, compared to that of CF/PP. While, that of Pvozo coated CF/MA-g-PP/PP exhibited 80% increase, compared to that of CF/PP. To get deeper insight of the dramatic increase, the weight percentage of chemically grafted polymer based on CF was evaluated by dissolving and removing the matrix polymer by xylene using by thermos gravimetric analysis (TGA). The chemically grafted remained polymer was found to be 0.69wt% in CF/PP, 0.98wt% in CF/MA-g-PP/PP, 1.51wt% in Pvozo coated CF/MA-g-PP/PP, suggesting that monolayer Pvozo contributed to the increase of the grafted polymer amount. In addition, the very strong adhesion by Pvozo was confirmed by observing the fractured cross-sectional surface of the composite by scanning electron micrograph (SEM). As a conclusion, the effectiveness of a highly reactive monolayer Pvozo on CF for the enhancement of the mechanical properties of CF/PP composite was demonstrated, which can be interpreted by the clear evidence of the increase of the grafting polymer on CF.

Keywords: CFRTP, interface, oxazoline, polymer graft, mechanical property

Procedia PDF Downloads 175
233 Overview of Multi-Chip Alternatives for 2.5 and 3D Integrated Circuit Packagings

Authors: Ching-Feng Chen, Ching-Chih Tsai

Abstract:

With the size of the transistor gradually approaching the physical limit, it challenges the persistence of Moore’s Law due to the development of the high numerical aperture (high-NA) lithography equipment and other issues such as short channel effects. In the context of the ever-increasing technical requirements of portable devices and high-performance computing, relying on the law continuation to enhance the chip density will no longer support the prospects of the electronics industry. Weighing the chip’s power consumption-performance-area-cost-cycle time to market (PPACC) is an updated benchmark to drive the evolution of the advanced wafer nanometer (nm). The advent of two and half- and three-dimensional (2.5 and 3D)- Very-Large-Scale Integration (VLSI) packaging based on Through Silicon Via (TSV) technology has updated the traditional die assembly methods and provided the solution. This overview investigates the up-to-date and cutting-edge packaging technologies for 2.5D and 3D integrated circuits (ICs) based on the updated transistor structure and technology nodes. The author concludes that multi-chip solutions for 2.5D and 3D IC packagings are feasible to prolong Moore’s Law.

Keywords: moore’s law, high numerical aperture, power consumption-performance-area-cost-cycle time to market, 2.5 and 3D- very-large-scale integration, packaging, through silicon via

Procedia PDF Downloads 98
232 The Influence of Ligands Molecular Structure on the Antibacterial Activity of Some Metal Complexes

Authors: Sanja O. Podunavac-Kuzmanović, Lidija R. Jevrić, Strahinja Z. Kovačević

Abstract:

In last decade, metal-organic complexes have captured intensive attention because of their wide range of biological activities such as antibacterial, antifungal, anticancerous, antimicrobial and antiHIV. Therefore, it is of great importance for the development of coordination chemistry to explore the assembly of functional organic ligands with metal ion and to investigate the relationship between the structure and property. In view of our studies, we reasoned that benzimidazoles complexed to metal ions could act as a potent antibacterial agents. Thus, we have bioassayed the inhibitory potency of benzimidazoles and their metal salts (Co or Ni) against Gram negative bacteria Escherichia coli. In order to validate our in vitro study, we performed in silico studies using molecular docking software’s. The investigated compounds and their metal complexes (Co, Ni) showed good antibacterial activity against Escherichia coli. In silico docking studies of the synthesized compounds suggested that complexed benzimidazoles have a greater binding affinity and enhanced antibacterial activity in comparison with noncomplexed ligands. In view of their enhanced inhibitory properties we propose that the studied complexes can be used as potential pharmaceuticals. This study is financially supported by COST action CM1306 and the project No. 114-451-347/2015-02, financially supported by the Provincial Secretariat for Science and Technological Development of Vojvodina.

