Search results for: laminated seismic isolation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1859

Search results for: laminated seismic isolation

1769 Comparison of the Seismic Response of Planar Regular and Irregular Steel Frames

Authors: Robespierre Chavez, Eden Bojorquez, Alfredo Reyes-Salazar

Abstract:

This study compares the seismic response of regular and vertically irregular steel frames determined by nonlinear time history analysis and by using several sets of earthquake records, which are divided in two categories: The first category having 20 stiff-soil ground motion records obtained from the NGA database, and the second category having 30 soft-soil ground motions recorded in the Lake Zone of Mexico City and exhibiting a dominant period (Ts) of two seconds. The steel frames in both format regular and irregular were designed according to the Mexico City Seismic Design Provisions (MCSDP). The effects of irregularity throught the height on the maximum interstory drifts are estimated.

Keywords: irregular steel frames, maximum interstory drifts, seismic response, seismic records

Procedia PDF Downloads 292
1768 The Development of Large Deformation Stability of Elastomeric Bearings

Authors: Davide Forcellini, James Marshal Kelly

Abstract:

Seismic isolation using multi-layer elastomeric isolators has been used in the United States for more than 20 years. Although isolation bearings normally have a large factor of safety against buckling due to low shear stiffness, this phenomenon has been widely studied. In particular, the linearly elastic theory adopted to study this phenomenon is relatively accurate and adequate for most design purposes. Unfortunately it cannot consider the large deformation response of a bearing when buckling occurs and the unresolved behaviour of the stability of the post-buckled state. The study conducted in this paper may be viewed as a development of the linear theory of multi-layered elastomeric bearing, simply replacing the differential equations by algebraic equations, showing how it is possible to evaluate the post-buckling behaviour and the interactions at large deformations.

Keywords: multi-layer elastomeric isolators, large deformation, compressive load, tensile load, post-buckling behaviour

Procedia PDF Downloads 402
1767 Seismic Assessment of RC Structures

Authors: Badla Oualid

Abstract:

A great number of existing buildings are designed without seismic design criteria and detailing rules for dissipative structural behavior. Thus, it is of critical importance that the structures that need seismic retrofitting are correctly identified, and an optimal retrofitting is conducted in a cost effective fashion. Among the retrofitting techniques available, steel braces can be considered as one of the most efficient solution among seismic performance upgrading methods of RC structures. This paper investigates the seismic behavior of RC buildings strengthened with different types of steel braces, X-braced, inverted V braced, ZX braced, and Zipper braced. Static non linear pushover analysis has been conducted to estimate the capacity of three story and six story buildings with different brace-frame systems and different cross sections for the braces. It is found that adding braces enhances the global capacity of the buildings compared to the case with no bracing and that the X and Zipper bracing systems performed better depending on the type and size of the cross section.

Keywords: seismic design, strengthening, RC frames, steel bracing, pushover analysis

Procedia PDF Downloads 492
1766 Cost Effectiveness of Slit-Viscoelastic Dampers for Seismic Retrofit of Structures

Authors: Minsung Kim, Jinkoo Kim

Abstract:

In order to reduce or eliminate seismic damage in structures, many researchers have investigated various energy dissipation devices. In this study, the seismic capacity and cost of a slit-viscoelastic seismic retrofit system composed of a steel slit plate and viscoelastic dampers connected in parallel are evaluated. The combination of the two different damping mechanisms is expected to produce enhanced seismic performance of the building. The analysis model of the system is first derived using various link elements in the nonlinear dynamic analysis software Perform 3D, and fragility curves of the structure retrofitted with the dampers are obtained using incremental dynamic analyses. The analysis results show that the displacement of the structure equipped with the hybrid dampers is smaller than that of the structure with slit dampers due to the enhanced self-centering capability of the system. It is also observed that the initial cost of hybrid system required for the seismic retrofit is smaller than that of the structure with viscoelastic dampers. Acknowledgement: This research was financially supported by the Ministry of Trade, Industry and Energy(MOTIE) and Korea Institute for Advancement of Technology(KIAT) through the International Cooperative R&D program(N043100016_Development of low-cost high-performance seismic energy dissipation devices using viscoelastic material).

