Search results for: laser particle counting
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2615

Search results for: laser particle counting

2255 Optimized Algorithm for Particle Swarm Optimization

Authors: Fuzhang Zhao

Abstract:

Particle swarm optimization (PSO) is becoming one of the most important swarm intelligent paradigms for solving global optimization problems. Although some progress has been made to improve PSO algorithms over the last two decades, additional work is still needed to balance parameters to achieve better numerical properties of accuracy, efficiency, and stability. In the optimal PSO algorithm, the optimal weightings of (√ 5 − 1)/2 and (3 − √5)/2 are used for the cognitive factor and the social factor, respectively. By the same token, the same optimal weightings have been applied for intensification searches and diversification searches, respectively. Perturbation and constriction effects are optimally balanced. Simulations of the de Jong, the Rosenbrock, and the Griewank functions show that the optimal PSO algorithm indeed achieves better numerical properties and outperforms the canonical PSO algorithm.

Keywords: diversification search, intensification search, optimal weighting, particle swarm optimization

Procedia PDF Downloads 548
2254 Particle Migration in Shear Thinning Viscoelastic Fluid

Authors: Shamik Hazra, Sushanta Mitra, Ashis Sen

Abstract:

Despite growing interest of microparticle manipulation in non-Newtonian fluids, combined effect of viscoelasticity and shear thinning on particle lateral position is not well understood. We performed experiments with rigid microparticles of 15 µm diamater in popular Shear thinning viscoelastic (STVE) liquid poyethylene oxide (PEO) of different molecular weights (MW) and concentrations (c), for Reynolds number (Re) < 1. Microparticles in an STVE liquid revealed four different migration regimes: original streamline (OS), bimodal (BM), centre migration (CM) and defocusing (DF), depending upon the Re and c and interplay of different forces is also elucidated. Our investigation will be helpful to select proper polymer concentration to achieve desired particle focusing inside microchannel.

Keywords: lateral migration, microparticle, polyethylene oxide, shear thinning, viscoelasticity

Procedia PDF Downloads 118
2253 Study of the Energy Levels in the Structure of the Laser Diode GaInP

Authors: Abdelali Laid, Abid Hamza, Zeroukhi Houari, Sayah Naimi

Abstract:

This work relates to the study of the energy levels and the optimization of the Parameter intrinsic (a number of wells and their widths, width of barrier of potential, index of refraction etc.) and extrinsic (temperature, pressure) in the Structure laser diode containing the structure GaInP. The methods of calculation used; - method of the empirical pseudo potential to determine the electronic structures of bands, - graphic method for optimization. The found results are in concord with those of the experiment and the theory.

Keywords: semi-conductor, GaInP/AlGaInP, pseudopotential, energy, alliages

Procedia PDF Downloads 462
2252 Applying Laser Scanning and Digital Photogrammetry for Developing an Archaeological Model Structure for Old Castle in Germany

Authors: Bara' Al-Mistarehi

Abstract:

Documentation and assessment of conservation state of an archaeological structure is a significant procedure in any management plan. However, it has always been a challenge to apply this with a low coast and safe methodology. It is also a time-demanding procedure. Therefore, a low cost, efficient methodology for documenting the state of a structure is needed. In the scope of this research, this paper will employ digital photogrammetry and laser scanner to one of highly significant structures in Germany, The Old Castle (German: Altes Schloss). The site is well known for its unique features. However, the castle suffers from serious deterioration threats because of the environmental conditions and the absence of continuous monitoring, maintenance and repair plans. Digital photogrammetry is a generally accepted technique for the collection of 3D representations of the environment. For this reason, this image-based technique has been extensively used to produce high quality 3D models of heritage sites and historical buildings for documentation and presentation purposes. Additionally, terrestrial laser scanners are used, which directly measure 3D surface coordinates based on the run-time of reflected light pulses. These systems feature high data acquisition rates, good accuracy and high spatial data density. Despite the potential of each single approach, in this research work maximum benefit is to be expected by a combination of data from both digital cameras and terrestrial laser scanners. Within the paper, the usage, application and advantages of the technique will be investigated in terms of building high realistic 3D textured model for some parts of the old castle. The model will be used as diagnosing tool of the conservation state of the castle and monitoring mean for future changes.

Keywords: Digital photogrammetry, Terrestrial laser scanners, 3D textured model, archaeological structure

Procedia PDF Downloads 155
2251 Parallel Particle Swarm Optimization Optimized LDI Controller with Lyapunov Stability Criterion for Nonlinear Structural Systems

Authors: P. W. Tsai, W. L. Hong, C. W. Chen, C. Y. Chen

Abstract:

In this paper, we present a neural network (NN) based approach represent a nonlinear Tagagi-Sugeno (T-S) system. A linear differential inclusion (LDI) state-space representation is utilized to deal with the NN models. Taking advantage of the LDI representation, the stability conditions and controller design are derived for a class of nonlinear structural systems. Moreover, the concept of utilizing the Parallel Particle Swarm Optimization (PPSO) algorithm to solve the common P matrix under the stability criteria is given in this paper.