Keywords: benzimidazoles, complexes, antibacterial, Escherichia coli, metal

Procedia PDF Downloads 287
231 Buckling of Plates on Foundation with Different Types of Sides Support

Authors: Ali N. Suri, Ahmad A. Al-Makhlufi

Abstract:

In this paper the problem of buckling of plates on foundation of finite length and with different side support is studied. The Finite Strip Method is used as tool for the analysis. This method uses finite strip elastic, foundation, and geometric matrices to build the assembly matrices for the whole structure, then after introducing boundary conditions at supports, the resulting reduced matrices is transformed into a standard Eigenvalue-Eigenvector problem. The solution of this problem will enable the determination of the buckling load, the associated buckling modes and the buckling wave length. To carry out the buckling analysis starting from the elastic, foundation, and geometric stiffness matrices for each strip a computer program FORTRAN list is developed. Since stiffness matrices are function of wave length of buckling, the computer program used an iteration procedure to find the critical buckling stress for each value of foundation modulus and for each boundary condition. The results showed the use of elastic medium to support plates subject to axial load increase a great deal the buckling load, the results found are very close with those obtained by other analytical methods and experimental work. The results also showed that foundation compensates the effect of the weakness of some types of constraint of side support and maximum benefit found for plate with one side simply supported the other free.

Keywords: buckling, finite strip, different sides support, plates on foundation

Procedia PDF Downloads 219
230 Dissimilar Welding Of New High Oxidation Material – Thor™ 115 With Vm-12 Shc

Authors: Michal Urzynicok, Krzysztof Kwiecinski

Abstract:

The development of materials used in the power generation industry for the production of boilers and their parts is characterized by high steam parameters, which present new challenges. Implementation of new combinations of alloying elements that lead to the best possible mechanical properties, including creep resistance, greatly affects new steels' weldability. All new grades have to undergo many different examinations, in regards to bending and welding, in order to enable the development of fabrication technologies, ensuring failure-free production and assembly of boiler components. 12% Cr martensitic steels like THOR™ 115 or VM-12 SHC are characterized by high oxidation resistance in high-temperature environments. At the moment, VM-12 SHC can be found in many boilers where both headers and superheater coils were produced. As this material is very difficult to obtain, a search for a proper replacement has begun. A new creep strength-enhanced ferritic steel for service in supercritical and ultra-supercritical boiler applications was developed by Tenaris in Italy and it is designated as Thor™115 (Tenaris High Oxidation Resistance). As high demand in power plants occurred to replace some parts of existing installations fabricated from VM12-SHC with other alternatives, a new development of welding procedures has begun to prepare fabricators for the challenges of joining old components with new THOR™ 115 material. This paper covers the first research of welding of dissimilar joints made out of VM12-SHC and THOR™ 115.

Keywords: thor, vm12, dissimilar welding, weldability

Procedia PDF Downloads 134
229 Prevalence of Endemic Goiter in School Children and Women of Reproductive Age Group during Post Salt Iodization Period in Andro Constituency, Imphal-East District, Manipur, India

Authors: Y. Suchitra Devi, L. Hemchandra Singh

Abstract:

Background: Because of its geographical location, Manipur lies in the conventional goiter endemic belt. During the post salt iodization period, endemic goiter was prevalent in the valley districts of Manipur without iodine deficiency. Objectives: The present study aim at the prevalence of goiter among school children (6-12 years) and women of reproductive age group (above 20 years) of Andro Assembly Constituency, Imphal- East, Manipur, India. Method: A total of 3992 individuals were clinically examined for thyroid enlargement. Hormones like TSH, FT₄, FT₃, and Anti-TPO, Anti-Tg were tested, UIC, USCN, testing of iodine in water and salt. Result: Total goiter prevalence was found to be 13.98%, median urinary iodine level was 166.0 µg/l, mean urinary thiocyanate concentration was 0.726 ± 0.408, mean water iodine concentration was 3.843 ± 2.291, and all the salt samples were above 15ppm. 6 out of 41 children and 93 out of 176 women were auto antibody positive. 41 children and 176 women were tested for TSH, FT₄, and FT₃, which shows disturbance in hormone level. Conclusion: The present study showed that the region is mildly goiter endemic without biochemical iodine deficiency.