Keywords: damped cable systems, seismic retrofit, viscous dampers, self-centering

Procedia PDF Downloads 220
1765 COVID-19: The Dark Side of an Unprecedented Social Isolation in the Elderly

Authors: L. Paulino Ferreira, M. Gomes Neto, M. Duarte, S. Serra

Abstract:

Objectives: COVID-19 pandemic has caused older adults to experience a degree of social isolation and loneliness that is unprecedented. Our aim is to review state of the art regarding the consequences of social isolation due to COVID-19 in elderly people. Methods: The authors conducted a search on Medscape and PubMed with the keywords mentioned below, and the most relevant articles were selected. Results: Social isolation leads many elderlies to experience loneliness, anxiety, depression, alcohol abuse, and feelings of abandonment with a perception of being a burden on society. Thus, social isolation has increased the risk for suicide in older people. It is also noteworthy that the exacerbation of psychiatric disorders (such as depression, anxiety, and post-traumatic stress disorder) without correct treatment and follow-up also increases suicide risk. Loneliness is also associated with accelerated cognitive deterioration and dementia. Besides that, during social isolation, it could be more difficult for older people to get medication as well as proper health care. It is also noticed an increase in the risk of falls, poor nutrition, and lack of exercise. All this contributes to weakening elderlies’ immune systems leading to a higher risk of developing infections, cardiovascular events, and cancer, increasing hospitalization and morbimortality. Conclusion: Social isolation in the elderly has a significant impact on physical and mental health, as well as morbimortality and hospitalizations due to non-COVID causes. Nevertheless, further studies will be needed to assess the real dimension of the effects of social isolation due to COVID-19.

Keywords: social isolation, COVID-19, elderly, mental health

Procedia PDF Downloads 61
1764 Buckling Analysis of Laminated Composite Plates with Central Holes

Authors: Pratyasha Patnaik, A. V. Asha

Abstract:

Laminated composite plates are made up of plates consisting of layers bonded together and made up of materials chemically different from each other but combined macroscopically. These have an application in aircrafts, railway coaches, bridges etc. because they are easy to handle, have got improved properties and the cost of their fabrication is low. But their failure can lead to catastrophic disasters. And generally, the failure of these structures is due to the combined effect of excessive stresses on it and buckling. Hence, the buckling behavior of these kinds of plates should be analyzed properly. Holes are provided either at the center or elsewhere in the laminar plates for the purpose of pipes for electric cables or other purposes. Due to the presence of holes in the plates, the stress concentration is near to the holes and the stiffness of the plates is reduced. In this study, the effect of a cut-out, its shape, different boundary conditions, length/thickness ratio, stacking sequence, and ply orientation has been studied. The analysis was carried out with laminated composite plates with circular, square and triangular cut-outs. Results show the effect of different cut-out shapes, boundary conditions, the orientation of layers and length/thickness ratio of the buckling load

Keywords: buckling, composite plates, cut-out, stress

Procedia PDF Downloads 306
1763 Seismic Loss Assessment for Peruvian University Buildings with Simulated Fragility Functions

Authors: Jose Ruiz, Jose Velasquez, Holger Lovon

Abstract:

Peruvian university buildings are critical structures for which very little research about its seismic vulnerability is available. This paper develops a probabilistic methodology that predicts seismic loss for university buildings with simulated fragility functions. Two university buildings located in the city of Cusco were analyzed. Fragility functions were developed considering seismic and structural parameters uncertainty. The fragility functions were generated with the Latin Hypercube technique, an improved Montecarlo-based method, which optimizes the sampling of structural parameters and provides at least 100 reliable samples for every level of seismic demand. Concrete compressive strength, maximum concrete strain and yield stress of the reinforcing steel were considered as the key structural parameters. The seismic demand is defined by synthetic records which are compatible with the elastic Peruvian design spectrum. Acceleration records are scaled based on the peak ground acceleration on rigid soil (PGA) which goes from 0.05g to 1.00g. A total of 2000 structural models were considered to account for both structural and seismic variability. These functions represent the overall building behavior because they give rational information regarding damage ratios for defined levels of seismic demand. The university buildings show an expected Mean Damage Factor of 8.80% and 19.05%, respectively, for the 0.22g-PGA scenario, which was amplified by the soil type coefficient and resulted in 0.26g-PGA. These ratios were computed considering a seismic demand related to 10% of probability of exceedance in 50 years which is a requirement in the Peruvian seismic code. These results show an acceptable seismic performance for both buildings.

