Search results for: linguistic summarization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 965

Search results for: linguistic summarization

965 Linguistic Summarization of Structured Patent Data

Authors: E. Y. Igde, S. Aydogan, F. E. Boran, D. Akay

Abstract:

Patent data have an increasingly important role in economic growth, innovation, technical advantages and business strategies and even in countries competitions. Analyzing of patent data is crucial since patents cover large part of all technological information of the world. In this paper, we have used the linguistic summarization technique to prove the validity of the hypotheses related to patent data stated in the literature.

Keywords: data mining, fuzzy sets, linguistic summarization, patent data

Procedia PDF Downloads 271
964 Video Summarization: Techniques and Applications

Authors: Zaynab El Khattabi, Youness Tabii, Abdelhamid Benkaddour

Abstract:

Nowadays, huge amount of multimedia repositories make the browsing, retrieval and delivery of video contents very slow and even difficult tasks. Video summarization has been proposed to improve faster browsing of large video collections and more efficient content indexing and access. In this paper, we focus on approaches to video summarization. The video summaries can be generated in many different forms. However, two fundamentals ways to generate summaries are static and dynamic. We present different techniques for each mode in the literature and describe some features used for generating video summaries. We conclude with perspective for further research.

Keywords: video summarization, static summarization, video skimming, semantic features

Procedia PDF Downloads 399
963 Surveillance Video Summarization Based on Histogram Differencing and Sum Conditional Variance

Authors: Nada Jasim Habeeb, Rana Saad Mohammed, Muntaha Khudair Abbass

Abstract:

For more efficient and fast video summarization, this paper presents a surveillance video summarization method. The presented method works to improve video summarization technique. This method depends on temporal differencing to extract most important data from large video stream. This method uses histogram differencing and Sum Conditional Variance which is robust against to illumination variations in order to extract motion objects. The experimental results showed that the presented method gives better output compared with temporal differencing based summarization techniques.

Keywords: temporal differencing, video summarization, histogram differencing, sum conditional variance

Procedia PDF Downloads 347
962 Deep Learning-Based Approach to Automatic Abstractive Summarization of Patent Documents

Authors: Sakshi V. Tantak, Vishap K. Malik, Neelanjney Pilarisetty

Abstract:

A patent is an exclusive right granted for an invention. It can be a product or a process that provides an innovative method of doing something, or offers a new technical perspective or solution to a problem. A patent can be obtained by making the technical information and details about the invention publicly available. The patent owner has exclusive rights to prevent or stop anyone from using the patented invention for commercial uses. Any commercial usage, distribution, import or export of a patented invention or product requires the patent owner’s consent. It has been observed that the central and important parts of patents are scripted in idiosyncratic and complex linguistic structures that can be difficult to read, comprehend or interpret for the masses. The abstracts of these patents tend to obfuscate the precise nature of the patent instead of clarifying it via direct and simple linguistic constructs. This makes it necessary to have an efficient access to this knowledge via concise and transparent summaries. However, as mentioned above, due to complex and repetitive linguistic constructs and extremely long sentences, common extraction-oriented automatic text summarization methods should not be expected to show a remarkable performance when applied to patent documents. Other, more content-oriented or abstractive summarization techniques are able to perform much better and generate more concise summaries. This paper proposes an efficient summarization system for patents using artificial intelligence, natural language processing and deep learning techniques to condense the knowledge and essential information from a patent document into a single summary that is easier to understand without any redundant formatting and difficult jargon.

Keywords: abstractive summarization, deep learning, natural language Processing, patent document

Procedia PDF Downloads 120
961 Optimized Text Summarization Model on Mobile Screens for Sight-Interpreters: An Empirical Study

Authors: Jianhua Wang

Abstract:

To obtain key information quickly from long texts on small screens of mobile devices, sight-interpreters need to establish optimized summarization model for fast information retrieval. Four summarization models based on previous studies were studied including title+key words (TKW), title+topic sentences (TTS), key words+topic sentences (KWTS) and title+key words+topic sentences (TKWTS). Psychological experiments were conducted on the four models for three different genres of interpreting texts to establish the optimized summarization model for sight-interpreters. This empirical study shows that the optimized summarization model for sight-interpreters to quickly grasp the key information of the texts they interpret is title+key words (TKW) for cultural texts, title+key words+topic sentences (TKWTS) for economic texts and topic sentences+key words (TSKW) for political texts.

