Search results for: melting and freezing cycles
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1297

Search results for: melting and freezing cycles

1177 Climate Change Impact on Water Resources above the Territory of Georgia

Authors: T. Davitashvili

Abstract:

At present impact of global climate change on the territory of Georgia is evident at least on the background of the Caucasus glaciers melting which during the last century have decreased to half their size. Glaciers are early indicators of ongoing global and regional climate change. Knowledge of the Caucasus glaciers fluctuation (melting) is an extremely necessary tool for planning hydro-electric stations and water reservoir, for development tourism and agriculture, for provision of population with drinking water and for prediction of water supplies in more arid regions of Georgia. Otherwise, the activity of anthropogenic factors has resulted in decreasing of the mowing, arable, unused lands, water resources, shrubs and forests, owing to increasing the production and building. Transformation of one type structural unit into another one has resulted in local climate change and its directly or indirectly impacts on different components of water resources on the territory of Georgia. In the present paper, some hydrological specifications of Georgian water resources and its potential pollutants on the background of regional climate change are presented. Some results of Georgian’s glaciers pollution and its melting process are given. The possibility of surface and subsurface water pollution owing to accidents at oil pipelines or railway routes are discussed. The specific properties of regional climate warming process in the eastern Georgia are studied by statistical methods. The effect of the eastern Georgian climate change upon water resources is investigated.

Keywords: climate, droughts, pollution, water resources

Procedia PDF Downloads 455
1176 Corrosion Fatigue of Al-Mg Alloy 5052 in Sodium Chloride Solution Contains Some Inhibitors

Authors: Khalid Ahmed Eldwaib

Abstract:

In this study, Al-Mg alloy 5052 was used as the testing material. Corrosion fatigue life was studied for the alloy in 3.5% NaCl (pH=1, 3, 5, 7, 9, and 11), and 3.5% NaCl (pH=1) with inhibitors. The compound inhibitors were composed mainly of phosphate (PO4³-), adding a certain proportion of other nontoxic inhibitors so as to select alternatives to environmentally hazardous chromate (Cr2O7²-). The inhibitors were sodium dichromate Na2Cr2O7, sodium phosphate Na3PO4, sodium molybdate Na2MoO4, and sodium citrate Na3C6H5O7. The total amount of inhibiting pigments was at different concentrations (250,500,750, and 1000 ppm) in the solutions. Corrosion fatigue behavior was studied by using plane-bending corrosion fatigue machine with stress ratio R=0.5 and under the constant frequency of 13.3 Hz. Results show that in 3.5% NaCl the highest fatigue life (number of cycles to failure Nf) is obtained at pH=5 where the oxide film on aluminum has very low solubility, and the lowest number of cycles is obtained at pH=1, where the media is too aggressive (extremely acidic). When the concentration of inhibitor increases the cycles to failure increase. The surface morphology and fracture section of the specimens had been characterized through scanning electron microscope (SEM).

Keywords: Al-Mg alloy 5052, corrosion, fatigue, inhibitors

Procedia PDF Downloads 428
1175 DNA Intercalating Alkaloids Isolated from Chelidonium majus (Papaveraceae)

Authors: Mohamed Tamer, Wink Michael

Abstract:

DNA intercalating agents increase the stability of DNA which can be demonstrated by measuring the melting temperature Tm. Tm can be determined in a spectrophotometer in which the cell temperature is increased gradually. The resulting absorption data comes as a sigmoidal curve from which melting temperature can be determined when half of the DNA has denatured. The current study aims to assess DNA intercalating activities of four pure bioactive isoquinoline alkaloids: sanguinarine, berberine, allocryptopine, and chelerythrine which were isolated from Chelidonium majus (Papaveraceae) by repeated silica gel column chromatography, recrystallization and preparative TLC. The isolated compounds were identified by comparing their physical properties and mass spectra with those of the published data. The results showed that sanguiarine is the most active intercalating agent with Tm value of 83.55 ± 0.49 followed by berberine, chelerythrine, and allocryptopine with Tm values 62.58 ± 0.47, 51.38 ± 0.37 and 50.94 ± 0.65, respectively, relative to 49.78 ± 1.05 of bacteriophage DNA alone and 86.09 ± 0.5 for ethidium bromide as a positive control.

Keywords: alkaloids, Chelidonium majus, DNA intercalation, Tm

Procedia PDF Downloads 475
1174 The Magnetic Susceptibility of the Late Quaternary Loess in North-East of Iran and Its Correlation with Other Palaeoclimatical Parameters

Authors: Fereshteh M. Haskouei, Habib Alimohammadian

Abstract:

Magnetic susceptibility (χ) is operational to identify of late quaternary glacial-interglacial cycles in loess-paleosol sequences. It is well accepted that many loess-paleosol sequences bear witness to cold-dry/warm-humid periods, well known as glacial-interglacial cycles, respectively. For this study, loess-paleosol sequence of north-east of Iran was magnetically investigated. The study area is situated at about 8 km away of Neka city, on the main road of Sari-Behshahr, in Mazandaran Province, north of Iran. The youngest deposits of study area are the late Quaternary wind-blown accumulations. In this study, the total number of 117 samples was collected from loess-paleosols units. After that, the natural remnant magnetization (NRM) and magnetic susceptibility (MS) of the samples were measured. Variation of MS of more than 110 loess samples was plotted to reveal the correlation of the MS and paleoclimatic changes. This study aims reconstruction of climatic changes (glacial-interglacial and stadials-interstadials cycles). To confirm our results we compared MS (χ) and the curves of other investigations in paleoclimatology. This correspondence abled us to recognize worldly events in the study area such as: Younger Dryas, the Last Glacial Maximum (LGM), deglaciation of Northern Hemisphere etc. The obtained magnetic data indicate that during almost 50 ka, at least two glacial-interglacial periods occurred in north-east of Iran. Further, variation of χ values revealed short period of climatically cycles known as stadials-interstadials. We recognized 4 stadials and a single stadial as colder sub-periods for S0 (recently soil-paleosol) and S2 (lower paleosol), respectively, Moreover, we recognized 6 warmer sub-periods (interstadials) for L1 (upper loess) and one interstadial L2 (lower loess).