Keywords: Lyapunov stability, parallel particle swarm optimization, linear differential inclusion, artificial intelligence

Procedia PDF Downloads 626
2250 A Numerical Study on Electrophoresis of a Soft Particle with Charged Core Coated with Polyelectrolyte Layer

Authors: Partha Sarathi Majee, S. Bhattacharyya

Abstract:

Migration of a core-shell soft particle under the influence of an external electric field in an electrolyte solution is studied numerically. The soft particle is coated with a positively charged polyelectrolyte layer (PEL) and the rigid core is having a uniform surface charge density. The Darcy-Brinkman extended Navier-Stokes equations are solved for the motion of the ionized fluid, the non-linear Nernst-Planck equations for the ion transport and the Poisson equation for the electric potential. A pressure correction based iterative algorithm is adopted for numerical computations. The effects of convection on double layer polarization (DLP) and diffusion dominated counter ions penetration are investigated for a wide range of Debye layer thickness, PEL fixed surface charge density, and permeability of the PEL. Our results show that when the Debye layer is in order of the particle size, the DLP effect is significant and produces a reduction in electrophoretic mobility. However, the double layer polarization effect is negligible for a thin Debye layer or low permeable cases. The point of zero mobility and the existence of mobility reversal depending on the electrolyte concentration are also presented.

Keywords: debye length, double layer polarization, electrophoresis, mobility reversal, soft particle

Procedia PDF Downloads 323
2249 Effect of Particle Aspect Ratio and Shape Factor on Air Flow inside Pulmonary Region

Authors: Pratibha, Jyoti Kori

Abstract:

Particles in industry, harvesting, coal mines, etc. may not necessarily be spherical in shape. In general, it is difficult to find perfectly spherical particle. The prediction of movement and deposition of non spherical particle in distinct airway generation is much more difficult as compared to spherical particles. Moreover, there is extensive inflexibility in deposition between ducts of a particular generation and inside every alveolar duct since particle concentrations can be much bigger than the mean acinar concentration. Consequently, a large number of particles fail to be exhaled during expiration. This study presents a mathematical model for the movement and deposition of those non-spherical particles by using particle aspect ratio and shape factor. We analyse the pulsatile behavior underneath sinusoidal wall oscillation due to periodic breathing condition through a non-Darcian porous medium or inside pulmonary region. Since the fluid is viscous and Newtonian, the generalized Navier-Stokes equation in two-dimensional coordinate system (r, z) is used with boundary-layer theory. Results are obtained for various values of Reynolds number, Womersley number, Forchsheimer number, particle aspect ratio and shape factor. Numerical computation is done by using finite difference scheme for very fine mesh in MATLAB. It is found that the overall air velocity is significantly increased by changes in aerodynamic diameter, aspect ratio, alveoli size, Reynolds number and the pulse rate; while velocity is decreased by increasing Forchheimer number.

Keywords: deposition, interstitial lung diseases, non-Darcian medium, numerical simulation, shape factor

Procedia PDF Downloads 152
2248 Particle Size Dependent Enhancement of Compressive Strength and Carbonation Efficiency in Steel Slag Cementitious Composites

Authors: Jason Ting Jing Cheng, Lee Foo Wei, Yew Ming Kun, Chin Ren Jie, Yip Chun Chieh

Abstract:

The utilization of industrial by-products, such as steel slag in cementitious materials, not only mitigates environmental impact but also enhances material properties. This study investigates the dual influence of steel slag particle size on the compressive strength and carbonation efficiency of cementitious composites. Through a systematic experimental approach, steel slag particles were incorporated into cement at varying sizes, and the resulting composites were subjected to mechanical and carbonation tests. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) are conducted in this paper. The findings reveal a positive correlation between increased particle size and compressive strength, attributed to the improved interfacial transition zone and packing density. Conversely, smaller particle sizes exhibited enhanced carbonation efficiency, likely due to the increased surface area facilitating the carbonation reaction. The presence of higher silica and calcium content in finer particles was confirmed by EDX, which contributed to the accelerated carbonation process. This study underscores the importance of particle size optimization in designing sustainable cementitious materials with balanced mechanical performance and carbon sequestration potential. The insights gained from the advanced analytical techniques offer a comprehensive understanding of the mechanisms at play, paving the way for the strategic use of steel slag in eco-friendly construction practices.

Keywords: steel slag, carbonation efficiency, particle size enhancement, compressive strength

Procedia PDF Downloads 25
2247 Rapid Expansion Supercritical Solution (RESS) Carbon Dioxide as an Environmental Friendly Method for Ginger Rhizome Solid Oil Particles Formation

Authors: N. A. Zainuddin, I. Norhuda, I. S. Adeib, A. N. Mustapa, S. H. Sarijo

Abstract:

Recently, RESS (Rapid Expansion Supercritical Solution) method has been used by researchers to produce fine particles for pharmaceutical drug substances. Since RESS technology acknowledges a lot of benefits compare to conventional method of ginger extraction, it is suggested to use this method to explore particle formation of bioactive compound from powder ginger. The objective of this research is to produce direct solid oil particles formation from ginger rhizome which contains valuable compounds by using RESS-CO2 process. RESS experiments were carried using extraction pressure of 3000, 4000, 5000, 6000 and 7000psi and at different extraction temperature of 40, 45, 50, 55, 60, 65 and 70°C for 40 minutes extraction time and contant flowrate (24ml/min). From the studies conducted, it was found that at extraction pressure 5000psi and temperature 40°C, the smallest particle size obtained was 2.22μm on 99 % reduction from the original size of 370μm.