Keywords: fragility functions, university buildings, loss assessment, Montecarlo simulation, latin hypercube

Procedia PDF Downloads 110
1762 Seismic Hazard Response of Bhairabi-Sairang Tunnel Due to the Effect of Faulting

Authors: Tauhidur Rahman, Subhrajit Pathak

Abstract:

In this study, structural response of Bhairabi-Sairang Tunnel due to presence of seismic faults has been thoroughly examined. There may be several active faults located in and around the project. Faults are the key seismic sources from where earthquakes are originated. The magnitude of earthquake will depend on the length of the fault. A long fault more than 200 km can produce earthquake of magnitude (Mw ) more than 8.0 and smaller length less than 10 km will produce small magnitude earthquake. Now-a-days it is very much essential to identify the distance and length of a fault from the project site. Based on this, in the present paper, a case study of the Bhairabi Sairang Tunnel of 1.73 Km length located in the North Eastern Region of India has been selected to calculate the seismic hazard from the surrounding effect of faults. A comparative study of seismic hazard at the tunnel site has been made based on the location of faults with the seismic hazard obtained from the Indian Standards code of Practice. In this paper, a practical problem of a tunnel has been analysed based on the available faults around the project site accounting the soil factor.

Keywords: seismic hazard, effect of fault, soil factor, Bhairabi Sairang tunnel

Procedia PDF Downloads 533
1761 Three Dimensional Numerical Analysis for Longitudinal Seismic Response of Tunnels under Asynchronous Earthquake

Authors: Peng Li, Er-xiang Song

Abstract:

Numerical analysis of longitudinal tunnel seismic response due to spatial variation of earthquake ground motion is an important issue that cannot be ignored in the design and safety evaluation of tunnel structures. In this paper, numerical methods for analysis of tunnel longitudinal response under asynchronous seismic wave is extensively studied, including the improvement of the 1D time-domain finite element method, three dimensional numerical simulation technique for the site asynchronous earthquake response as well as the 3-D soil-tunnel structure interaction analysis. The study outcome will be beneficial to aid further research on the nonlinear meticulous numerical analysis and seismic response mechanism of tunnel structures under asynchronous earthquake motion.

Keywords: asynchronous input, longitudinal seismic response, tunnel structure, numerical simulation, traveling wave effect

Procedia PDF Downloads 400
1760 Natural Frequency Analysis of Small-Scale Arch Structure by Shaking Table Test

Authors: Gee-Cheol Kim, Joo-Won Kang

Abstract:

Structural characteristics of spatial structure are different from that of rahmen structures and it has many factors that are unpredictable experientially. Both horizontal and vertical earthquake should be considered because of seismic behaviour characteristics of spatial structures. This experimental study is conducted about seismic response characteristics of roof structure according to the effect of columns or walls, through scale model of arch structure that has the basic dynamic characteristics of spatial structure. Though remarkable response is not occurred for horizontal direction in the region of higher frequency than the region of frequency that seismic energy is concentrated, relatively large response is occurred in vertical direction. It is proved that seismic response of arch structure with column is varied according to property of column.

Keywords: arch structure, seismic response, shaking table, spatial structure

Procedia PDF Downloads 331
1759 Comparative Study of the Distribution of Seismic Loads of Buildings with Asymmetries Plan

Authors: Ahmed Hamza Yache

Abstract:

The main purpose of this study is to estimate the distribution of shear forces in building structures with asymmetries in the plan submitted to seismic forces can cause, in this case, simultaneous deformations of translation and torsion. To this end, the distribution of shear forces is obtained by seismic forces calculated from the equivalent static method of the Algerian earthquake code RPA 99 (2003 version) and spectral modal analysis for an irregular building plan without kinks. Comparison of the results obtained by these two methods used to highlight the difference in terms of distributions of shear forces in such structures.