Keywords: glacial-interglacial cycles, Iran, last glacial maximum (LGM), loess, magnetic susceptibility (χ), Neka, stadials-interstadials sub-periods, younger dryas

Procedia PDF Downloads 99
1173 Multi-Walled Carbon Nanotubes as Nucleating Agents

Authors: Rabindranath Jana, Plabani Basu, Keka Rana

Abstract:

Nucleating agents are widely used to modify the properties of various polymers. The rate of crystallization and the size of the crystals have a strong impact on mechanical and optical properties of a polymer. The addition of nucleating agents to the semi-crystalline polymers provides a surface on which the crystal growth can start easily. As a consequence, fast crystal formation will result in many small crystal domains so that the cycle times for injection molding may be reduced. Moreover, the mechanical properties e.g., modulus, tensile strength, heat distortion temperature and hardness may increase. In the present work, multi-walled carbon nanotubes (MWNTs) as nucleating agents for the crystallization of poly (e-caprolactone)diol (PCL). Thus nanocomposites of PCL filled with MWNTs were prepared by solution blending. Differential scanning calorimetry (DSC) tests were carried out to study the effect of CNTs on on-isothermal crystallization of PCL. The polarizing optical microscopy (POM), and wide-angle X-ray diffraction (WAXD) were used to study the morphology and crystal structure of PCL and its nanocomposites. It is found that MWNTs act as effective nucleating agents that significantly shorten the induction period of crystallization and however, decrease the crystallization rate of PCL, exhibiting a remarkable decrease in the Avrami exponent n, surface folding energy σe and crystallization activation energy ΔE. The carbon-based fillers act as templates for hard block chains of PCL to form an ordered structure on the surface of nanoparticles during the induction period, bringing about some increase in equilibrium temperature. The melting process of PCL and its nanocomposites are also studied; the nanocomposites exhibit two melting peaks at higher crystallization temperature which mainly refer to the melting of the crystals with different crystal sizes however, PCL shows only one melting temperature.

Keywords: poly(e-caprolactone)diol, multiwalled carbon nanotubes, composite materials, nonisothermal crystallization, crystal structure, nucleation

Procedia PDF Downloads 462
1172 The Dynamics of Microorganisms in Dried Yogurt Storages at Different Temperatures

Authors: Jaruwan Chutrtong

Abstract:

Yoghurt is a fermented milk product. The process of making yogurt involves fermenting milk with live and active bacterial cultures by adding bacteria directly to the dairy product. It is usually made with a culture of Lactobacillus sp. (L. acidophilus or L. bulgaricus) and Streptococcus thermophilus. Many people like to eat it plain or flavored and it's also use as ingredient in many dishes. Yogurt is rich in nutrients including the microorganism which have important role in balancing the digestion and absorption of the boy.Consumers will benefit from lactic acid bacteria more or less depending on the amount of bacteria that lives in yogurt while eating. When purchasing yogurt, consumers should always check the label for live cultures. Yoghurt must keep in refrigerator at 4°C for up to ten days. After this amount of time, the cultures often become weak. This research studied freezing dry yogurt storage by monitoring on the survival of microorganisms when stored at different temperatures. At 300°C, representative room temperature of country in equator zone, number of lactic acid bacteria reduced 4 log cycles in 10 week. At 400°C, representative temperature in summer of country in equator zone, number of lactic acid bacteria also dropped 4 log cycle in 10 week, similar as storage at 300°C. But drying yogurt storage at 400°C couldn’t reformed to be good character yogurt as good as storage at 400°C only 4 week storage too. After 1 month, it couldn’t bring back the yogurt form. So if it is inevitable to keep yogurt powder at a temperature of 40°C, yoghurt is maintained only up to 4 weeks.

Keywords: dynamic, dry yoghurt, storage, temperature

Procedia PDF Downloads 297
1171 Monetary Policy and Economic Growth in West African Business Cycles: Markov Switching Approach

Authors: Omolade Adeleke, Jonathan Olusegun Famoroti

Abstract:

This study empirically examined the monetary policy and economic growth in the classical cycles in 8 member countries of the West African Economic and Monetary Union (WAEMU), using the Markov switching model for the Two-phase Regime, covering the period 1980Q1 to 2020Q4. Our estimates suggest that these countries demonstrate to have similar business cycles, and the economies stay more in an expansion regime than a recession regime. The result further shows that the union has an average duration period of 3.1 and 15.9 quarters for contraction and expansion periods, respectively. The business cycle duration, on average, suggests 19 quarters, varying from country to country. Therefore, the formulation of policies that can enhance aggregate demand by member countries in the union is an antidote for recession and is necessary to drive the economy into equilibrium. Also, a low-interest rate and reduced inflation rate would ginger long-run economic growth.