Keywords: particle size, RESS, solid oil particle, supercritical carbon dioxide,

Procedia PDF Downloads 309
2246 Foaming and Structuring Properties of Chickpea Cooking Water (Aquafaba): Effect of Ingredient Added and Their Particle Size

Authors: Carola Cappa

Abstract:

Chickpea cooking water (known as aquafaba, AF) is a “waste” product having interesting technological properties exploitable for sustainable plant-based food applications that can encounter a larger consumers demand. Different process conditions to obtain AF were defined; the addition of hydrocolloid (i.e., guar gum) and lactic acid to improve the techno-functionalities of aquafaba was explored, and the effects of these ingredients on the foaming properties and the quality of plant-based target confectionery products were investigated. Meringues having a solid foam structure and a simple formulation (i.e., foaming agent and sugar) and chocolate mousse were chosen as target foods. The effects of the sugar particle size reduction on the empirical and fundamental rheological properties of the foaming agent and of the mousse were evaluated. The treatment did not significantly change the viscosity of the system, while the overrun and foam stability were affected by sugar particle size, and mousse with coarse sugar was characterized by a higher consistency, confirming the importance of the particle size of the ingredients on the texture of the final product. This study proved that AF, a recycled “waste” product, possesses interesting techno-functionalities properties further enhanced by adding lactic acid and modulable according to ingredient particle size; these AF results are useable for plant-based food applications.

Keywords: foaming properties, foam stability, foam texture, particle size, acidification, aquafaba

Procedia PDF Downloads 46
2245 Particle Size Dependent Magnetic Properties of CuFe2O4 Spinel Ferrite Nanoparticles Synthesized by Starch-Assisted Sol-Gel Auto-Combustion Method

Authors: R. S. Yadav, J. Havlica, I. Kuřitka, Z. Kozakova, J. Masilko, L. Kalina, M. Hajdúchová, V. Enev, J. Wasserbauer

Abstract:

In this work, copper ferrite CuFe2O4 spinel ferrite nanoparticles with different particle size at different annealing temperature were synthesized using the starch-assisted sol-gel auto-combustion method. The synthesized nanoparticles were characterized by conventional powder X-ray diffraction (XRD) spectroscopy, Raman Spectroscopy, Fourier Transform Infrared Spectroscopy, Field-Emission Scanning Electron Microscopy, X-ray Photoelectron Spectroscopy, and Vibrating Sample Magnetometer. The XRD patterns confirmed the formation of CuFe2O4 spinel ferrite nanoparticles. Field-Emission Scanning Electron Microscopy revealed that particles are of spherical morphology with particle size 5-20 nm at lower annealing temperature. An infrared spectroscopy study showed the presence of two principal absorption bands in the frequency range around 530 cm-1 (ν1) and around 360 cm-1 (ν2); which indicate the presence of tetrahedral and octahedral group complexes, respectively, within the spinel ferrite nanoparticles. Raman spectroscopy study also indicated the change in octahedral and tetrahedral site related Raman modes in copper ferrite nanoparticles with change of particle size. This change in magnetic behavior with change of particle size of CuFe2O4 nanoparticles was also observed. The change in magnetic properties with change of particle size is due to cation redistribution, which was confirmed by X-Ray photoelectron study.

Keywords: copper ferrite, nanoparticles, magnetic property, CuFe2O4

Procedia PDF Downloads 421
2244 The Study on Treatment Technology of Fused Carbonized Blast Furnace Slag

Authors: Jiaxu Huang

Abstract:

The melt carbonized blast furnace slag containing TiC was produced by carbothermal reduction of high titanium blast furnace slag. The treatment technology of melt carbonized blast furnace slag with TiC as raw material was studied, including the influence of different cooling methods, crushing atmosphere and sieving particle size on the target product TiC in the slag. The results show that air-cooling and water-cooling have little effect on TiC content of molten carbide blast furnace slag, and have great effect on crystal structure and grain size. TiC content in slag is different when carbide blast furnace slag is crushed in argon atmosphere and air atmosphere. After screening, the difference of TiC content of carbide blast furnace slag with different particle size distribution is obvious. The average TiC content of 100-400 mesh carbide blast furnace slag is 14%. And the average TiC content of carbide blast furnace slag with particle size less than 400 mesh is 10.5%.

Keywords: crushing atmosphere, cooling methods, sieving particle size, TiC

Procedia PDF Downloads 107
2243 Synthesis and Characterization of Novel Hollow Silica Particle through DODAB Vesicle Templating

Authors: Eun Ju Park, Wendy Rusli, He Tao, Alexander M. Van Herk, Sanggu Kim

Abstract:

Hollow micro-/nano- structured materials have proven to be promising in wide range of applications, such as catalysis, drug delivery and controlled release, biotechnology, and personal and consumer care. Hollow sphere structures can be obtained through various templating approaches; colloid templates, emulsion templates, multi-surfactant templates, and single crystal templates. Vesicles are generally the self-directed assemblies of amphiphilic molecules including cationic, anionic, and cationic surfactants in aqueous solutions. The directed silica capsule formations were performed at the surface of dioctadecyldimethylammoniumbromide(DODAB) bilayer vesicles as soft template. The size of DODAB bilayer vesicles could be tuned by extrusion of a preheated dispersion of DODAB. The synthesized hollow silica particles were characterized by conventional TEM, cryo-TEM and SEM to determine the morphology and structure of particles and dynamic light scattering (DLS) method to measure the particle size and particle size distribution.