Keywords: structure, irregular, code, seismic, method, force, period

Procedia PDF Downloads 551
1758 Correlation between Seismic Risk Insurance Indexes and Uninhabitability Indexes of Buildings in Morocco

Authors: Nabil Mekaoui, Nacer Jabour, Abdelhamid Allaoui, Abderahim Oulidi

Abstract:

The reliability of several insurance indexes of the seismic risk is evaluated and compared for an efficient seismic risk coverage of buildings in Morocco, thus, reducing the basic risk. A large database of earthquake ground motions is established from recent seismic events in Morocco and synthetic ground motions compatible with the design spectrum in order to conduct nonlinear time history analyses on three building models representative of the building stock in Morocco. The uninhabitability index is evaluated based on the simulated damage index, then correlated with preselected insurance indexes. Interestingly, the commonly used peak ground acceleration index showed poor correlation when compared with other indexes, such as spectral accelerations at low periods. Recommendations on the choice of suitable insurance indexes are formulated for efficient seismic risk coverage in Morocco.

Keywords: catastrophe modeling, damage, earthquake, reinsurance, seismic hazard, trigger index, vulnerability

Procedia PDF Downloads 44
1757 Analyzing Time Lag in Seismic Waves and Its Effects on Isolated Structures

Authors: Faizan Ahmad, Jenna Wong

Abstract:

Time lag between peak values of horizontal and vertical seismic waves is a well-known phenomenon. Horizontal and vertical seismic waves, secondary and primary waves in nature respectively, travel through different layers of soil and the travel time is dependent upon the medium of wave transmission. In seismic analysis, many standardized codes do not require the actual vertical acceleration to be part of the analysis procedure. Instead, a factor load addition for a particular site is used to capture strength demands in case of vertical excitation. This study reviews the effects of vertical accelerations to analyze the behavior of a linearly rubber isolated structure in different time lag situations and frequency content by application of historical and simulated ground motions using SAP2000. The response of the structure is reviewed under multiple sets of ground motions and trends based on time lag and frequency variations are drawn. The accuracy of these results is discussed and evaluated to provide reasoning for use of real vertical excitations in seismic analysis procedures, especially for isolated structures.

Keywords: seismic analysis, vertical accelerations, time lag, isolated structures

Procedia PDF Downloads 303
1756 Seismic Bearing Capacity Estimation of Shallow Foundations on Dense Sand Underlain by Loose Sand Strata by Using Finite Elements Limit Analysis

Authors: Pragyan Paramita Das, Vishwas N. Khatri

Abstract:

By using the lower- and upper- bound finite elements to limit analysis in conjunction with second-order conic programming (SOCP), the effect of seismic forces on the bearing capacity of surface strip footing resting on dense sand underlain by loose sand deposit is explored. The soil is assumed to obey the Mohr-Coulomb’s yield criterion and an associated flow rule. The angle of internal friction (ϕ) of the top and the bottom layer is varied from 42° to 44° and 32° to 34° respectively. The coefficient of seismic acceleration is varied from 0 to 0.3. The variation of bearing capacity with different thickness of top layer for various seismic acceleration coefficients is generated. A comparison will be made with the available solutions from literature wherever applicable.

Keywords: bearing capacity, conic programming, finite elements, seismic forces

Procedia PDF Downloads 142
1755 Regional Adjustment to the Analytical Attenuation Coefficient in the GMPM BSSA 14 for the Region of Spain

Authors: Gonzalez Carlos, Martinez Fransisco

Abstract:

There are various types of analysis that allow us to involve seismic phenomena that cause strong requirements for structures that are designed by society; one of them is a probabilistic analysis which works from prediction equations that have been created based on metadata seismic compiled in different regions. These equations form models that are used to describe the 5% damped pseudo spectra response for the various zones considering some easily known input parameters. The biggest problem for the creation of these models requires data with great robust statistics that support the results, and there are several places where this type of information is not available, for which the use of alternative methodologies helps to achieve adjustments to different models of seismic prediction.

Keywords: GMPM, 5% damped pseudo-response spectra, models of seismic prediction, PSHA

Procedia PDF Downloads 50
1754 A Comprehensive Method of Fault Detection and Isolation based on Testability Modeling Data

Authors: Junyou Shi, Weiwei Cui

Abstract:

Testability modeling is a commonly used method in testability design and analysis of system. A dependency matrix will be obtained from testability modeling, and we will give a quantitative evaluation about fault detection and isolation. Based on the dependency matrix, we can obtain the diagnosis tree. The tree provides the procedures of the fault detection and isolation. But the dependency matrix usually includes built-in test (BIT) and manual test in fact. BIT runs the test automatically and is not limited by the procedures. The method above cannot give a more efficient diagnosis and use the advantages of the BIT. A Comprehensive method of fault detection and isolation is proposed. This method combines the advantages of the BIT and Manual test by splitting the matrix. The result of the case study shows that the method is effective.