Keywords: monetary policy, business cycle, economic growth, Markov switching

Procedia PDF Downloads 44
1170 Orbital Tuning of Marl-Limestone Alternations (Upper Tithonian to Upper Berriasian) in North-South Axis (Tunisia): Geochronology and Sequence Implications

Authors: Hamdi Omar Omar, Hela Fakhfakh, Chokri Yaich

Abstract:

This work reflects the integration of different techniques, such as field sampling and observations, magnetic susceptibility measurement, cyclostratigaraphy and sequence stratigraphy. The combination of these results allows us to reconstruct the environmental evolution of the Sidi Khalif Formation in the North-South Axis (NOSA), aged of Upper Tithonian, Berriasian and Lower Valanginian. Six sedimentary facies were identified and are primarily influenced by open marine sedimentation receiving increasing terrigenous influx. Spectral analysis, based on MS variation (for the outcropped section) and wireline logging gamma ray (GR) variation (for the sub-area section) show a pervasive dominance of 405-kyr eccentricity cycles with the expression of 100-kyr eccentricity, obliquity and precession. This study provides (for the first time) a precise duration of 2.4 myr for the outcropped Sidi Khalif Formation with a sedimentation rate of 5.4 cm/kyr and the sub-area section to 3.24 myr with a sedimentation rate of 7.64 cm/kyr. We outlined 27 5th-order depositional sequences, 8 Milankovitch depositional sequences and 2 major 3rd-order cycles for the outcropping section, controlled by the long eccentricity (405 kyr) cycles and the precession index cycles. This study has demonstrated the potential of MS and GR to be used as proxies to develop an astronomically calibrated time-scale for the Mesozoic era.

Keywords: Berriasian, magnetic susceptibility, orbital tuning, Sidi Khalif Formation

Procedia PDF Downloads 236
1169 Influence of Ground Granulated Blast Furnace Slag on Geotechnical Characteristics of Jarosite Waste

Authors: Chayan Gupta, Arun Prasad

Abstract:

The quick evolution of industrialization causes the scarcity of precious land. Thus, it is vital need to influence the R&D societies to achieve sustainable, economic and social benefits from huge utilization of waste for universal aids. The current study promotes the influence of steel industries waste i.e. ground granulated blast furnace slag (GGBS) in geotechnical properties of jarosite waste (solid waste residues produced from hydrometallurgy operations involved in extraction of Zinc). Numerous strengths tests (unconfined compression (qu) and splitting tensile strength (qt)) are conducted on jarosite-GGBS blends (GGBS, 10-30%) with different curing periods (7, 28 & 90 days). The results indicate that both qu and qt increase with the increase in GGBS content along with curing periods. The increased strength with the addition of GGBS is also observed from microstructural study, which illustrates the occurrence of larger agglomeration of jarosite-GGBS blend particles. The Freezing-Thawing (F-T) durability analysis is also conducted for all the jarosite-GGBS blends and found that the reduction in unconfined compressive strength after five successive F-T cycles enhanced from 62% (natural jarosite) to 48, 42 and 34% at 7, 14 and 28 days curing periods respectively for stabilized jarosite-GGBS samples containing 30% GGBS content. It can be concluded from this study that blending of cementing additives (GGBS) with jarosite waste resulted in a significant improvement in geotechnical characteristics.

Keywords: jarosite, GGBS, strength characteristics, microstructural study, durability analysis

Procedia PDF Downloads 148
1168 Clinical Outcome after in Vitro Fertilization in Women Aged 40 Years and Above: Reasonable Cut-Off Age for Successful Pregnancy

Authors: Eun Jeong Yu, Inn Soo Kang, Tae Ki Yoon, Mi Kyoung Koong

Abstract:

Advanced female age is associated with higher cycle cancelation rates, lower clinical pregnancy rate, increased miscarriage and aneuploidy rates in IVF (In Vitro Fertilization) cycles. This retrospective cohort study was conducted at a Cha Fertility Center, Seoul Station. All fresh non-donor IVF cycles performed in women aged 40 years and above from January 2016 to December 2016 were reviewed. Donor/recipient treatment, PGD/PGS (Preimplantation Genetic Diagnosis/ Preimplantation Genetic Screening) were excluded from analysis. Of the 1,166 cycles from 753 women who completed ovulation induction, 1,047 were appropriate for the evaluation according to inclusion and exclusion criterion. IVF cycles were categorized according to age and grouped into the following 1-year age groups: 40, 41, 42, 43, 44, 45 and > 46. The mean age of patients was 42.4 ± 1.8 years. The median AMH (Anti-Mullerian Hormone) level was 1.2 ± 1.5 ng/mL. The mean number of retrieved oocytes was 4.9 ± 4.3. The clinical pregnancy rate and live birth rate in women > 40 years significantly decreased with each year of advancing age (p < 0.001). The clinical pregnancy rate decreased from 21% at the age of 40 years to 0% at ages above 45 years. Live birth rate decreased from 12.3% to 0%, respectively. There were no clinical pregnancy outcomes among 95 patients aged above 45 years of age. The overall miscarriage rate was 40.7% (range, 36.7%-70%). The transfer of at least one good quality embryo was associated with about 4-9% increased chance of a clinical pregnancy rate. Therefore, IVF in old age women less than 46 had a reasonable chance for successful pregnancy outcomes especially when good quality embryo is transferred.

Keywords: advanced maternal age, in vitro fertilization, pregnancy rate, live birth rate

Procedia PDF Downloads 118
1167 Physicochemical Properties of Palm Stearin (PS) and Palm Kernel Olein (PKOO) Blends as Potential Edible Coating Materials

Authors: I. Ruzaina, A. B. Rashid, M. S. Halimahton Zahrah, C. S. Cheow, M. S. Adi

Abstract:

This study was conducted to determine the potential of palm stearin (PS) as edible coating materials for fruits. The palm stearin was blended with 20-80% palm kernel olein (PKOo) and the properties of the blends were evaluated in terms of the slip melting point (SMP), solid fat content (SFC), fatty acid and triacylglycerol compositions (TAG), and polymorphism. Blending of PS with PKOo reduced the SMP, SFC, altered the FAC and TAG composition and changed the crystal polymorphism from β to mixture of β and β′. The changes in the physicochemical properties of PS were due to the replacement of the high melting TAG in PS with medium chain TAG in PKOo. From the analysis, 1:1 and 3:2 were the better PSPKOo blend formulations in slowing down the weight loss, respiration gases and gave better appearance when compared to other PSPKOo blends formulations.