Keywords: characterization, DODAB, hollow silica particle, synthesis, vesicle

Procedia PDF Downloads 283
2242 Nanoparticle Emission Characteristics during Methane Pyrolysis in a Laminar Premixed Flame

Authors: Mohammad Javad Afroughi, Farjad Falahati, Larry W. Kostiuk, Jason S. Olfert

Abstract:

This study investigates the physical characteristics of nanoparticles generated during pyrolysis of methane in hot products of a premixed propane-air flame. An inverted burner is designed to provide a laminar premixed propane-air flame (35 SLPM) then introduce methane co-flow to be pyrolyzed within a closed cylindrical chamber (20 cm in diameter and 68 cm in length). The formed products are discharged through an exhaust with a sampling branch to measure emission characteristics. Carbon particles are sampled with a preheated nitrogen dilution system, and the size distribution of particles formed by pyrolysis is measured by a scanning mobility particle sizer (SMPS). Dilution ratio is calculated using simultaneously measured CO2 concentrations in the exhaust products and diluted samples. Results show that particle size distribution (PSD) is strongly affected by dilution ratio and preheating temperature. PSD becomes unstable at high dilution ratios (typically above 700 times) and/or low preheating temperatures (below 40° C). At a suitable dilution ratio of 55 and preheating temperature up to 70° C, the median diameter of PSD increases from 20 to 220 nm following the introduction of 0.5 SLPM of methane to the propane-air premixed flame. Furthermore, with pyrolysis of methane, total particle number concentration and estimated total mass concentration of particles in the size range of 14 to 700 nm, increase from 1.12 to 3.90 *107 cm-3 and from 0.11 to 154 µg L-1, respectively.

Keywords: laminar premixed flame, methane pyrolysis, nanoparticle physical characteristics, particle mass concentration, particle number concentration, particle size distribution (PSD)

Procedia PDF Downloads 207
2241 Controlling Interactions and Non-Equilibrium Steady State in Spinning Active Matter Monolayers

Authors: Joshua Paul Steimel, Michael Pappas, Ethan Hall

Abstract:

Particle-particle interactions are critical in determining the state of an active matter system. Unique and ubiquitous non-equilibrium behavior like swarming, vortexing, spiraling, and much more is governed by interactions between active units or particles. In hybrid active-passive matter systems, the attraction between spinning active units in a 2D monolayer of passive particles is controlled by the mechanical behavior of the passive monolayer. We demonstrate here that the range and dynamics of this attraction can be controlled by changing the composition of the passive monolayer by adding dopant passive particles. These dopant passive particles effectively pin the movement of dislocation motion in the passive media and reduce the probability of defect motion required to erode the bridge of passive particles between active spinners, thus reducing the range of attraction. Additionally, by adding an out of plane component to the magnetic moment and creating a top-like motion a short range repulsion emerges between the top-like particle. At inter-top distances less than four particle diameters apart, the tops repel but beyond that, distance attract up to 13 particle diameters apart. The tops were also able to locally and transiently anneal the passive monolayer. Thus we demonstrate that by tuning several parameters of the hybrid active matter system, one can observe very different emergent behavior.

Keywords: active matter, colloids, ferromagnetic, annealing

Procedia PDF Downloads 83
2240 Generation of ZnO-Au Nanocomposite in Water Using Pulsed Laser Irradiation

Authors: Elmira Solati, Atousa Mehrani, Davoud Dorranian

Abstract:

Generation of ZnO-Au nanocomposite under laser irradiation of a mixture of the ZnO and Au colloidal suspensions are experimentally investigated. In this work, firstly ZnO and Au nanoparticles are prepared by pulsed laser ablation of the corresponding metals in water using the 1064 nm wavelength of Nd:YAG laser. In a second step, the produced ZnO and Au colloidal suspensions were mixed in different volumetric ratio and irradiated using the second harmonic of a Nd:YAG laser operating at 532 nm wavelength. The changes in the size of the nanostructure and optical properties of the ZnO-Au nanocomposite are studied as a function of the volumetric ratio of ZnO and Au colloidal suspensions. The crystalline structure of the ZnO-Au nanocomposites was analyzed by X-ray diffraction (XRD). The optical properties of the samples were examined at room temperature by a UV-Vis-NIR absorption spectrophotometer. Transmission electron microscopy (TEM) was done by placing a drop of the concentrated suspension on a carbon-coated copper grid. To further confirm the morphology of ZnO-Au nanocomposites, we performed Scanning electron microscopy (SEM) analysis. Room temperature photoluminescence (PL) of the ZnO-Au nanocomposites was measured to characterize the luminescence properties of the ZnO-Au nanocomposites. The ZnO-Au nanocomposites were characterized by Fourier transform infrared (FTIR) spectroscopy. The X-ray diffraction pattern shows that the ZnO-Au nanocomposites had the polycrystalline structure of Au. The behavior observed by images of transmission electron microscope reveals that soldering of Au and ZnO nanoparticles include their adhesion. The plasmon peak in ZnO-Au nanocomposites was red-shifted and broadened in comparison with pure Au nanoparticles. By using the Tauc’s equation, the band gap energy for ZnO-Au nanocomposites is calculated to be 3.15–3.27 eV. In this work, the formation of ZnO-Au nanocomposites shifts the FTIR peak of metal oxide bands to higher wavenumbers. PL spectra of the ZnO-Au nanocomposites show that several weak peaks in the ultraviolet region and several relatively strong peaks in the visible region. SEM image indicates that the morphology of ZnO-Au nanocomposites produced in water was spherical. The TEM images of ZnO-Au nanocomposites demonstrate that with increasing the volumetric ratio of Au colloidal suspension the adhesion increased. According to the size distribution graphs of ZnO-Au nanocomposites with increasing the volumetric ratio of Au colloidal suspension the amount of ZnO-Au nanocomposites with the smaller size is further.