Keywords: goiter, TSH, FT₄, FT₃, anti-TPO, anti-Tg, UIC, USCN, school children and women of reproductive age

Procedia PDF Downloads 87
228 Experimental and Numerical Determination of the Freeze Point Depression of a Multi-Phase Flow in a Scraped Surface Heat Exchanger

Authors: Carlos A. Acosta, Amar Bhalla, Ruyan Guo

Abstract:

Scraped surface heat exchangers (SSHE) use a rotor shaft assembly with scraping blades to homogenize viscous fluids during the heat transfer process. Obtaining in-situ measurements is difficult because the rotor and scraping blades spin continuously inside the mixing chamber, obstructing the instrumentation pathway. Computational fluid dynamics simulations provide useful insight into the flow behavior around the scraper blades for a variety of fluids and blade geometries. However, numerical solutions often focus on the fluid dynamics and heat transfer phenomena of rotating flow, ignoring the glass-transition temperature and freezing point depression. This research studies the multi-phase fluid dynamics and freezing point depression inside the SSHE with non-isothermal conditions in a time dependent process using an aqueous solution that contains 13.5 wt.% high fructose corn syrup and CO₂. The computational results were validated with in-situ pressure, temperature, and optical spectroscopy measurements. Results from the numerical model show good quantitatively agreement with experimental values.

Keywords: computational fluid dynamics, freezing point depression, phase-transition temperature, multi-phase flow

Procedia PDF Downloads 117
227 Correlation of Residential Community Layout and Neighborhood Relationship: A Morphological Analysis of Tainan Using Space Syntax

Authors: Ping-Hung Chen, Han-Liang Lin

Abstract:

Taiwan has formed diverse settlement patterns in different time and space backgrounds. Various socio-network links are created between individuals, families, communities, and societies, and different living cultures are also derived. But rapid urbanization and social structural change have caused the creation of densely-packed assembly housing complexes and made neighborhood community upward developed. This, among others, seemed to have affected neighborhood relationship and also created social problems. To understand the complex relations and socio-spatial structure of the community, it is important to use mixed methods. This research employs the theory of space syntax to analyze the layout and structural indicators of the selected communities in Tainan city. On the other hand, this research does the survey about residents' interactions and the sense of community by questionnaire of the selected communities. Then the mean values of the syntax measures from each community were correlated with the results of the questionnaire using a Pearson correlation to examine how elements in physical design affect the sense of community and neighborhood relationship. In Taiwan, most urban morphology research methods are qualitative study. This paper tries to use space syntax to find out the correlation between the community layout and the neighborhood relationship. The result of this study could be used in future studies or improve the quality of residential communities in Taiwan.

Keywords: community layout, neighborhood relationship, space syntax, mixed-method

Procedia PDF Downloads 162
226 Investigating the Shear Behaviour of Fouled Ballast Using Discrete Element Modelling

Authors: Ngoc Trung Ngo, Buddhima Indraratna, Cholachat Rujikiathmakjornr

Abstract:

For several hundred years, the design of railway tracks has practically remained unchanged. Traditionally, rail tracks are placed on a ballast layer due to several reasons, including economy, rapid drainage, and high load bearing capacity. The primary function of ballast is to distributing dynamic track loads to sub-ballast and subgrade layers, while also providing lateral resistance and allowing for rapid drainage. Upon repeated trainloads, the ballast becomes fouled due to ballast degradation and the intrusion of fines which adversely affects the strength and deformation behaviour of ballast. This paper presents the use of three-dimensional discrete element method (DEM) in studying the shear behaviour of the fouled ballast subjected to direct shear loading. Irregularly shaped particles of ballast were modelled by grouping many spherical balls together in appropriate sizes to simulate representative ballast aggregates. Fouled ballast was modelled by injecting a specified number of miniature spherical particles into the void spaces. The DEM simulation highlights that the peak shear stress of the ballast assembly decreases and the dilation of fouled ballast increases with an increase level of fouling. Additionally, the distributions of contact force chain and particle displacement vectors were captured during shearing progress, explaining the formation of shear band and the evolutions of volumetric change of fouled ballast.

Keywords: railway ballast, coal fouling, discrete element modelling, discrete element method

Procedia PDF Downloads 427
225 A Lightweight Interlock Block from Foamed Concrete with Construction and Agriculture Waste in Malaysia

Authors: Nor Azian Binti Aziz, Muhammad Afiq Bin Tambichik, Zamri Bin Hashim

Abstract:

The rapid development of the construction industry has contributed to increased construction waste, with concrete waste being among the most abundant. This waste is generated from ready-mix batching plants after the concrete cube testing process is completed and disposed of in landfills, leading to increased solid waste management costs. This study aims to evaluate the engineering characteristics of foamed concrete with waste mixtures construction and agricultural waste to determine the usability of recycled materials in the construction of non-load-bearing walls. This study involves the collection of construction wastes, such as recycled aggregates (RCA) obtained from the remains of finished concrete cubes, which are then tested in the laboratory. Additionally, agricultural waste, such as rice husk ash, is mixed into foamed concrete interlock blocks to enhance their strength. The optimal density of foamed concrete for this study was determined by mixing mortar and foam-backed agents to achieve the minimum targeted compressive strength required for non-load-bearing walls. The tests conducted in this study involved two phases. In Phase 1, elemental analysis using an X-ray fluorescence spectrometer (XRF) was conducted on the materials used in the production of interlock blocks such as sand, recycled aggregate/recycled concrete aggregate (RCA), and husk ash paddy/rice husk ash (RHA), Phase 2 involved physical and thermal tests, such as compressive strength test, heat conductivity test, and fire resistance test, on foamed concrete mixtures. The results showed that foamed concrete can produce lightweight interlock blocks. X-ray fluorescence spectrometry plays a crucial role in the characterization, quality control, and optimization of foamed concrete mixes containing construction and agriculture waste. The unique composition mixer of foamed concrete and the resulting chemical and physical properties, as well as the nature of replacement (either as cement or fine aggregate replacement), the waste contributes differently to the performance of foamed concrete. Interlocking blocks made from foamed concrete can be advantageous due to their reduced weight, which makes them easier to handle and transport compared to traditional concrete blocks. Additionally, foamed concrete typically offers good thermal and acoustic insulation properties, making it suitable for a variety of building projects. Using foamed concrete to produce lightweight interlock blocks could contribute to more efficient and sustainable construction practices. Additionally, RCA derived from concrete cube waste can serve as a substitute for sand in producing lightweight interlock blocks.

Keywords: construction waste, recycled aggregates (RCA), sustainable concrete, structure material

Procedia PDF Downloads 24
224 Acrylamide Concentration in Cakes with Different Caloric Sweeteners

Authors: L. García, N. Cobas, M. López

Abstract:

Acrylamide, a probable carcinogen, is formed in high-temperature processed food (>120ºC) when the free amino acid asparagine reacts with reducing sugars, mainly glucose and fructose. Cane juices' repeated heating would potentially form acrylamide during brown sugar production. This study aims to determine if using panela in yogurt cake preparation increases acrylamide formation. A secondary aim is to analyze the acrylamide concentration in four cake confections with different caloric sweetener ingredients: beet sugar (BS), cane sugar (CS), panela (P), and a panela and chocolate mix (PC). The doughs were obtained by combining ingredients in a planetary mixer. A model system made up of flour (25%), caloric sweeteners (25 %), eggs (23%), yogurt (15.7%), sunflower oil (9.4%), and brewer's yeast (2 %) was applied to BS, CS and P cakes. The ingredients of PC cakes varied: flour (21.5 %), panela chocolate (21.5 %), eggs (25.9 %), yogurt (18 %), sunflower oil (10.8 %), and brewer’s yeast (2.3 %). The preparations were baked for 45' at 180 ºC. Moisture was estimated by AOAC. Protein was determined by the Kjeldahl method. Ash percentage was calculated by weight loss after pyrolysis (≈ 600 °C). Fat content was measured using liquid-solid extraction in hydrolyzed raw ingredients and final confections. Carbohydrates were determined by difference and total sugars by the Luff-Schoorl method, based on the iodometric determination of copper ions. Finally, acrylamide content was determined by LC-MS by the isocratic system (phase A: 97.5 % water with 0.1% formic acid; phase B: 2.5 % methanol), using a standard internal procedure. Statistical analysis was performed using SPSS v.23. One-way variance analysis determined differences between acrylamide content and compositional analysis, with caloric sweeteners as fixed effect. Significance levels were determined by applying Duncan's t-test (p<0.05). P cakes showed a lower energy value than the other baked products; sugar content was similar to BS and CS, with 6.1 % mean crude protein. Acrylamide content in caloric sweeteners was similar to previously reported values. However, P and PC showed significantly higher concentrations, probably explained by the applied procedure. Acrylamide formation depends on both reducing sugars and asparagine concentration and availability. Beet sugar samples did not present acrylamide concentrations within the detection and quantification limit. However, the highest acrylamide content was measured in the BS. This may be due to the higher concentration of reducing sugars and asparagine in other raw ingredients. The cakes made with panela, cane sugar, or panela with chocolate did not differ in acrylamide content. The lack of asparagine measures constitutes a limitation. Cakes made with panela showed lower acrylamide formation than products elaborated with beet or cane sugar.