Keywords: guava, palm stearin, palm kernel olein, physicochemical

Procedia PDF Downloads 546
1166 Impact of Work Cycles on Autonomous Digital Learning

Authors: Bi̇rsen Tutunis, Zuhal Aydin

Abstract:

Guided digital learning has attracted many researchers as it leads to autonomous learning.The developments in Guided digital learning have led to changes in teaching and learning in English Language Teaching classes (Jeong-Bae, 2014). This study reports on tasks designed under the principles of learner autonomy in an online learning platform ‘’Webquest’’ with the purpose of teaching English to Turkish tertiary level students at a foundation university in Istanbul. Guided digital learning blog project contents were organized according to work-cycles phases (planning and negotiation phase, decision-making phase, project phase and evaluation phase) which are compatible with the principles of autonomous learning (Legenhausen,2003). The aim of the study was to implement the class blog project to find out its impact on students’ behaviours and beliefs towards autonomous learning. The mixed method research approach was taken. 24 tertiary level students participated in the study on voluntary basis. Data analysis was performed with Statistical Package for the Social Sciences. According to the results, students' attitudes towards digital learning did not differ before and after the training application. The learning styles of the students and their knowledge on digital learning scores differed. It has been observed that the students' learning styles and their digital learning scores increased after the training application. Autonomous beliefs, autonomous behaviors, group cohesion and group norms differed before and after the training application. Students' motivation level, strategies for learning English, perceptions of responsibility and out-of-class activity scores differed before and after the training application. It was seen that work-cycles in online classes create student centered learning that fosters autonomy. This paper will display the work cycles in detail and the researchers will give examples of in and beyond class activities and blog projects.

Keywords: guided digital learning, work cycles, english language teaching, autonomous learning

Procedia PDF Downloads 46
1165 Rock-Bed Thermocline Storage: A Numerical Analysis of Granular Bed Behavior and Interaction with Storage Tank

Authors: Nahia H. Sassine, Frédéric-Victor Donzé, Arnaud Bruch, Barthélemy Harthong

Abstract:

Thermal Energy Storage (TES) systems are central elements of various types of power plants operated using renewable energy sources. Packed bed TES can be considered as a cost–effective solution in concentrated solar power plants (CSP). Such a device is made up of a tank filled with a granular bed through which heat-transfer fluid circulates. However, in such devices, the tank might be subjected to catastrophic failure induced by a mechanical phenomenon known as thermal ratcheting. Thermal stresses are accumulated during cycles of loading and unloading until the failure happens. For instance, when rocks are used as storage material, the tank wall expands more than the solid medium during charge process, a gap is created between the rocks and tank walls and the filler material settles down to fill it. During discharge, the tank contracts against the bed, resulting in thermal stresses that may exceed the wall tank yield stress and generate plastic deformation. This phenomenon is repeated over the cycles and the tank will be slowly ratcheted outward until it fails. This paper aims at studying the evolution of tank wall stresses over granular bed thermal cycles, taking into account both thermal and mechanical loads, with a numerical model based on the discrete element method (DEM). Simulations were performed to study two different thermal configurations: (i) the tank is heated homogeneously along its height or (ii) with a vertical gradient of temperature. Then, the resulting loading stresses applied on the tank are compared as well the response of the internal granular material. Besides the study of the influence of different thermal configurations on the storage tank response, other parameters are varied, such as the internal angle of friction of the granular material, the dispersion of particles diameters as well as the tank’s dimensions. Then, their influences on the kinematics of the granular bed submitted to thermal cycles are highlighted.

Keywords: discrete element method (DEM), thermal cycles, thermal energy storage, thermocline

Procedia PDF Downloads 380
1164 Dynamic Voltage Restorer Control Strategies: An Overview

Authors: Arvind Dhingra, Ashwani Kumar Sharma

Abstract:

Power quality is an important parameter for today’s consumers. Various custom power devices are in use to give a proper supply of power quality. Dynamic Voltage Restorer is one such custom power device. DVR is a static VAR device which is used for series compensation. It is a power electronic device that is used to inject a voltage in series and in synchronism to compensate for the sag in voltage. Inductive Loads are a major source of power quality distortion. The induction furnace is one such typical load. A typical induction furnace is used for melting the scrap or iron. At the time of starting the melting process, the power quality is distorted to a large extent especially with the induction of harmonics. DVR is one such approach to mitigate these harmonics. This paper is an attempt to overview the various control strategies being followed for control of power quality by using DVR. An overview of control of harmonics using DVR is also presented.

Keywords: DVR, power quality, harmonics, harmonic mitigation

Procedia PDF Downloads 345
1163 Non-Destructive Testing of Selective Laser Melting Products

Authors: Luca Collini, Michele Antolotti, Diego Schiavi

Abstract:

At present, complex geometries within production time shrinkage, rapidly increasing demand, and high-quality standard requirement make the non-destructive (ND) control of additively manufactured components indispensable means. On the other hand, a technology gap and the lack of standards regulating the methods and the acceptance criteria indicate the NDT of these components a stimulating field to be still fully explored. Up to date, penetrant testing, acoustic wave, tomography, radiography, and semi-automated ultrasound methods have been tested on metal powder based products so far. External defects, distortion, surface porosity, roughness, texture, internal porosity, and inclusions are the typical defects in the focus of testing. Detection of density and layers compactness are also been tried on stainless steels by the ultrasonic scattering method. In this work, the authors want to present and discuss the radiographic and the ultrasound ND testing on additively manufactured Ti₆Al₄V and inconel parts obtained by the selective laser melting (SLM) technology. In order to test the possibilities given by the radiographic method, both X-Rays and γ-Rays are tried on a set of specifically designed specimens realized by the SLM. The specimens contain a family of defectology, which represent the most commonly found, as cracks and lack of fusion. The tests are also applied to real parts of various complexity and thickness. A set of practical indications and of acceptance criteria is finally drawn.