Keywords: Au nanoparticles, pulsed laser ablation, ZnO-Au nanocomposites, ZnO nanoparticles

Procedia PDF Downloads 309
2239 Endoscopic Treatment of Patients with Large Bile Duct Stones

Authors: Yuri Teterin, Lomali Generdukaev, Dmitry Blagovestnov, Peter Yartcev

Abstract:

Introduction: Under the definition "large biliary stones," we referred to stones over 1.5 cm, in which standard transpapillary litho extraction techniques were unsuccessful. Electrohydraulic and laser contact lithotripsy under SpyGlass control have been actively applied for the last decade in order to improve endoscopic treatment results. Aims and Methods: Between January 2019 and July 2022, the N.V. Sklifosovsky Research Institute of Emergency Care treated 706 patients diagnosed with choledocholithiasis who underwent biliary stones removed from the common bile duct. Of them, in 57 (8, 1%) patients, the use of a Dormia basket or Biliary stone extraction balloon was technically unsuccessful due to the size of the stones (more than 15 mm in diameter), which required their destruction. Mechanical lithotripsy was used in 35 patients, and electrohydraulic and laser lithotripsy under SpyGlass direct visualization system - in 26 patients. Results: The efficiency of mechanical lithotripsy was 72%. Complications in this group were observed in 2 patients. In both cases, on day one after lithotripsy, acute pancreatitis developed, which resolved on day three with conservative therapy (Clavin-Dindo type 2). The efficiency of contact lithotripsy was in 100% of patients. Complications were not observed in this group. Bilirubin level in this group normalized on the 3rd-4th day. Conclusion: Our study showed the efficacy and safety of electrohydraulic and laser lithotripsy under SpyGlass control in a well-defined group of patients with large bile duct stones.

Keywords: contact lithotripsy, choledocholithiasis, SpyGlass, cholangioscopy, laser, electrohydraulic system, ERCP

Procedia PDF Downloads 55
2238 Numerical Simulation of Transient 3D Temperature and Kerf Formation in Laser Fusion Cutting

Authors: Karim Kheloufi, El Hachemi Amara

Abstract:

In the present study, a three-dimensional transient numerical model was developed to study the temperature field and cutting kerf shape during laser fusion cutting. The finite volume model has been constructed, based on the Navier–Stokes equations and energy conservation equation for the description of momentum and heat transport phenomena, and the Volume of Fluid (VOF) method for free surface tracking. The Fresnel absorption model is used to handle the absorption of the incident wave by the surface of the liquid metal and the enthalpy-porosity technique is employed to account for the latent heat during melting and solidification of the material. To model the physical phenomena occurring at the liquid film/gas interface, including momentum/heat transfer, a new approach is proposed which consists of treating friction force, pressure force applied by the gas jet and the heat absorbed by the cutting front surface as source terms incorporated into the governing equations. All these physics are coupled and solved simultaneously in Fluent CFD®. The main objective of using a transient phase change model in the current case is to simulate the dynamics and geometry of a growing laser-cutting generated kerf until it becomes fully developed. The model is used to investigate the effect of some process parameters on temperature fields and the formed kerf geometry.

Keywords: laser cutting, numerical simulation, heat transfer, fluid flow

Procedia PDF Downloads 300
2237 Preparation and in vivo Assessment of Nystatin-Loaded Solid Lipid Nanoparticles for Topical Delivery against Cutaneous Candidiasis

Authors: Rawia M. Khalil, Ahmed A. Abd El Rahman, Mahfouz A. Kassem, Mohamed S. El Ridi, Mona M. Abou Samra, Ghada E. A. Awad, Soheir S. Mansy

Abstract:

Solid lipid nanoparticles (SLNs) have gained great attention for the topical treatment of skin associated fungal infection as they facilitate the skin penetration of loaded drugs. Our work deals with the preparation of nystatin loaded solid lipid nanoparticles (NystSLNs) using the hot homogenization and ultrasonication method. The prepared NystSLNs were characterized in terms of entrapment efficiency, particle size, zeta potential, transmission electron microscopy, differential scanning calorimetry, rheological behavior and in vitro drug release. A stability study for 6 months was performed. A microbiological study was conducted in male rats infected with Candida albicans, by counting the colonies and examining the histopathological changes induced on the skin of infected rats. The results showed that SLNs dispersions are spherical in shape with particle size ranging from 83.26±11.33 to 955.04±1.09 nm. The entrapment efficiencies are ranging from 19.73±1.21 to 72.46±0.66% with zeta potential ranging from -18.9 to -38.8 mV and shear-thinning rheological Behavior. The stability studies done for 6 months showed that nystatin (Nyst) is a good candidate for topical SLN formulations. A least number of colony forming unit/ ml (cfu/ml) was recorded for the selected NystSLN compared to the drug solution and the commercial Nystatin® cream present in the market. It can be fulfilled from this work that SLNs provide a good skin targeting effect and may represent promising carrier for topical delivery of Nyst offering the sustained release and maintaining the localized effect, resulting in an effective treatment of cutaneous fungal infection.

Keywords: candida infections, hot homogenization, nystatin, solid lipid nanoparticles, stability, topical delivery

Procedia PDF Downloads 362
2236 The Grand Unified Theory of Bidirectional Spacetime with Spatial Covariance and Wave-Particle Duality in Spacetime Flow Model

Authors: Tory Erickson

Abstract:

The "Bidirectional Spacetime with Spatial Covariance and Wave-Particle Duality in Spacetime Flow" (BST-SCWPDF) Model introduces a framework aimed at unifying general relativity (GR) and quantum mechanics (QM). By proposing a concept of bidirectional spacetime, this model suggests that time can flow in more than one direction, thus offering a perspective on temporal dynamics. Integrated with spatial covariance and wave-particle duality in spacetime flow, the BST-SCWPDF Model resolves long-standing discrepancies between GR and QM. This unified theory has profound implications for quantum gravity, potentially offering insights into quantum entanglement, the collapse of the wave function, and the fabric of spacetime itself. The Bidirectional Spacetime with Spatial Covariance and Wave-Particle Duality in Spacetime Flow" (BST-SCWPDF) Model offers researchers a framework for a better understanding of theoretical physics.

Keywords: astrophysics, quantum mechanics, general relativity, unification theory, theoretical physics

Procedia PDF Downloads 51
2235 Effect of Sand Particle Distribution in Oil and Gas Pipeline Erosion

Authors: Christopher Deekia Nwimae, Nigel Simms, Liyun Lao

Abstract:

Erosion in pipe bends caused by particles is a major obstacle in the oil and gas fields and might cause the breakdown of production equipment. This work studied the effects imposed by flow velocity and impact of solid particles diameter in an elbow; erosion rate was verified with experimental data using the computational fluid dynamics (CFD) approach. Two-way coupled Euler-Lagrange and discrete phase model was employed to calculate the air/solid particle flow in an elbow. One erosion model and three-particle rebound models were used to predict the erosion rate on the 90° elbows. The generic erosion model was used in the CFD-based erosion model, and after comparing it with experimental data, results showed agreement with the CFD-based predictions as observed.

Keywords: erosion, prediction, elbow, computational fluid dynamics

Procedia PDF Downloads 128
2234 Generation Mechanism of Opto-Acoustic Wave from in vivo Imaging Agent

Authors: Hiroyuki Aoki

Abstract:

The optoacoustic effect is the energy conversion phenomenon from light to sound. In recent years, this optoacoustic effect has been utilized for an imaging agent to visualize a tumor site in a living body. The optoacoustic imaging agent absorbs the light and emits the sound signal. The sound wave can propagate in a living organism with a small energy loss; therefore, the optoacoustic imaging method enables the molecular imaging of the deep inside of the body. In order to improve the imaging quality of the optoacoustic method, the more signal intensity is desired; however, it has been difficult to enhance the signal intensity of the optoacoustic imaging agent because the fundamental mechanism of the signal generation is unclear. This study deals with the mechanism to generate the sound wave signal from the optoacoustic imaging agent following the light absorption by experimental and theoretical approaches. The optoacoustic signal efficiency for the nano-particles consisting of metal and polymer were compared, and it was found that the polymer particle was better. The heat generation and transfer process for optoacoustic agents of metal and polymer were theoretically examined. It was found that heat generated in the metal particle rapidly transferred to the water medium, whereas the heat in the polymer particle was confined in itself. The confined heat in the small particle induces the massive volume expansion, resulting in the large optoacoustic signal for the polymeric particle agent. Thus, we showed that heat confinement is a crucial factor in designing the highly efficient optoacoustic imaging agent.