Keywords: different genres, mobile screens, optimized summarization models, sight-interpreters

Procedia PDF Downloads 313
960 Simulation Data Summarization Based on Spatial Histograms

Authors: Jing Zhao, Yoshiharu Ishikawa, Chuan Xiao, Kento Sugiura

Abstract:

In order to analyze large-scale scientific data, research on data exploration and visualization has gained popularity. In this paper, we focus on the exploration and visualization of scientific simulation data, and define a spatial V-Optimal histogram for data summarization. We propose histogram construction algorithms based on a general binary hierarchical partitioning as well as a more specific one, the l-grid partitioning. For effective data summarization and efficient data visualization in scientific data analysis, we propose an optimal algorithm as well as a heuristic algorithm for histogram construction. To verify the effectiveness and efficiency of the proposed methods, we conduct experiments on the massive evacuation simulation data.

Keywords: simulation data, data summarization, spatial histograms, exploration, visualization

Procedia PDF Downloads 175
959 Key Frame Based Video Summarization via Dependency Optimization

Authors: Janya Sainui

Abstract:

As a rapid growth of digital videos and data communications, video summarization that provides a shorter version of the video for fast video browsing and retrieval is necessary. Key frame extraction is one of the mechanisms to generate video summary. In general, the extracted key frames should both represent the entire video content and contain minimum redundancy. However, most of the existing approaches heuristically select key frames; hence, the selected key frames may not be the most different frames and/or not cover the entire content of a video. In this paper, we propose a method of video summarization which provides the reasonable objective functions for selecting key frames. In particular, we apply a statistical dependency measure called quadratic mutual informaion as our objective functions for maximizing the coverage of the entire video content as well as minimizing the redundancy among selected key frames. The proposed key frame extraction algorithm finds key frames as an optimization problem. Through experiments, we demonstrate the success of the proposed video summarization approach that produces video summary with better coverage of the entire video content while less redundancy among key frames comparing to the state-of-the-art approaches.

Keywords: video summarization, key frame extraction, dependency measure, quadratic mutual information

Procedia PDF Downloads 265
958 An Experiential Learning of Ontology-Based Multi-document Summarization by Removal Summarization Techniques

Authors: Pranjali Avinash Yadav-Deshmukh

Abstract:

Remarkable development of the Internet along with the new technological innovation, such as high-speed systems and affordable large storage space have led to a tremendous increase in the amount and accessibility to digital records. For any person, studying of all these data is tremendously time intensive, so there is a great need to access effective multi-document summarization (MDS) systems, which can successfully reduce details found in several records into a short, understandable summary or conclusion. For semantic representation of textual details in ontology area, as a theoretical design, our system provides a significant structure. The stability of using the ontology in fixing multi-document summarization problems in the sector of catastrophe control is finding its recommended design. Saliency ranking is usually allocated to each phrase and phrases are rated according to the ranking, then the top rated phrases are chosen as the conclusion. With regards to the conclusion quality, wide tests on a selection of media announcements are appropriate for “Jammu Kashmir Overflow in 2014” records. Ontology centered multi-document summarization methods using “NLP centered extraction” outshine other baselines. Our participation in recommended component is to implement the details removal methods (NLP) to enhance the results.

Keywords: disaster management, extraction technique, k-means, multi-document summarization, NLP, ontology, sentence extraction

Procedia PDF Downloads 385
957 Feature-Based Summarizing and Ranking from Customer Reviews

Authors: Dim En Nyaung, Thin Lai Lai Thein

Abstract:

Due to the rapid increase of Internet, web opinion sources dynamically emerge which is useful for both potential customers and product manufacturers for prediction and decision purposes. These are the user generated contents written in natural languages and are unstructured-free-texts scheme. Therefore, opinion mining techniques become popular to automatically process customer reviews for extracting product features and user opinions expressed over them. Since customer reviews may contain both opinionated and factual sentences, a supervised machine learning technique applies for subjectivity classification to improve the mining performance. In this paper, we dedicate our work is the task of opinion summarization. Therefore, product feature and opinion extraction is critical to opinion summarization, because its effectiveness significantly affects the identification of semantic relationships. The polarity and numeric score of all the features are determined by Senti-WordNet Lexicon. The problem of opinion summarization refers how to relate the opinion words with respect to a certain feature. Probabilistic based model of supervised learning will improve the result that is more flexible and effective.