Keywords: non-destructive testing, selective laser melting, radiography, UT method

Procedia PDF Downloads 112
1162 In-Situ Formation of Particle Reinforced Aluminium Matrix Composites by Laser Powder Bed Fusion of Fe₂O₃/AlSi12 Powder Mixture Using Consecutive Laser Melting+Remelting Strategy

Authors: Qimin Shi, Yi Sun, Constantinus Politis, Shoufeng Yang

Abstract:

In-situ preparation of particle-reinforced aluminium matrix composites (PRAMCs) by laser powder bed fusion (LPBF) additive manufacturing is a promising strategy to strengthen traditional Al-based alloys. The laser-driven thermite reaction can be a practical mechanism to in-situ synthesize PRAMCs. However, introducing oxygen elements through adding Fe₂O₃ makes the powder mixture highly sensitive to form porosity and Al₂O₃ film during LPBF, bringing challenges to producing dense Al-based materials. Therefore, this work develops a processing strategy combined with consecutive high-energy laser melting scanning and low-energy laser remelting scanning to prepare PRAMCs from a Fe₂O₃/AlSi12 powder mixture. The powder mixture consists of 5 wt% Fe₂O₃ and the remainder AlSi12 powder. The addition of 5 wt% Fe₂O₃ aims to achieve balanced strength and ductility. A high relative density (98.2 ± 0.55 %) was successfully obtained by optimizing laser melting (Emelting) and laser remelting surface energy density (Eremelting) to Emelting = 35 J/mm² and Eremelting = 5 J/mm². Results further reveal the necessity of increasing Emelting, to improve metal liquid’s spreading/wetting by breaking up the Al₂O₃ films surrounding the molten pools; however, the high-energy laser melting produced much porosity, including H₂₋, O₂₋ and keyhole-induced pores. The subsequent low-energy laser remelting could close the resulting internal pores, backfill open gaps and smoothen solidified surfaces. As a result, the material was densified by repeating laser melting and laser remelting layer by layer. Although with two-times laser scanning, the microstructure still shows fine cellular Si networks with Al grains inside (grain size of about 370 nm) and in-situ nano-precipitates (Al₂O₃, Si, and Al-Fe(-Si) intermetallics). Finally, the fine microstructure, nano-structured dispersion strengthening, and high-level densification strengthened the in-situ PRAMCs, reaching yield strength of 426 ± 4 MPa and tensile strength of 473 ± 6 MPa. Furthermore, the results can expect to provide valuable information to process other powder mixtures with severe porosity/oxide-film formation potential, considering the evidenced contribution of laser melting/remelting strategy to densify material and obtain good mechanical properties during LPBF.

Keywords: densification, laser powder bed fusion, metal matrix composites, microstructures, mechanical properties

Procedia PDF Downloads 129
1161 Design of Self-Heating Containers Using Sodium Acetate Trihydrate for Chemical Energy – Food Products

Authors: Rameshaiah Gowdara Narayanappa, Manikonda Prithvi, Manoj Kumar, Suraj Bhavani, Vikram Singh

Abstract:

Long ago heating of food was only related to fire or electricity. Heating and storage of consumer foods were satisfied by the use of vacuum thermo flaks, electric heating cans and DC powered heating cans. But many of which did not sustain the heat for a long period of time and were impractical for remote areas. The use of chemical energy for heating foods directed us to think about the applications of exothermic reactions as a source of heat. Initial studies of calcium oxide showed desirability but not feasible because the reaction was uncontrollable and irreversible. In this research work we viewed at crystallization of super saturated sodium acetate trihydrate solution. Supersaturated sodium acetate trihydrate has a freezing point of 540 C (1300 F), but it observed to be stable as a liquid at much lower temperatures. Mechanical work is performed to create an active chemical energy zone within the working fluid, when crystallization process is initiated. Due to this the temperature rises to its freezing point which in turn heats the contents in the storage container. Present work endeavor to design a self-heating storage container is suitable for consumer dedications.

Keywords: crystallization, exothermic reactions, self-heating container, super saturation, vacuum thermo flask

Procedia PDF Downloads 444
1160 Development of a CFD Model for PCM Based Energy Storage in a Vertical Triplex Tube Heat Exchanger

Authors: Pratibha Biswal, Suyash Morchhale, Anshuman Singh Yadav, Shubham Sanjay Chobe

Abstract:

Energy demands are increasing whereas energy sources, especially non-renewable sources are limited. Due to the intermittent nature of renewable energy sources, it has become the need of the hour to find new ways to store energy. Out of various energy storage methods, latent heat thermal storage devices are becoming popular due to their high energy density per unit mass and volume at nearly constant temperature. This work presents a computational fluid dynamics (CFD) model using ANSYS FLUENT 19.0 for energy storage characteristics of a phase change material (PCM) filled in a vertical triplex tube thermal energy storage system. A vertical triplex tube heat exchanger, just like its name consists of three concentric tubes (pipe sections) for parting the device into three fluid domains. The PCM is filled in the middle domain with heat transfer fluids flowing in the outer and innermost domains. To enhance the heat transfer inside the PCM, eight fins have been incorporated between the internal and external tubes. These fins run radially outwards from the outer-wall of innermost tube to the inner-wall of the middle tube dividing the middle domain (between innermost and middle tube) into eight sections. These eight sections are then filled with a PCM. The validation is carried with earlier work and a grid independence test is also presented. Further studies on freezing and melting process were carried out. The results are presented in terms of pictorial representation of isotherms and liquid fraction

Keywords: heat exchanger, thermal energy storage, phase change material, CFD, latent heat

Procedia PDF Downloads 126
1159 The Effect of Catastrophic Losses on Insurance Cycle: Case of Croatia

Authors: Drago Jakovčević, Maja Mihelja Žaja

Abstract:

This paper provides an analysis of the insurance cycle in the Republic of Croatia and whether they are affected by catastrophic losses on a global level. In general, it is considered that insurance cycles are particularly pronounced in periods of financial crisis, but are also affected by the growing number of catastrophic losses. They cause the change of insurance cycle and premium growth and intensification and narrowing of the coverage conditions, so these variables move in the same direction and these phenomena point to a new cycle. The main goal of this paper is to determine the existence of insurance cycle in the Republic of Croatia and investigate whether catastrophic losses have an influence on insurance cycles.