Keywords: nano-particle, opto-acoustic effect, in vivo imaging, molecular imaging

Procedia PDF Downloads 107
2233 Acoustic Behavior of Polymer Foam Composite of Shorea leprosula after UV-Irradiation Exposure

Authors: Anika Zafiah M. Rus, S. Shafizah

Abstract:

This study was developed to compare the behavior and the ability of polymer foam composites towards sound absorption test of Shorea leprosula wood (SL) of acid hydrolysis treatment with particle size < 355µm. Three different weight ratio of polyol to wood particle has been selected which are 10wt%, 15wt%, and 20wt%. The acid hydrolysis treatment is to optimize the surface interaction of a wood particle with polymer foam matrix. In addition, the acoustic characteristic of sound absorption coefficient (Į) was determined. Further treatment is to expose the polymer composite in UV irradiation by using UV-Weatherometer. Polymer foam composite of untreated shorea leprosula particle (SL-B) with respective percentage loading shows uniform pore structure as compared with treated wood particle (SL-A). As the filler percentage loading in polymer foam increases, the Į value approaching 1 for both samples. Furthermore, SL-A shows better Į value at 3500-4500 frequency absorption level(Hz), meanwhile Į value for SL-B is maximum at 4000-5000 Hz. The frequencies absorption level for both SL-B and SL-A after UV exposure was increased with the increasing of exposure time from 0-1000 hours. It is, therefore, concluded that the Į for each sound absorbing material, with or without acid hydrolysis treatment of wood particles and it’s percentages loading in polymer matrix effect the sound absorption behavior.

Keywords: polymer foam composite, sound absorption coefficient, UV-irradiation, wood

Procedia PDF Downloads 438
2232 Real-World PM, PN and NOx Emission Differences among DOC+CDPF Retrofit Diesel-, Diesel- And Natural Gas-Fueled Bus

Authors: Zhiwen Yang, Jingyuan Li, Zhenkai Xie, Jian Ling, Jiguang Wang, Mengliang Li

Abstract:

To reflect the effects of different emission control strategies, such as retrofitting after-treatment system and replacing with natural gas-fueled vehicles, on particle number (PN), particle mass (PM) and nitrogen oxides (NOx) emissions emitted by urban bus, a portable emission measurement system (PEMS) was employed herein to conduct real-world driving emission measurements on a diesel oxidation catalytic converter (DOC) and catalyzed diesel particulate filter (CDPF) retrofitting China IV diesel bus, a China IV diesel bus, and a China V natural gas bus. The results show that both tested diesel buses possess markedly advantages in NOx emission control when compared to the lean-burn natural gas bus equipped without any NOx after-treatment system. As to PN and PM, only the DOC+CDPF retrofitting diesel bus exhibits enormous benefits on emission control relate to the natural gas bus, especially the normal diesel bus. Meanwhile, the differences in PM and PN emissions between retrofitted and normal diesel buses generally increase with the increase in vehicle-specific power (VSP). Furthermore, the differences in PM emissions, especially those in the higher VSP ranges, are more significant than those in PN. In addition, the maximum peak PN particle size (32 nm) of the retrofitted diesel bus was significantly lower than that of the normal diesel bus (100 nm). These phenomena indicate that the CDPF retrofitting can effectively reduce diesel bus exhaust particle emissions, especially those with large particle sizes.

Keywords: CDPF, diesel, natural gas, real-world emissions

Procedia PDF Downloads 266
2231 Modeling Continuous Flow in a Curved Channel Using Smoothed Particle Hydrodynamics

Authors: Indri Mahadiraka Rumamby, R. R. Dwinanti Rika Marthanty, Jessica Sjah

Abstract:

Smoothed particle hydrodynamics (SPH) was originally created to simulate nonaxisymmetric phenomena in astrophysics. However, this method still has several shortcomings, namely the high computational cost required to model values with high resolution and problems with boundary conditions. The difficulty of modeling boundary conditions occurs because the SPH method is influenced by particle deficiency due to the integral of the kernel function being truncated by boundary conditions. This research aims to answer if SPH modeling with a focus on boundary layer interactions and continuous flow can produce quantifiably accurate values with low computational cost. This research will combine algorithms and coding in the main program of meandering river, continuous flow algorithm, and solid-fluid algorithm with the aim of obtaining quantitatively accurate results on solid-fluid interactions with the continuous flow on a meandering channel using the SPH method. This study uses the Fortran programming language for modeling the SPH (Smoothed Particle Hydrodynamics) numerical method; the model is conducted in the form of a U-shaped meandering open channel in 3D, where the channel walls are soil particles and uses a continuous flow with a limited number of particles.

Keywords: smoothed particle hydrodynamics, computational fluid dynamics, numerical simulation, fluid mechanics

Procedia PDF Downloads 94
2230 Structural Parameter-Induced Focusing Pattern Transformation in CEA Microfluidic Device

Authors: Xin Shi, Wei Tan, Guorui Zhu

Abstract:

The contraction-expansion array (CEA) microfluidic device is widely used for particle focusing and particle separation. Without the introduction of external fields, it can manipulate particles using hydrodynamic forces, including inertial lift forces and Dean drag forces. The focusing pattern of the particles in a CEA channel can be affected by the structural parameter, block ratio, and flow streamlines. Here, two typical focusing patterns with five different structural parameters were investigated, and the force mechanism was analyzed. We present nine CEA channels with different aspect ratios based on the process of changing the particle equilibrium positions. The results show that 10-15 μm particles have the potential to generate a side focusing line as the structural parameter (¬R𝓌) increases. For a determined channel structure and target particles, when the Reynolds number (Rₑ) exceeds the critical value, the focusing pattern will transform from a single pattern to a double pattern. The parameter α/R𝓌 can be used to calculate the critical Reynolds number for the focusing pattern transformation. The results can provide guidance for microchannel design and biomedical analysis.