Keywords: fault detection, fault isolation, testability modeling, BIT

Procedia PDF Downloads 298
1753 An Investigation into the Isolation and Bandwidth Characteristics of X-Band Chireix Power Amplifier Combiners

Authors: Daniel P. Clayton, Edward A. Ball

Abstract:

This paper describes an investigation into the isolation characteristics and bandwidth performance of RF combiners that are used as part of Chireix PA architectures, designed for use in the X-Band range of frequencies. Combiner designs investigated are the typical Chireix and Wilkinson configurations which also include simulation of the Wilkinson using manufacturer’s data for the isolation resistor. Another simulation was the less common approach of using a Branchline coupler to form the combiner, as well as simulation results from adding an additional stage. This paper presents the findings of this investigation and compares the bandwidth performance and isolation characteristics to determine suitability.

Keywords: bandwidth, Chireix, couplers, outphasing, power amplifiers, Wilkinson, X-Band

Procedia PDF Downloads 226
1752 The Material Behavior in Curved Glulam Beam of Jabon Timber

Authors: Erma Desmaliana, Saptahari Sugiri

Abstract:

Limited availability of solid timber in large dimensions becomes a problem. The demands of timbers in Indonesia is more increasing compared to its supply from natural forest. It is associated with the issues of global warming and environmental preservation. The uses of timbers from HTI (Industrial Planting Forest) and HTR (Society Planting Forest), such as Jabon, is an alternative source that required to solve these problems. Having shorter lifespan is the benefit of HTI/HTR timbers, although they are relatively smaller in dimension and lower in strength. Engineering Wood Product (EWP) such as glulam (glue-laminated) timber, is required to overcome their losses. Glulam is fabricated by gluing the wooden planks that having a thickness of 20 to 45 mm with an adhesive material and a certain pressure. Glulam can be made a curved beam, is one of the advantages, thus making it strength is greater than a straight beam. This paper is aimed to know the material behavior of curved glue-laminated beam of Jabon timber. Preliminary methods was to gain physical and mechanical properties, and glue spread strength of Jabon timber, which following the ASTM D-143 standard test method. Dimension of beams were 50 mm wide, 760 mm span, 50 mm thick, and 50 mm rise. Each layer of Jabon has a thickness of 5 mm and is glued with polyurethane. Cold press will be applied to beam laminated specimens for more than 5 hours. The curved glue-laminated beams specimens will be tested about the bending behavior. This experiments aims to obtain the increasing of load carrying capacity and stiffness of curved glulam beam.

Keywords: curved glulam beam, HTR&HTI, load carrying, strength

Procedia PDF Downloads 271
1751 Dynamic Analysis of Double Deck Tunnel

Authors: C. W. Kwak, I. J. Park, D. I. Jang

Abstract:

The importance of cost-wise effective application and construction is getting increase due to the surge of traffic volume in the metropolitan cities. Accordingly, the necessity of the tunnel has large section becomes more critical. Double deck tunnel can be one of the most appropriate solutions to the necessity. The dynamic stability of double deck tunnel is essential against seismic load since it has large section and connection between perimeter lining and interim slab. In this study, 3-dimensional dynamic numerical analysis was conducted based on the Finite Difference Method to investigate the seismic behavior of double deck tunnel. Seismic joint for dynamic stability and the mitigation of seismic impact on the lining was considered in the modeling and analysis. Consequently, the mitigation of acceleration, lining displacement and stress were verified successfully.

Keywords: double deck tunnel, interim slab, 3-dimensional dynamic numerical analysis, seismic joint

Procedia PDF Downloads 357
1750 Seismic Performance Evaluation of Bridge Structures Using 3D Finite Element Methods in South Korea

Authors: Woo Young Jung, Bu Seog Ju

Abstract:

This study described the seismic performance evaluation of bridge structures, located near Daegu metropolitan city in Korea. The structural design code or regulatory guidelines is focusing on the protection of brittle failure or collapse in bridges’ lifetime during an earthquake. This paper illustrated the procedure in terms of the safety evaluation of bridges using simple linear elastic 3D Finite Element (FE) model in ABAQUS platform. The design response spectra based on KBC 2009 were then developed, in order to understand the seismic behavior of bridge structures. Besides, the multiple directional earthquakes were applied and it revealed that the most dominated earthquake direction was transverse direction of the bridge. Also, the bridge structure under the compressive stress was more fragile than the tensile stress and the vertical direction of seismic ground motions was not significantly affected to the structural system.