Keywords: opinion mining, opinion summarization, sentiment analysis, text mining

Procedia PDF Downloads 331
956 Programmed Speech to Text Summarization Using Graph-Based Algorithm

Authors: Hamsini Pulugurtha, P. V. S. L. Jagadamba

Abstract:

Programmed Speech to Text and Text Summarization Using Graph-based Algorithms can be utilized in gatherings to get the short depiction of the gathering for future reference. This gives signature check utilizing Siamese neural organization to confirm the personality of the client and convert the client gave sound record which is in English into English text utilizing the discourse acknowledgment bundle given in python. At times just the outline of the gathering is required, the answer for this text rundown. Thus, the record is then summed up utilizing the regular language preparing approaches, for example, solo extractive text outline calculations

Keywords: Siamese neural network, English speech, English text, natural language processing, unsupervised extractive text summarization

Procedia PDF Downloads 215
955 The Linguistic Fingerprint in Western and Arab Judicial Applications

Authors: Asem Bani Amer

Abstract:

This study handles the linguistic fingerprint in judicial applications described in a law technicality that is recent and developing. It can be adopted to discover criminals by identifying their way of speaking and their special linguistic expressions. This is achieved by understanding the expression "linguistic fingerprint," its concept, and its extended domain, then revealing some of the linguistic fingerprint tools in Western judicial applications and deducing a technical imagination for a linguistic fingerprint in the Arabic language, which is needy for such judicial applications regarding this field, through dictionaries, language rhythm, and language structure.

Keywords: linguistic fingerprint, judicial, application, dictionary, picture, rhythm, structure

Procedia PDF Downloads 80
954 Graph-Based Semantical Extractive Text Analysis

Authors: Mina Samizadeh

Abstract:

In the past few decades, there has been an explosion in the amount of available data produced from various sources with different topics. The availability of this enormous data necessitates us to adopt effective computational tools to explore the data. This leads to an intense growing interest in the research community to develop computational methods focused on processing this text data. A line of study focused on condensing the text so that we are able to get a higher level of understanding in a shorter time. The two important tasks to do this are keyword extraction and text summarization. In keyword extraction, we are interested in finding the key important words from a text. This makes us familiar with the general topic of a text. In text summarization, we are interested in producing a short-length text which includes important information about the document. The TextRank algorithm, an unsupervised learning method that is an extension of the PageRank (algorithm which is the base algorithm of Google search engine for searching pages and ranking them), has shown its efficacy in large-scale text mining, especially for text summarization and keyword extraction. This algorithm can automatically extract the important parts of a text (keywords or sentences) and declare them as a result. However, this algorithm neglects the semantic similarity between the different parts. In this work, we improved the results of the TextRank algorithm by incorporating the semantic similarity between parts of the text. Aside from keyword extraction and text summarization, we develop a topic clustering algorithm based on our framework, which can be used individually or as a part of generating the summary to overcome coverage problems.

Keywords: keyword extraction, n-gram extraction, text summarization, topic clustering, semantic analysis

Procedia PDF Downloads 69
953 Fuzzy Inference-Assisted Saliency-Aware Convolution Neural Networks for Multi-View Summarization

Authors: Tanveer Hussain, Khan Muhammad, Amin Ullah, Mi Young Lee, Sung Wook Baik

Abstract:

The Big Data generated from distributed vision sensors installed on large scale in smart cities create hurdles in its efficient and beneficial exploration for browsing, retrieval, and indexing. This paper presents a three-folded framework for effective video summarization of such data and provide a compact and representative format of Big Video Data. In the first fold, the paper acquires input video data from the installed cameras and collect clues such as type and count of objects and clarity of the view from a chunk of pre-defined number of frames of each view. The decision of representative view selection for a particular interval is based on fuzzy inference system, acquiring a precise and human resembling decision, reinforced by the known clues as a part of the second fold. In the third fold, the paper forwards the selected view frames to the summary generation mechanism that is supported by a saliency-aware convolution neural network (CNN) model. The new trend of fuzzy rules for view selection followed by CNN architecture for saliency computation makes the multi-view video summarization (MVS) framework a suitable candidate for real-world practice in smart cities.