Keywords: beet sugar, cane sugar, panela, yogurt cake

Procedia PDF Downloads 42
223 An Experimental Study to Investigate the Behaviour of Torque Fluctuation of Crossflow Turbines Operating in an Open Channel

Authors: Sunil Kumar Singal, Manoj Sood, Upendra Bajpai

Abstract:

Instream technology is the upcoming sustainable approach in the hydro sector for energy harnessing. With well-known cross-sections and regulated supply, open channels are the most prominent locations for the installation of hydrokinetic turbines. The fluctuation in generated torque varies with site condition (flow depth and flow velocity), as well as with the type of turbine. The present experimental study aims to investigate the torque/power fluctuations of crossflow hydrokinetic turbines operating at different flow velocities and water depths. The flow velocity is varied from 1.0 m/s to 2.0 m/s. The complete assembly includes an open channel having dimensions of 0.3 m (depth) x 0.71 m (width) x 4.5 m (length), along with a lifting mechanism for varying the channel slope, a digital transducer for monitoring the torque, power, and rpm, a digital handheld water velocity meter for measuring the flow velocity. Further, a time series of torque, power, and rpm is plotted for a duration of 30 minutes showing the continuous operation of the turbine. A comparison of Savonius, Darrieus, and their improved twisted and helical blades is also presented in the study. A correlation has also been developed for assessing the hydropower generation from the installed turbine. The developed correlations will be very useful in the decision-making process for development at a site.

Keywords: darrieus turbine, flow velocity, open channel, savoinus turbine, water depth, hydropower

Procedia PDF Downloads 54
222 Study on Properties of Carbon-based Layer for Proton Exchange Membrane Fuel Cell Application

Authors: Pei-Jung Wu, Ching-Ying Huang, Chih-Chia Lin, Chun-Han Li, Chien-Yuan Wang

Abstract:

The fuel cell market has considerable development potential, but the cost is still less competitive. Replacing the traditional graphite plate with a stainless steel plate as a bipolar plate can greatly reduce the weight and volume of the stack, and has more cost advantages. However, the passivation layer on the surface of stainless steel makes the contact resistance reach the ohmic level and reduces the performance of the fuel cell. Therefore, it is necessary to reduce the interfacial contact resistance through the surface treatment. In this research, the thickness, uniformity, interfacial contact resistance (ICR), and adhesion of the carbon-based layer was analyzed. On the other hand, the effect of coating properties on the performance of the fuel cell was verified through I-V tests. The results show that after coating the contact resistance is greatly reduced by three stages to the microohm level, and as the film thickness is reduced, the contact resistance is reduced from 229~118 mΩ-cm² to 135~73 mΩ-cm² at a general assembly pressure of 1 to 2 MPa., and the current density at 0.6 V increased from 485.7 mA/cm² to 575.7 mA/cm². This study verifies the importance of the uniformity and ICR of the coating on proton exchange membrane fuel cell (PEMFC), and the surface coating technology is the key to affecting the characteristics of the coating.

Keywords: contact resistance, proton exchange membrane fuel cell, PEMFC, SS bipolar plate, spray coating process

Procedia PDF Downloads 178
221 Preparation and Physicochemical Characterization of Non-ionic Surfactant Vesicles Containing Itraconazole

Authors: S. Ataei, F. Sarrafzadeh Javadi, K. Gilani, E. Moazeni

Abstract:

Drug delivery systems using colloidal particulate carriers such as niosomes or liposomes have distinct advantages over conventional dosage forms because the particles can act as drug-containing reservoirs. These carriers play an increasingly important role in drug delivery. Niosomes are vesicular delivery systems which result from the self-assembly of hydrated surfactant. Niosomes are now widely studied as an attractive to liposomes because they alleviate the disadvantages associated with liposomes, such as chemical instability, variable purity of phospholipids and high cost. The encapsulation of drugs in niosomes can decrease drug toxicity, increase the stability of drug and increase the penetrability of drug in the location of application, and may reduce the dose and systemic side effect. Nowadays, Niosomes are used by the pharmaceutical industry in manufacturing skin medications, eye medication, in cosmetic formulas and these vesicular systems can be used to deliver aspiratory drugs. One way of improving dispersion in the water phase and solubility of the hydrophobic drug is to formulate in into niosomes. Itraconazole (ITZ) was chosen as a model hydrophobic drug. This drug is water insoluble (solubility ~ 1 ng/ml at neutral pH), is a broad-spectrum triazole antifungal agent and is used to treat various fungal disease. This study aims to investigate the capability of forming itraconazole niosomes with Spans, Tweens, Brijs as non-ionic surfactants. To this end, various formulations of niosomes have been studied with regard to parameters such as the degree of containment and particle size.