Keywords: seismic, bridge, FEM, evaluation, numerical analysis

Procedia PDF Downloads 335
1749 Spatial Integrity of Seismic Data for Oil and Gas Exploration

Authors: Afiq Juazer Rizal, Siti Zaleha Misnan, M. Zairi M. Yusof

Abstract:

Seismic data is the fundamental tool utilized by exploration companies to determine potential hydrocarbon. However, the importance of seismic trace data will be undermined unless the geo-spatial component of the data is understood. Deriving a proposed well to be drilled from data that has positional ambiguity will jeopardize business decision and millions of dollars’ investment that every oil and gas company would like to avoid. Spatial integrity QC workflow has been introduced in PETRONAS to ensure positional errors within the seismic data are recognized throughout the exploration’s lifecycle from acquisition, processing, and seismic interpretation. This includes, amongst other tests, quantifying that the data is referenced to the appropriate coordinate reference system, survey configuration validation, and geometry loading verification. The direct outcome of the workflow implementation helps improve reliability and integrity of sub-surface geological model produced by geoscientist and provide important input to potential hazard assessment where positional accuracy is crucial. This workflow’s development initiative is part of a bigger geospatial integrity management effort, whereby nearly eighty percent of the oil and gas data are location-dependent.

Keywords: oil and gas exploration, PETRONAS, seismic data, spatial integrity QC workflow

Procedia PDF Downloads 191
1748 Seismic Inversion to Improve the Reservoir Characterization: Case Study in Central Blue Nile Basin, Sudan

Authors: Safwat E. Musa, Nuha E. Mohamed, Nuha A. Bagi

Abstract:

In this study, several crossplots of the P-impedance with the lithology logs (gamma ray, neutron porosity, deep resistivity, water saturation and Vp/Vs curves) were made in three available wells, which were drilled in central part of the Blue Nile basin in depths varies from 1460 m to 1600 m. These crossplots were successful to discriminate between sand and shale when using P-Impedance values, and between the wet sand and the pay sand when using both P-impedance and Vp/Vs together. Also, some impedance sections were converted to porosity sections using linear formula to characterize the reservoir in terms of porosity. The used crossplots were created on log resolution, while the seismic resolution can identify only the reservoir, unless a 3D seismic angle stacks were available; then it would be easier to identify the pay sand with great confidence; through high resolution seismic inversion and geostatistical approach when using P-impedance and Vp/Vs volumes.

Keywords: basin, Blue Nile, inversion, seismic

Procedia PDF Downloads 404
1747 Crack Propagation in Concrete Gravity Dam

Authors: Faramarz Khoshnoudian

Abstract:

A seismic stability assessment of the concrete gravity dam was performed. Initially (Phase 1), a linear response spectrum analysis was performed to verify the potential for crack formation. The result shows the possibility of developing cracks in the upstream face of the dam close to the lowest gallery, which were sufficiently long that the dam would not be stable following the earthquake. The results show the dam has potentially inadequate seismic and post-earthquake resistance and recommended an update of the stability analysis.

Keywords: crack propgation, concrete gravity dam, seismic, assesment

Procedia PDF Downloads 39
1746 Seismic Microzonation of El-Fayoum New City, Egypt

Authors: Suzan Salem, Heba Moustafa, Abd El-Aziz Abd El-Aal

Abstract:

Seismic micro hazard zonation for urban areas is the first step towards a seismic risk analysis and mitigation strategy. Essential here is to obtain a proper understanding of the local subsurface conditions and to evaluate ground-shaking effects. In the present study, an attempt has been made to evaluate the seismic hazard considering local site effects by carrying out detailed geotechnical and geophysical site characterization in El-Fayoum New City. Seismic hazard analysis and microzonation of El-Fayoum New City are addressed in three parts: in the first part, estimation of seismic hazard is done using seismotectonic and geological information. The second part deals with site characterization using geotechnical and shallow geophysical techniques. In the last part, local site effects are assessed by carrying out one-dimensional (1-D) ground response analysis using the equivalent linear method by program SHAKE 2000. Finally, microzonation maps have been prepared. The detailed methodology, along with experimental details, collected data, results and maps are presented in this paper.