Keywords: big video data analysis, fuzzy logic, multi-view video summarization, saliency detection

Procedia PDF Downloads 187
952 Linguistic Trend in the Qur'anic Tafsir of 'Al Tahreer Wa Al Tanveer' by Sheikh Tahir Bin A'shur

Authors: Numan Hasan

Abstract:

We have tried to highlight the linguistic trend in the Qur’anic Tafsir of ‘Al Tahreer wa Al Tanveer’ by Sheikh Tahir Bin A’shur, the brightest linguistic commentator in the modern era. We have started studying the life of Bin A’shur and his contributions to the field of Qur’anic knowledge. We have also studied to focus on the linguistic approach of ‘Al Tahreer wa Al Tanveer’ and emphasized the importance of linguistic interpretations. We have tried to have a clear understanding about the features and characteristics of his Tafsir. We have also reflected on the methodological approach and linguistic reference of his interpretation. In the conclusion we presented the main results of a research.

Keywords: Sheikh Tahir Bin A’shur, tafsir, linguistics, interpretation, Islamic studies

Procedia PDF Downloads 374
951 Improvement Image Summarization using Image Processing and Particle swarm optimization Algorithm

Authors: Hooman Torabifard

Abstract:

In the last few years, with the progress of technology and computers and artificial intelligence entry into all kinds of scientific and industrial fields, the lifestyles of human life have changed and in general, the way of humans live on earth has many changes and development. Until now, some of the changes has occurred in the context of digital images and image processing and still continues. However, besides all the benefits, there have been disadvantages. One of these disadvantages is the multiplicity of images with high volume and data; the focus of this paper is on improving and developing a method for summarizing and enhancing the productivity of these images. The general method used for this purpose in this paper consists of a set of methods based on data obtained from image processing and using the PSO (Particle swarm optimization) algorithm. In the remainder of this paper, the method used is elaborated in detail.

Keywords: image summarization, particle swarm optimization, image threshold, image processing

Procedia PDF Downloads 131
950 The Latent Model of Linguistic Features in Korean College Students’ L2 Argumentative Writings: Syntactic Complexity, Lexical Complexity, and Fluency

Authors: Jiyoung Bae, Gyoomi Kim

Abstract:

This study explores a range of linguistic features used in Korean college students’ argumentative writings for the purpose of developing a model that identifies variables which predict writing proficiencies. This study investigated the latent variable structure of L2 linguistic features, including syntactic complexity, the lexical complexity, and fluency. One hundred forty-six university students in Korea participated in this study. The results of the study’s confirmatory factor analysis (CFA) showed that indicators of linguistic features from this study-provided a foundation for re-categorizing indicators found in extant research on L2 Korean writers depending on each latent variable of linguistic features. The CFA models indicated one measurement model of L2 syntactic complexity and L2 learners’ writing proficiency; these two latent factors were correlated with each other. Based on the overall findings of the study, integrated linguistic features of L2 writings suggested some pedagogical implications in L2 writing instructions.

Keywords: linguistic features, syntactic complexity, lexical complexity, fluency

Procedia PDF Downloads 168
949 Translation and Sociolinguistics of Classical Books

Authors: Laura de Almeida

Abstract:

This paper aims to present research involving the translation of classical books originally in English and translated into the Portuguese language. The objective is to analyze the linguistic varieties evident and how they appear in the other language the work was translated into. We based our study on the sociolinguistics theory, more specifically, the study of the Black English Vernacular. Our methodology is built on collecting data from the speech characters of the Black English Vernacular from some books such as The Adventures of Huckleberry Finn by Mark Twain. On doing so, we compare the two versions of a book and how they reflected the linguistic variety. Our purpose is to show that some translators do not worry when dealing with linguistic variety. In other words, they just translate the story without taking into account some important linguistic aspects which need attention, such as language variation.

Keywords: classical books, linguistic variation, sociolinguistics, translation

Procedia PDF Downloads 394
948 Functions and Pragmatic Aspects of English Nonsense

Authors: Natalia V. Ursul

Abstract:

In linguistic studies, the question of nonsense is attracting increasing interest. Nonsense is usually defined as spoken or written words that have no meaning. However, this definition is likely to be outdated as any speech act is generated due to the speaker’s pragmatic reasons, thus it cannot be purely illogical or meaningless. In the current paper a new working definition of nonsense as a linguistic medium will be formulated; moreover, the pragmatic peculiarities of newly coined linguistic patterns and possible ways of their interpretation will be discussed.