Keywords: catastrophic loss, insurance cycle, premium, Republic of Croatia

Procedia PDF Downloads 327
1158 Modelling and Investigation of Phase Change Phenomena of Multiple Water Droplets

Authors: K. R. Sultana, K. Pope, Y. S. Muzychka

Abstract:

In recent years, the research of heat transfer or phase change phenomena of liquid water droplets experiences a growing interest in aircraft icing, power transmission line icing, marine icing and wind turbine icing applications. This growing interest speeding up the research from single to multiple droplet phenomena. Impingements of multiple droplets and the resulting solidification phenomena after impact on a very cold surface is computationally studied in this paper. The model used in the current study solves the flow equation, composed of energy balance and the volume fraction equations. The main aim of the study is to investigate the effects of several thermo-physical properties (density, thermal conductivity and specific heat) on droplets freezing. The outcome is examined by various important factors, for instance, liquid fraction, total freezing time, droplet temperature and total heat transfer rate in the interface region. The liquid fraction helps to understand the complete phase change phenomena during solidification. Temperature distribution and heat transfer rate help to demonstrate the overall thermal exchange behaviors between the droplets and substrate surface. Findings of this research provide an important technical achievement for ice modeling and prediction studies.

Keywords: droplets, CFD, thermos-physical properties, solidification

Procedia PDF Downloads 209
1157 Development of High Temperature Eutectic Oxide Ceramic Matrix Composites

Authors: Yağmur Can Gündoğan, Kübra Gürcan Bayrak, Ece Özerdem, Buse Katipoğlu, Erhan Ayas, Rifat Yılmaz

Abstract:

Eutectic oxide based ceramic matrix composites have a unique microstructure that does not include grain boundary in the form of a continuous network. Because of this, these materials have the properties of perfect high-temperature strength, creep strength, and high oxidation strength. Mechanical properties of them are much related to occurring solidification structures during eutectic reactions. One of the most important production methods of this kind of material is the process of vacuum arc melting. Within scope of this studying, it is aimed to investigate the production of Al₂O₃-YAG-based eutectic ceramics by Arc melting and Spark Plasma Sintering methods for use in aerospace and defense industries where high-temperature environments play an important role and to examine the effects of ZrO₂ and LiF additions on microstructure development and mechanical properties.

Keywords: alumina, composites, eutectic, YAG

Procedia PDF Downloads 89
1156 Experimental Evaluation of Workability and Compressive Strength of Concrete With Sediments From Dam

Authors: Khouadjia Mohamed Lyes Kamel, Bensalem Sara, Abdou Kamel, Belkadi Ahmed Abderraouf, Kessal Oussama

Abstract:

The experimental study was conducted on sediments dredging from the dam of Bni Haroun, the most important and the largest dam in Algeria. The first phase of the work was to substitution of crushed sand with sediments to study the workability and compressive strength of ordinary concretes. The second phase of the work is to study the behavior of concrete with sediment under the effect of the freeze-thaw cycles. The results showed that the mechanical performance of concretes with sediments is better with a substitution rate of 10%.

Keywords: sediments, concrete, dam, workability, compressive strength, freeze-thaw cycles

Procedia PDF Downloads 102
1155 Hydrofracturing for Low Temperature Waxy Reservoirs: Problems and Solutions

Authors: Megh Patel, Arjun Chauhan, Jay Thakkar

Abstract:

Hydrofracturing is the most prominent but at the same time expensive, highly skilled and time consuming well stimulation technique. Due to high cost and skilled labor involved, it is generally carried out as the consummate solution among other well stimulation techniques. Considering today’s global petroleum market, no gaffe or complications could be entertained during fracturing, as it would further hamper the current dwindling economy. The literature would be dealing with the challenges encountered during fracturing low temperature waxy reservoirs and the prominent solutions to overcome such teething troubles. During fracturing treatment for, shallow and high freezing point waxy oil reservoirs, the first line problems are to overcome uncompleted breakdown, uncompleted cleanup of fracturing fluids and cold damages to the formations by injecting cold fluid (fluid at ambient conditions). Injecting fracturing fluids at ambient conditions have the tendency to decrease the near wellbore reservoir temperature below the freezing point of oil reservoir and hence leading to wax deposition around the wellbore thereby hampering the fluid production as well as fracture propagation. To overcome such problems, solutions such as hot fracturing fluid injection, encapsulated heat generating hydraulic fracturing fluid system, and injection of wax inhibitor techniques would be discussed. The paper would also be throwing light on changes in rheological properties occurred during heating fracturing fluids and solutions to deal with it taking economic considerations into account.