Keywords: El-Fayoum, microzonation, seismotectonic, Egypt

Procedia PDF Downloads 354
1745 Impact of Butt Joints on Flexural Properties of Nail Laminated Timber

Authors: Mohammad Mehdi Bagheri, Tianying Ma, Meng Gong

Abstract:

Nail laminated timber (NLT) is widely used for constructing timber bridge decks in North America. Butt joints usually exist due to the length limits of lumber, leading to concerns about the decrease of structural performance of NLT. This study aimed at investigating the provisions incorporated in Canadian highway bridge design code on the use of but joints in wooden bridge decks. Three and five layers NLT specimens with various configurations were tested under 3-point bending test. It was found that the standard equation is capable of predicting the bending stiffness reduction due to butt joints and 1-m band limit in which, one but joint in every three adjacent lamination is allowed, sounds reasonable. The strength reduction also followed a pattern similar to stiffness reduction. Also reinforcement of the butt joint through nails and steel side plates was attempted. It was found that nail reinforcement recovers the stiffness slightly. In contrast, reinforcing the butt joint through steel side plate improved the flexural performance significantly when compared to the nail reinforcement.

Keywords: nail laminated timber, butt joint, bending stiffness, reinforcement

Procedia PDF Downloads 145
1744 Seismic Vulnerability Analysis of Arch Dam Based on Response Surface Method

Authors: Serges Mendomo Meye, Li Guowei, Shen Zhenzhong

Abstract:

Earthquake is one of the main loads threatening dam safety. Once the dam is damaged, it will bring huge losses of life and property to the country and people. Therefore, it is very important to research the seismic safety of the dam. Due to the complex foundation conditions, high fortification intensity, and high scientific and technological content, it is necessary to adopt reasonable methods to evaluate the seismic safety performance of concrete arch dams built and under construction in strong earthquake areas. Structural seismic vulnerability analysis can predict the probability of structural failure at all levels under different intensity earthquakes, which can provide a scientific basis for reasonable seismic safety evaluation and decision-making. In this paper, the response surface method (RSM) is applied to the seismic vulnerability analysis of arch dams, which improves the efficiency of vulnerability analysis. Based on the central composite test design method, the material-seismic intensity samples are established. The response surface model (RSM) with arch crown displacement as performance index is obtained by finite element (FE) calculation of the samples, and then the accuracy of the response surface model (RSM) is verified. To obtain the seismic vulnerability curves, the seismic intensity measure ??(?1) is chosen to be 0.1~1.2g, with an interval of 0.1g and a total of 12 intensity levels. For each seismic intensity level, the arch crown displacement corresponding to 100 sets of different material samples can be calculated by algebraic operation of the response surface model (RSM), which avoids 1200 times of nonlinear dynamic calculation of arch dam; thus, the efficiency of vulnerability analysis is improved greatly.

Keywords: high concrete arch dam, performance index, response surface method, seismic vulnerability analysis, vector-valued intensity measure

Procedia PDF Downloads 212
1743 Collapse Capacity Assessment of Inelastic Structures under Seismic Sequences

Authors: Shahrzad Mohammadi, Ghasem Boshrouei Sharq

Abstract:

All seismic design codes are based on the determination of the design earthquake without taking into account the effects of aftershocks in the design practice. In regions with a high level of seismicity, the occurrence of several aftershocks of various magnitudes and different time lags is very likely. This research aims to estimate the collapse capacity of a 10-story steel bundled tube moment frame subjected to as-recorded seismic sequences. The studied structure is designed according to the seismic regulations of the fourth revision of the Iranian code of practice for the seismic-resistant design of buildings (Code No.2800). A series of incremental dynamic analyses (IDA) is performed up to the collapse level of the intact structure. Then, in order to demonstrate the effects of aftershock events on the collapse vulnerability of the building, aftershock IDA analyzes are carried out. To gain deeper insight, collapse fragility curves are developed and compared for both series. Also, a study on the influence of various ground motion characteristics on collapse capacity is carried out. The results highlight the importance of considering the decisive effects of aftershocks in seismic codes due to their contribution to the occurrence of collapse.