Keywords: microfluidic, inertial focusing, particle separation, Dean flow

Procedia PDF Downloads 55
2229 Predicting the Effect of Silicon Electrode Design Parameters on Thermal Performance of a Lithium-Ion Battery

Authors: Harika Dasari, Eric Eisenbraun

Abstract:

The present study models the role of electrode structural characteristics on the thermal behavior of lithium-ion batteries. Preliminary modeling runs have employed a 1D lithium-ion battery coupled to a two-dimensional axisymmetric model using silicon as the battery anode material. The two models are coupled by the heat generated and the average temperature. Our study is focused on the silicon anode particle sizes and it is observed that silicon anodes with nano-sized particles reduced the temperature of the battery in comparison to anodes with larger particles. These results are discussed in the context of the relationship between particle size and thermal transport properties in the electrode.

Keywords: particle size, NMC, silicon, heat generation, separator

Procedia PDF Downloads 257
2228 Mechanical Properties of Selective Laser Sintered 304L Stainless Steel Powders

Authors: Shijie Liu, Jehnming Lin

Abstract:

This study mainly discussed the mechanical properties of selective laser sintered 304L stainless steel powder specimen. According to a single layer specimen sintering, the microstructure and porosity were observed to find out the proper sintering parameters. A multi-layer sintering experiment was conducted. Based on the microstructure and the integration between layers, the suitable parameters were found out. Finally, the sintered specimens were examined by metallographical inspection, hardness test, tensile test, and surface morphology measurement. The structure of the molten powder coated with unmelted powder was found in metallographic test. The hardness of the sintered stainless steel powder is greater than the raw material. The tensile strength is less than the raw material, and it is corresponding to different scanning paths. The specimen will have different patterns of cracking. It was found that the helical scanning path specimen will have a warpage deformation at the edge of the specimen. The S-scan path specimen surface is relatively flat.

Keywords: laser sintering, sintering path, microstructure, mechanical properties

Procedia PDF Downloads 134
2227 Spectroscopic and 1.08mm Laser Properties of Nd3+ Doped Oxy-Fluoro Borate Glasses

Authors: Swapna Koneru, Srinivasa Rao Allam, Vijaya Prakash Gaddem

Abstract:

The different concentrations of neodymium-doped (Nd-doped) oxy fluoroborate (OFB) glasses were prepared by melt quenching method and characterized through optical absorption, emission and decay curve measurements to understand the lasing potentialities of these glasses. Optical absorption spectra were recorded and have been analyzed using Judd–Ofelt theory. The dipole strengths are parameterized in terms of three phenomenological Judd–Ofelt intensity parameters Ωλ (λ=2, 4 and 6) to elucidate the glassy matrix around Nd3+ ion as well as to determine the 4F3/2 metastable state radiative properties such as the transition probability (AR), radiative lifetime (τR), branching ratios (βR) and integrated absorption cross-section (σa) have been measured for most of the fluorescent levels of Nd3+. The emission spectra recorded for these glasses exhibit two peaks at 1085 and 1328 nm corresponding to 4F3/2 to 4I11/2 and 4I13/2 transitions have been obtained for all the glasses upon 808 nm diode laser excitation in the near infrared region. The emission intensity of the 4F3/2 to 4I11/2 transition increases with increase of Nd3+ concentration up to 1 mol% and then concentration quenching is observed for 2.0 mol% of Nd3+ concentration. The lifetimes for the 4F3/2 level are found to decrease with increase in Nd2O3 concentration in the glasses due to the concentration quenching. The decay curves of all these glasses show single exponential behavior. The spectroscopy of Nd3+ in these glasses is well understood and laser properties can be accurately determined from measured spectroscopic properties. The results obtained are compared with reports on similar glasses. The results indicate that the present glasses could be useful for 1.08 µm laser applications.

Keywords: glasses, luminescence, optical properties, photoluminescence spectroscopy

Procedia PDF Downloads 254
2226 Deformation of Particle-Laden Droplet in Viscous Liquid under DC Electric Fields

Authors: Khobaib Khobaib, Alexander Mikkelsen, Zbigniew Rozynek

Abstract:

Electric fields have proven useful for inducing droplet deformation and to structure particles adsorbed at droplet interfaces. In this experimental research, direct current electric fields were applied to deform particle-covered droplets made out of silicone oil and immersed in castor oil. The viscosity of the drop and surrounding fluid were changed by external heating. We designed an experimental system in such a way that electric field-induced electrohydrodynamic (EHD) flows were asymmetric and only present on one side of the drop, i.e., the droplet adjoined a washer and adhered to one of the electrodes constituting the sample cell. The study investigated the influence of viscosity on the steady-state deformation magnitude of particle-laden droplets, droplet compression, and relaxation, as well as particle arrangements at drop interfaces. Initially, before the application of an electric field, we changed the viscosity of the fluids by heating the sample cell at different temperatures. The viscosity of the fluids was varied by changing the temperature of the fluids from 25 to 50°C. Under the application of a uniform electric field of strength 290 Vmm⁻¹, electric stress was induced at the drop interface, yielding drop deformation. In our study, we found that by lowering the fluid viscosity, the velocity of the EHD flows was increased, which also increases the deformation of the drop.

Keywords: drop deformation and relaxation, electric field, electrohydrodynamic flow, particle assembly, viscosity

Procedia PDF Downloads 237