Keywords: physicochemical, non-ionic surfactant vesicles, itraconazole

Procedia PDF Downloads 437
220 Wind Energy Loss Phenomenon Over Volumized Building Envelope with Porous Air Portals

Authors: Ying-chang Yu, Yuan-lung Lo

Abstract:

More and more building envelopes consist of the construction of balconies, canopies, handrails, sun-shading, vertical planters or gardens, maintenance platforms, display devices, lightings, ornaments, and also the most commonly seen double skin system. These components form a uniform but three-dimensional disturbance structure and create a complex surface wind field in front of the actual watertight building interface. The distorted wind behavior would affect the façade performance and building ventilation. Comparing with sole windscreen walls, these three-dimensional structures perform like distributed air portal assembly, and each portal generates air turbulence and consume wind pressure and energy simultaneously. In this study, we attempted to compare the behavior of 2D porous windscreens without internal construction, porous tubular portal windscreens, porous tapered portal windscreens, and porous coned portal windscreens. The wind energy reduction phenomenon is then compared to the different distributed air portals. The experiments are conducted in a physical wind tunnel with 1:25 in scale to simulate the three-dimensional structure of a real building envelope. The experimental airflow was set up to smooth flow. The specimen is designed as a plane with a distributed tubular structure behind, and the control group uses different tubular shapes but the same fluid volume to observe the wind damping phenomenon of various geometries.

Keywords: volumized building envelope, porous air portal, wind damping, wind tunnel test, wind energy loss

Procedia PDF Downloads 111
219 Microfluidic Construction of Responsive Photonic Microcapsules for Microsensors

Authors: Lingling Shui, Shuting Xie

Abstract:

As alternatives to electronic devices, optically active structures from responsive nanomaterials offer great opportunity buildup smart functional sensors. Hereby, we report on droplet microfluidics enabled construction and application of photonic microcapsules (PMCs) for colorimetric temperature microsensors, enabling miniaturization for injectable local micro-area sensing and integration for large-area sensing. Monodispersed PMCs are produced by in-situ photopolymerization of hydrogel shells of cholesteric liquid crystal (CLC)-in-water-in-oil double emulsion droplets prepared using microfluidic devices, with controllable physical structures and chemical compositions. Constructed PMCs exhibit thermal responsive structural color according to the selective Bragg reflection of CLC’s periodical helical structures within the microdroplet’s spherical confinement. Constructed PMCs with tunable size and composition have been successfully applied for monitoring the living cell extracellular temperature via co-incubation with cell suspension, and for detecting human body temperature via a flexible device from assembled PMCs. These PMCs could be flexibly applied in either micro-environment or large-area surface, enabling wide applications for precision temperature monitoring biological activities (e.g. cells or organs), optoelectronic devices working conditions (e.g. temperature indicators under extreme conditions), and etc.

Keywords: droplet, microfluidics, assembly, soft materials, microsensor

Procedia PDF Downloads 52
218 Preliminary Study on the Factors Affecting Safety Parameters of (Th, U)O₂ Fuel Cycle: The Basis for Choosing Three Fissile Enrichment Zones

Authors: E. H. Uguru, S. F. A. Sani, M. U. Khandaker, M. H. Rabir

Abstract:

The beginning of cycle transient safety parameters is paramount for smooth reactor operation. The enhanced operational safety of UO₂ fuelled AP1000 reactor being the first using three fissile enrichment zones motivated this research for (Th, U)O₂ fuel. This study evaluated the impact of fissile enrichment, soluble boron, and gadolinia on the transient safety parameters to determine the basis for choosing the three fissile enrichment zones. Fuel assembly and core model of Westinghouse small modular reactor were investigated using different fuel and reactivity control arrangements. The Monte Carlo N-Particle eXtended (MCNPX) integrated with CINDER90 burn-up code was used for the calculations. The results show that the moderator temperature coefficient of reactivity (MTC) and the fuel temperature coefficient of reactivity (FTC) were respectively negative and decreased with increasing fissile enrichment. Soluble boron significantly decreased the MTC but slightly increased FTC while gadolinia followed the same trend with a minor impact. However, the MTC and FTC respectively decreased significantly with increasing change in temperature. These results provide a guide on the considerable factors in choosing the three fissile enrichment zones for (Th, U)O₂ fuel in anticipation of their impact on safety parameters. Therefore, this study provides foundational results on the factors that must be considered in choosing three fissile arrangement zones for (Th, U)O₂ fuel.