Keywords: IDA, aftershock, bundled tube frame, fragility assessment, GM characteristics, as-recorded seismic sequences

Procedia PDF Downloads 115
1742 Case Study of High-Resolution Marine Seismic Survey in Shallow Water, Arabian Gulf, Saudi Arabia

Authors: Almalki M., Alajmi M., Qadrouh Y., Alzahrani E., Sulaiman A., Aleid M., Albaiji A., Alfaifi H., Alhadadi A., Almotairy H., Alrasheed R., Alhafedh Y.

Abstract:

High-resolution marine seismic survey is a well-established technique that commonly used to characterize near-surface sediments and geological structures at shallow water. We conduct single channel seismic survey to provide high quality seismic images for near-surface sediments upto 100m depth at Jubal costal area, Arabian Gulf. Eight hydrophones streamer has been used to collect stacked seismic traces alone 5km seismic line. To reach the required depth, we have used spark system that discharges energies above 5000 J with expected frequency output span the range from 200 to 2000 Hz. A suitable processing flow implemented to enhance the signal-to-noise ratio of the seismic profile. We have found that shallow sedimentary layers at the study site have complex pattern of reflectivity, which decay significantly due to amount of source energy used as well as the multiples associated to seafloor. In fact, the results reveal that single channel marine seismic at shallow water is a cost-effective technique that can be easily repeated to observe any possibly changes in the wave physical properties at the near surface layers

Keywords: shallow marine single-channel data, high resolution, frequency filtering, shallow water

Procedia PDF Downloads 47
1741 Investigation of Shear Thickening Fluid Isolator with Vibration Isolation Performance

Authors: M. C. Yu, Z. L. Niu, L. G. Zhang, W. W. Cui, Y. L. Zhang

Abstract:

According to the theory of the vibration isolation for linear systems, linear damping can reduce the transmissibility at the resonant frequency, but inescapably increase the transmissibility of the isolation frequency region. To resolve this problem, nonlinear vibration isolation technology has recently received increasing attentions. Shear thickening fluid (STF) is a special colloidal material. When STF is subject to high shear rate, it rheological property changes from a flowable behavior into a rigid behavior, i.e., it presents shear thickening effect. STF isolator is a vibration isolator using STF as working material. Because of shear thickening effect, STF isolator is a variable-damped isolator. It exhibits small damping under high vibration frequency and strong damping at resonance frequency due to shearing rate increasing. So its special inherent character is very favorable for vibration isolation, especially for restraining resonance. In this paper, firstly, STF was prepared by dispersing nano-particles of silica into polyethylene glycol 200 fluid, followed by rheological properties test. After that, an STF isolator was designed. The vibration isolation system supported by STF isolator was modeled, and the numerical simulation was conducted to study the vibration isolation properties of STF. And finally, the effect factors on vibrations isolation performance was also researched quantitatively. The research suggests that owing to its variable damping, STF vibration isolator can effetely restrain resonance without bringing unfavorable effect at high frequency, which meets the need of ideal damping properties and resolves the problem of traditional isolators.

Keywords: shear thickening fluid, variable-damped isolator, vibration isolation, restrain resonance

Procedia PDF Downloads 144
1740 Qualitative Review of Seismic Response of Vertically Irregular Building Frames

Authors: Abdelhammid Chibane

Abstract:

This study summarizes state-of-the-art knowledge in the seismic response of vertically irregular building frames. Criteria defining vertical irregularity as per the current building codes have been discussed. A review of studies on the seismic behaviour of vertically irregular structures along with their findings has been presented. It is observed that building codes provide criteria to classify the vertically irregular structures and suggest dynamic analysis to arrive at design lateral forces. Most of the studies agree on the increase in drift demand in the tower portion of set-back structures and on the increase in seismic demand for buildings with discontinuous distributions in mass, stiffness, and strength. The largest seismic demand is found for the combined-stiffness-and-strength irregularity.

Keywords: mass irregularity, set-back structure, stiffness irregularity, strength irregularity, vertical irregularity

Procedia PDF Downloads 238