Keywords: nonsense, nonse verse, pragmatics, speech act

Procedia PDF Downloads 518
947 Improoving Readability for Tweet Contextualization Using Bipartite Graphs

Authors: Amira Dhokar, Lobna Hlaoua, Lotfi Ben Romdhane

Abstract:

Tweet contextualization (TC) is a new issue that aims to answer questions of the form 'What is this tweet about?' The idea of this task was imagined as an extension of a previous area called multi-document summarization (MDS), which consists in generating a summary from many sources. In both TC and MDS, the summary should ideally contain the most relevant information of the topic that is being discussed in the source texts (for MDS) and related to the query (for TC). Furthermore of being informative, a summary should be coherent, i.e. well written to be readable and grammatically compact. Hence, coherence is an essential characteristic in order to produce comprehensible texts. In this paper, we propose a new approach to improve readability and coherence for tweet contextualization based on bipartite graphs. The main idea of our proposed method is to reorder sentences in a given paragraph by combining most expressive words detection and HITS (Hyperlink-Induced Topic Search) algorithm to make up a coherent context.

Keywords: bipartite graphs, readability, summarization, tweet contextualization

Procedia PDF Downloads 191
946 Literature, Culture, and Shakespeare's Dramatization of Linguistic Scenes

Authors: Cheang Wai Fong

Abstract:

This paper takes language and its interconnection with power as a point of departure to analyze some linguistic scenes played up by William Shakespeare. By placing language into the big picture of literature and culture, and by reexamining the etymological relations between the three terms, language, literature and culture, the paper attempts to formulate an understanding of their more expansive meanings. It compares their respective traditional notions with their modern concepts brought up by literary critics, anthropologists and sociolinguists. Then it uses these expansive meanings to reinterpret Shakespeare’s linguistic scenes featuring language contentions, and to discuss Shakespeare’s success as a signification of literature’s role within the linguistic and cultural context of Elizabethan England.

Keywords: culture, language, literature, shakespeare

Procedia PDF Downloads 534
945 Emerging Virtual Linguistic Landscape Created by Members of Language Community in TikTok

Authors: Kai Zhu, Shanhua He, Yujiao Chang

Abstract:

This paper explores the virtual linguistic landscape of an emerging virtual language community in TikTok, a language community realizing immediate and non-immediate communication without a precise Spatio-temporal domain or a specific socio-cultural boundary or interpersonal network. This kind of language community generates a large number and various forms of virtual linguistic landscape, with which we conducted a virtual ethnographic survey together with telephone interviews to collect data from coping. We have been following two language communities in TikTok for several months so that we can illustrate the composition of the two language communities and some typical virtual language landscapes in both language communities first. Then we try to explore the reasons why and how they are formed through the organization, transcription, and analysis of the interviews. Our analysis reveals the richness and diversity of the virtual linguistic landscape, and finally, we summarize some of the characteristics of this language community.

Keywords: virtual linguistic landscape, virtual language community, virtual ethnographic survey, TikTok

Procedia PDF Downloads 102
944 A Linguistic Relativity Appraisal of an African Drama: The Lion and The Jewel

Authors: T. O. Adekunle, R. L. Makhubu, C. N. Ngwane

Abstract:

This research was designed to assess the validity of the Sapir Whorf hypothesis in relation to the linguistic and cultural notions of the Yoruba and Zulu language speakers’ via the evaluation of the culture enriched dramatic text The Lion and The Jewel by Wole Soyinka. The study queried both the hypothesis’ strong version, (language governs thought: linguistic classifications restrain and influence mental classifications); and its weak version, (linguistic classifications and their use influence thought as well as some other classes of non-linguistic activities) and their possible reliability. Participants were purposively selected and their ages ranged from 16-46 years old. The participants amounted to 38 (18 Yoruba and 20 Zulu) students of DUT who all speak both English and Zulu (Zulu participants) and English and Yoruba (Yoruba participants) and the mixed methods approach was used. Thus with the use of questionnaire and interviews the research questions were answered and the findings provided support for validity of the linguistic relativity hypothesis, languages indeed influence thought. The findings also revealed that linguistic influence on cognition is not limited to different language users alone, but also same language speakers per level of exposure to other languages and concepts.