Keywords: hydrofracturing, waxy reservoirs, low temperature, viscosity, crosslinkers

Procedia PDF Downloads 222
1154 Beneficial Effect of Autologous Endometrial Stromal Cell Co-Culture on Day 3 Embryo Quality

Authors: I. Bochev, A. Shterev, S. Kyurkchiev

Abstract:

One of the factors associated with poor success rates in human in vitro fertilization (IVF) is the suboptimal culture conditions in which fertilization and early embryonic growth occur. Co-culture systems with helper cell lines appear to enhance the in vitro conditions and allow embryos to demonstrate improved in vitro development. The co-culture of human embryos with monolayers of autologous endometrial stromal cell (EnSCs) results in increased blastocyst development with a larger number of blastomeres, lower incidence of fragmentation and higher pregnancy rates in patients with recurrent implantation failure (RIF). The aim of the study was to examine the influence of autologous endometrial stromal cell (EnSC) co-culture on day 3 embryo quality by comparing the morphological status of the embryos from the same patients undergoing consecutive IVF/Intracytoplasmic sperm injection (ICSI) cycles without and with EnSC co-culture. This retrospective randomized study (2015-2017) includes 20 couples and a total of 46 IVF/ICSI cycles. Each patient couple included had at least two IVF/ICSI procedures – one with and one without autologous EnSC co-culture. Embryo quality was assessed at 68±1 hours in culture, according to Istanbul consensus criteria (2010). Day 3 embryos were classified into three groups: good – grade 1; fair – grade 2; poor – grade 3. Embryos from all cycles were divided into two groups (A – co-cultivated; B – not co-cultivated) and analyzed. Second, for each patient couple, embryos from matched IVF/ICSI cycles (with and without co-culture) were analyzed separately. When an analysis of co-cultivated day 3 embryos from all cycles was performed (n=137; group A), 43.1% of the embryos were graded as “good”, which was not significantly different from the respective embryo quality rate of 42.2% (p = NS) in group B (n=147) with non-co-cultivated embryos. The proportions of fair and poor quality embryos in group A and group B were similar as well – 11.7% vs 10.2% and 45.2% vs 47.6% (p=NS), respectively. Nevertheless, the separate embryo analysis by matched cycles for each couple revealed that in 65% of the cases the proportion of morphologically better embryos was increased in cycles with co-culture in comparison with those without co-culture. A decrease in this proportion after endometrial stromal cell co-cultivation was found in 30% of the cases, whereas no difference was observed in only one couple. The results demonstrated that there is no marked difference in the overall morphological quality between co-cultured and non-co-cultured embryos on day 3. However, in significantly greater percentage of couples the process of autologous EnSC co-culture could increase the proportion of morphologically improved day 3 embryos. By mimicking the in vivo relationship between embryo and maternal environment, co-culture in autologous EnSC system represents a perspective approach to improve the quality of embryos in cases with elevated risk for development of embryos with impaired morphology.

Keywords: autologous endometrial stromal cells, co-culture, day 3 embryo, morphological quality

Procedia PDF Downloads 200
1153 An Analysis on Thermal Energy Storage in Paraffin-Wax Using Tube Array on a Shell and Tube Heat Exchanger

Authors: Syukri Himran, Rustan Taraka, Anto Duma

Abstract:

The aim of the study is to improve the understanding of latent and sensible thermal energy storage within a paraffin wax media by an array of cylindrical tubes arranged both in in-line and staggered layouts. An analytical and experimental study was carried out in a horizontal shell-and-tube type system during the melting process. Pertamina paraffin-wax was used as a phase change material (PCM), where as the tubes are embedded in the PCM. From analytical study we can obtain the useful information in designing a thermal energy storage such as : the motion of interface, amount of material melted at any time in the process, and the heat storage characteristic during melting. The use of staggered tubes is proposed as superior to in-line layout for thermal storage. The experimental study was used to verify the validity of the analytical predictions. From the comparisons, the analytical and experimental data are in a good agreement.

Keywords: latent, sensible, paraffin-wax, thermal energy storage, conduction, natural convection

Procedia PDF Downloads 539
1152 Surface Integrity Improvement for Selective Laser Melting (SLM) Additive Manufacturing of C300 Parts Using Ball Burnishing

Authors: Adrian Travieso Disotuar, J. Antonio Travieso Rodriguez, Ramon Jerez Mesa, Montserrat Vilaseca

Abstract:

The effect of the non-vibration-assisted and vibration-assisted ball burnishing on both the surface and mechanical properties of C300 obtained by Selective Laser Melting additive manufacturing technology is studied in this paper. Different vibration amplitudes preloads, and burnishing strategies were tested. A topographical analysis was performed to determine the surface roughness of the different conditions. Besides, micro tensile tests were carried out in situ on Scanning Electron Microscopy to elucidate the post-treatment effects on damaging mechanisms. Experiments show that vibration-assisted ball burnishing significantly enhances mechanical properties compared to the non-vibration-assisted method. Moreover, it was found that the surface roughness was significantly improved with respect to the reference surface.

Keywords: additive manufacturing, ball burnishing, mechanical properties, metals, surface roughness

Procedia PDF Downloads 42
1151 Multifunctional Epoxy/Carbon Laminates Containing Carbon Nanotubes-Confined Paraffin for Thermal Energy Storage

Authors: Giulia Fredi, Andrea Dorigato, Luca Fambri, Alessandro Pegoretti

Abstract:

Thermal energy storage (TES) is the storage of heat for later use, thus filling the gap between energy request and supply. The most widely used materials for TES are the organic solid-liquid phase change materials (PCMs), such as paraffin. These materials store/release a high amount of latent heat thanks to their high specific melting enthalpy, operate in a narrow temperature range and have a tunable working temperature. However, they suffer from a low thermal conductivity and need to be confined to prevent leakage. These two issues can be tackled by confining PCMs with carbon nanotubes (CNTs). TES applications include the buildings industry, solar thermal energy collection and thermal management of electronics. In most cases, TES systems are an additional component to be added to the main structure, but if weight and volume savings are key issues, it would be advantageous to embed the TES functionality directly in the structure. Such multifunctional materials could be employed in the automotive industry, where the diffusion of lightweight structures could complicate the thermal management of the cockpit environment or of other temperature sensitive components. This work aims to produce epoxy/carbon structural laminates containing CNT-stabilized paraffin. CNTs were added to molten paraffin in a fraction of 10 wt%, as this was the minimum amount at which no leakage was detected above the melting temperature (45°C). The paraffin/CNT blend was cryogenically milled to obtain particles with an average size of 50 µm. They were added in various percentages (20, 30 and 40 wt%) to an epoxy/hardener formulation, which was used as a matrix to produce laminates through a wet layup technique, by stacking five plies of a plain carbon fiber fabric. The samples were characterized microstructurally, thermally and mechanically. Differential scanning calorimetry (DSC) tests showed that the paraffin kept its ability to melt and crystallize also in the laminates, and the melting enthalpy was almost proportional to the paraffin weight fraction. These thermal properties were retained after fifty heating/cooling cycles. Laser flash analysis showed that the thermal conductivity through the thickness increased with an increase of the PCM, due to the presence of CNTs. The ability of the developed laminates to contribute to the thermal management was also assessed by monitoring their cooling rates through a thermal camera. Three-point bending tests showed that the flexural modulus was only slightly impaired by the presence of the paraffin/CNT particles, while a more sensible decrease of the stress and strain at break and the interlaminar shear strength was detected. Optical and scanning electron microscope images revealed that these could be attributed to the preferential location of the PCM in the interlaminar region. These results demonstrated the feasibility of multifunctional structural TES composites and highlighted that the PCM size and distribution affect the mechanical properties. In this perspective, this group is working on the encapsulation of paraffin in a sol-gel derived organosilica shell. Submicron spheres have been produced, and the current activity focuses on the optimization of the synthesis parameters to increase the emulsion efficiency.

Keywords: carbon fibers, carbon nanotubes, lightweight materials, multifunctional composites, thermal energy storage

Procedia PDF Downloads 129
1150 Simulations of High-Intensity, Thermionic Electron Guns for Electron Beam Thermal Processing Including Effects of Space Charge Compensation

Authors: O. Hinrichs, H. Franz, G. Reiter

Abstract:

Electron guns have a key function in a series of thermal processes, like EB (electron beam) melting, evaporation or welding. These techniques need a high-intensity continuous electron beam that defocuses itself due to high space charge forces. A proper beam transport throughout the magnetic focusing system can be ensured by a space charge compensation via residual gas ions. The different pressure stages in the EB gun cause various degrees of compensation. A numerical model was installed to simulate realistic charge distributions within the beam by using CST-Particle Studio code. We will present current status of beam dynamic simulations. This contribution will focus on the creation of space charge ions and their influence on beam and gun components. Furthermore, the beam transport in the gun will be shown for different beam parameters. The electron source allows to produce beams with currents of 3 A to 15 A and energies of 40 keV to 45 keV.

Keywords: beam dynamic simulation, space charge compensation, thermionic electron source, EB melting, EB thermal processing

Procedia PDF Downloads 311
1149 Climate Changes and Ecological Response on the Tibetan Plateau

Authors: Weishou Shen, Changxin Zou, Dong Liu

Abstract:

High-mountain environments are experiencing more rapid warming than lowlands. The Tibetan (Qinghai-Xizang, TP) Plateau, known as the “Third Pole” of the Earth and the “Water Tower of Asia,” is the highest plateau in the world, however, ecological response to climate change has been hardly documented in high altitude regions. In this paper, we investigated climate warming induced ecological changes on the Tibetan Plateau over the past 50 years through combining remote sensing data with a large amount of in situ field observation. The results showed that climate warming up to 0.41 °C/10 a has greatly improved the heat conditions on the TP. Lake and river areas exhibit increased trend whereas swamp area decreased in the recent 35 years. The expansion in the area of the lake is directly related to the increase of precipitation as well as the climate warming up that makes the glacier shrink, the ice and snow melting water increase and the underground frozen soil melting water increase. Climate warming induced heat condition growth and reduced annual range of temperature, which will have a positive influence on vegetation, agriculture production and decreased freeze–thaw erosion on the TP. Terrestrial net primary production and farmland area on the TP have increased by 0.002 Pg C a⁻¹ and 46,000 ha, respectively. We also found that seasonal frozen soil depth decreased as the consequence of climate warming. In the long term, accelerated snow melting and thinned seasonal frozen soil induced by climate warming possibly will have a negative effect on alpine ecosystem stability and soil preservation.

Keywords: global warming, alpine ecosystem, ecological response, remote sensing

Procedia PDF Downloads 249
1148 Influence of Brazing Process Parameters on the Mechanical Properties of Nickel Based Superalloy

Authors: M. Zielinska, B. Daniels, J. Gabel, A. Paletko

Abstract:

A common nickel based superalloy Inconel625 was brazed with Ni-base braze filler material (AMS4777) containing melting-point-depressants such as B and Si. Different braze gaps, brazing times and forms of braze filler material were tested. It was determined that the melting point depressants B and Si tend to form hard and brittle phases in the joint during the braze cycle. Brittle phases significantly reduce mechanical properties (e. g. tensile strength) of the joint. Therefore, it is important to define optimal process parameters to achieve high strength joints, free of brittle phases. High ultimate tensile strength (UTS) values can be obtained if the joint area is free of brittle phases, which is equivalent to a complete isothermal solidification of the joint. Isothermal solidification takes place only if the concentration of the melting point depressant in the braze filler material of the joint is continuously reduced by diffusion into the base material. For a given brazing temperature, long brazing times and small braze filler material volumes (small braze gaps) are beneficial for isothermal solidification. On the base of the obtained results it can be stated that the form of the braze filler material has an additional influence on the joint quality. Better properties can be achieved by the use of braze-filler-material in form of foil instead of braze-filler-material in form of paste due to a reduced amount of voids and a more homogeneous braze-filler-material-composition in the braze-gap by using foil.

Keywords: diffusion brazing, microstructure, superalloy, tensile strength

Procedia PDF Downloads 337