Keywords: reactivity, safety parameters, small modular reactor, soluble boron, thorium fuel cycle

Procedia PDF Downloads 106
217 Unveiling the Potential of PANI@MnO2@rGO Ternary Nanocomposite in Energy Storage and Gas Sensing

Authors: Ahmad Umar, Sheikh Akbar, Ahmed A. Ibrahim, Mohsen A. Alhamami

Abstract:

The development of advanced materials for energy storage and gas sensing applications has gained significant attention in recent years. In this study, we synthesized and characterized PANI@MnO2@rGO ternary nanocomposites (NCs) to explore their potential in supercapacitors and gas sensing devices. The ternary NCs were synthesized through a multi-step process involving the hydrothermal synthesis of MnO2 nanoparticles, preparation of PANI@rGO composites and the assembly to the ternary PANI@MnO2@rGO ternary NCs. The structural, morphological, and compositional characteristics of the materials were thoroughly analyzed using techniques such as XRD, FESEM, TEM, FTIR, and Raman spectroscopy. In the realm of gas sensing, the ternary NCs exhibited excellent performance as NH3 gas sensors. The optimized operating temperature of 100 °C yielded a peak response of 15.56 towards 50 ppm NH3. The nanocomposites demonstrated fast response and recovery times of 6 s and 10 s, respectively, and displayed remarkable selectivity for NH3 gas over other tested gases. For supercapacitor applications, the electrochemical performance of the ternary NCs was evaluated using cyclic voltammetry and galvanostatic charge-discharge techniques. The composites exhibited pseudocapacitive behavior, with the capacitance reaching up to 185 F/g at 1 A/g and excellent capacitance retention of approximately 88.54% over 4000 charge-discharge cycles. The unique combination of rGO, PANI, and MnO2 nanoparticles in these ternary NCs offer synergistic advantages, showcasing their potential to address challenges in energy storage and gas sensing technologies.

Keywords: paniI@mnO2@rGO ternary NCs, synergistic effects, supercapacitors, gas sensing, energy storage

Procedia PDF Downloads 42
216 Monodisperse Hallow Sandwich MOF for the Catalytic Oxidation of Benzene at Room Temperature

Authors: Srinivasapriyan Vijayan

Abstract:

Phenol is one of the most vital chemical in industry. Nowadays, phenol production is based upon the three-step cumene process, which involves a hazardous cumene hydroperoxide intermediate and produces nearly equimolar amounts of acetone as a coproduct. An attractive route in phenol production is the direct one-step selective hydroxylation of benzene using eco-friendly oxidants such as O2, N2O, and H2O2. In particular, the direct hydroxylation of benzene to form phenol with O2 has recently attracted extensive research attention because this process is green clean and eco-friendly. However, most of the catalytic systems involving O2 have a low rate of hydroxylation because the direct introduction of hydroxyl functionality into benzene is challenging. Almost all the developed catalytic systems require an elevated temperature and suffer from low conversion because of the notoriously low reactivity of aromatic C–H bonds. Moreover, increased reactivity of phenol relative to benzene makes the selective oxidation of benzene to phenol very difficult, especially under heating conditions. Hollow spheres, a very fascinating class of materials with good permeation and low density, highly monodisperse MOF hollow sandwich spheres have been rationally synthesized using monodisperse polystyrene (PS) nanoparticles as templates through a versatile step-by-step self-assembly strategy. So, our findings could pave the way toward highly efficient nonprecious catalysts for low-temperature oxidation reactions in heterogeneous catalysis. Because it is easy post-reaction separation, its cheap, green and recyclable.

Keywords: benzene hydroxylation, Fe-based metal organic frameworks, molecular oxygen, phenol

Procedia PDF Downloads 190