Keywords: culture, cognition, DUT, language, linguistic relativity hypothesis, Sapir-Whorf hypothesis, The Lion and The Jewel, thought, Wole Soyinka, Yoruba, Zulu

Procedia PDF Downloads 452
943 A Critical Discourse Analysis of the Impact of the Linguistic Behavior of the Soccer Moroccan Coach in Light of Motivation Theory and Discursive Psychology

Authors: Abdelaadim Bidaoui

Abstract:

As one of the most important linguistic inquiries, the topic of the intertwined relationship between language, the mind, and the world has attracted many scholars. In the fifties, Sapir and Whorf advocated the hypothesis that language shapes our cultural realities as an early attempt to provide answers to this linguistic inquiry. Later, discursive psychology views the linguistic behavior as “a dynamic form of social practice which constructs the social world, individual selves and identity.” (Jorgensen & Phillips 2002, 118). Discursive psychology also considers discourse as a trigger of social action and change. Building on discursive psychology and motivation theory, this paper examines the impact of linguistic behavior of the Moroccan coach Walid Reggragui on the Moroccan team’s exceptional performance in Qatar 2022 Soccer World Cup. The data used in the research is based on interviews conducted by the Moroccan coach prior and during the World Cup. Using a discourse analysis of the linguistic behavior of Reggragui, this paper shows how the linguistic behavior of Reggragui provided support for the three psychological needs: sense of belonging, competence, and autonomy. As any CDA research, this paper uses a triangulated theoretical framework that includes language, cognition and society.

Keywords: critical discourse analysis, motivation theory, discursive psychology, linguistic behavior

Procedia PDF Downloads 89
942 Tracing the Evolution of English and Urdu Languages: A Linguistic and Cultural Analysis

Authors: Aamna Zafar

Abstract:

Through linguistic and cultural analysis, this study seeks to trace the development of the English and Urdu languages. Along with examining how the vocabulary and syntax of English and Urdu have evolved over time and the linguistic trends that may be seen in these changes, this study will also look at the historical and cultural influences that have shaped the languages throughout time. The study will also look at how English and Urdu have changed over time, both in terms of language use and communication inside each other's cultures and globally. We'll research how these changes affect social relations and cultural identity, as well as how they might affect the future of these languages.

Keywords: linguistic and cultural analysis, historical factors, cultural factors, vocabulary, syntax, significance

Procedia PDF Downloads 74
941 Error Analysis of English Inflection among Thai University Students

Authors: Suwaree Yordchim, Toby J. Gibbs

Abstract:

The linguistic competence of Thai university students majoring in Business English was examined in the context of knowledge of English language inflection, and also various linguistic elements. Errors analysis was applied to the results of the testing. Levels of errors in inflection, tense and linguistic elements were shown to be significantly high for all noun, verb and adjective inflections. Findings suggest that students do not gain linguistic competence in their use of English language inflection, because of interlanguage interference. Implications for curriculum reform and treatment of errors in the classroom are discussed.

Keywords: interlanguage, error analysis, inflection, second language acquisition, Thai students

Procedia PDF Downloads 465
940 Cross-Dialect Sentence Transformation: A Comparative Analysis of Language Models for Adapting Sentences to British English

Authors: Shashwat Mookherjee, Shruti Dutta

Abstract:

This study explores linguistic distinctions among American, Indian, and Irish English dialects and assesses various Language Models (LLMs) in their ability to generate British English translations from these dialects. Using cosine similarity analysis, the study measures the linguistic proximity between original British English translations and those produced by LLMs for each dialect. The findings reveal that Indian and Irish English translations maintain notably high similarity scores, suggesting strong linguistic alignment with British English. In contrast, American English exhibits slightly lower similarity, reflecting its distinct linguistic traits. Additionally, the choice of LLM significantly impacts translation quality, with Llama-2-70b consistently demonstrating superior performance. The study underscores the importance of selecting the right model for dialect translation, emphasizing the role of linguistic expertise and contextual understanding in achieving accurate translations.

Keywords: cross-dialect translation, language models, linguistic similarity, multilingual NLP

Procedia PDF Downloads 74
939 Group Consensus of Hesitant Fuzzy Linguistic Variables for Decision-Making Problem

Authors: Chen T. Chen, Hui L. Cheng

Abstract:

Due to the different knowledge, experience and expertise of experts, they usually provide the different opinions in the group decision-making process. Therefore, it is an important issue to reach the group consensus of opinions of experts in group multiple-criteria decision-making (GMCDM) process. Because the subjective opinions of experts always are fuzziness and uncertainties, it is difficult to use crisp values to describe the real opinions of experts or decision-makers. It is reasonable for experts to use the linguistic variables to express their opinions. The hesitant fuzzy set are extended from the concept of fuzzy sets. Experts use the hesitant fuzzy sets can be flexible to describe their subjective opinions. In order to aggregate the hesitant fuzzy linguistic variables of all experts effectively, an adjustment method based on distance function will be presented in this paper. Based on the opinions adjustment method, this paper will present an effective approach to adjust the hesitant fuzzy linguistic variables of all experts to reach the group consensus. Then, a new hesitant linguistic GMCDM method will be presented based on the group consensus of hesitant fuzzy linguistic variables. Finally, an example will be implemented to illustrate the computational process to enhance the practical value of the proposed model.

Keywords: group multi-criteria decision-making, linguistic variables, hesitant fuzzy linguistic variables, distance function, group consensus

Procedia PDF Downloads 155
938 Decision-Making using Fuzzy Linguistic Hypersoft Set Topology

Authors: Muhammad Saqlain, Poom Kumam

Abstract:

Language being an abstract system and creative act, is quite complicated as its meaning varies depending on the context. The context is determined by the empirical knowledge of a person, which is derived from observation and experience. About further subdivided attributes, the decision-making challenges may entail quantitative and qualitative factors. However, because there is no norm for putting a numerical value on language, existing approaches cannot carry out the operations of linguistic knowledge. The assigning of mathematical values (fuzzy, intuitionistic, and neutrosophic) to any decision-making problem; without considering any rule of linguistic knowledge is ambiguous and inaccurate. Thus, this paper aims to provide a generic model for these issues. This paper provides the linguistic set structure of the fuzzy hypersoft set (FLHSS) to solve decision-making issues. We have proposed the definition some basic operations like AND, NOT, OR, AND, compliment, negation, etc., along with Topology and examples, and properties. Secondly, the operational laws for the fuzzy linguistic hypersoft set have been proposed to deal with the decision-making issues. Implementing proposed aggregate operators and operational laws can be used to convert linguistic quantifiers into numerical values. This will increase the accuracy and precision of the fuzzy hypersoft set structure to deal with decision-making issues.

Keywords: linguistic quantifiers, aggregate operators, multi-criteria decision making (mcdm)., fuzzy topology

Procedia PDF Downloads 97
937 Summarizing Data Sets for Data Mining by Using Statistical Methods in Coastal Engineering

Authors: Yunus Doğan, Ahmet Durap

Abstract:

Coastal regions are the one of the most commonly used places by the natural balance and the growing population. In coastal engineering, the most valuable data is wave behaviors. The amount of this data becomes very big because of observations that take place for periods of hours, days and months. In this study, some statistical methods such as the wave spectrum analysis methods and the standard statistical methods have been used. The goal of this study is the discovery profiles of the different coast areas by using these statistical methods, and thus, obtaining an instance based data set from the big data to analysis by using data mining algorithms. In the experimental studies, the six sample data sets about the wave behaviors obtained by 20 minutes of observations from Mersin Bay in Turkey and converted to an instance based form, while different clustering techniques in data mining algorithms were used to discover similar coastal places. Moreover, this study discusses that this summarization approach can be used in other branches collecting big data such as medicine.

Keywords: clustering algorithms, coastal engineering, data mining, data summarization, statistical methods

Procedia PDF Downloads 361
936 Linguistic Codes: Food as a Class Indicator

Authors: Elena Valeryevna Pozhidaeva

Abstract:

This linguistic case study is based on an interaction between the social position and foodways. In every culture there is a social hierarchical system in which there can be means to express and to identify the social status of a person. Food serves as a class indicator. The British being a verbal nation use the words as a preferred medium for signalling and recognising the social status. The linguistic analysis reflects a symbolic hierarchy determined by social groups in the UK. The linguistic class indicators of a British hierarchical system are detectable directly – in speech acts. They are articulated in every aspect of a national identity’s life from preferences of the food and the choice to call it to the names of the meals. The linguistic class indicators can as well be detected indirectly – through symbolic meaning or via the choice of the mealtime, its class (e.g the classes of tea or marmalade), the place to buy food (the class of the supermarket) and consume it (the places for eating out and the frequency of such practices). Under analysis of this study are not only food items and their names but also such categories as cutlery as a class indicator and the act of eating together as a practice of social significance and a class indicator. Current social changes and economic developments are considered and their influence on the class indicators appearance and transformation.

Keywords: linguistic, class, social indicator, English, food class

Procedia PDF Downloads 401