Search results for: installation of subsea equipment
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1975

Search results for: installation of subsea equipment

1645 The Impact of Information and Communication Technology on the Re-Engineering Process of Small and Medium Enterprises

Authors: Hiba Mezaache

Abstract:

The current study aimed to know the impact of using information and communication technology on the process of re-engineering small and medium enterprises, as the world witnessed the speed development of the latter in its field of work and the diversity of its objectives and programs, that also made its process important for the growth and development of the institution and also gaining the flexibility to face the changes that may occur in the environment of work, so in order to know the impact of information and communication technology on the success of this process, we prepared an electronic questionnaire that included (70) items, and we also used the SPSS statistical calendar to analyze the data obtained. In the end of our study, our conclusion was that there was a positive correlation between the four dimensions of information and communication technology, i.e., hardware and equipment, software, communication networks, databases, and the re-engineering process, in addition to the fact that the studied institutions attach great importance to formal communication, for its positive advantages that it achieves in reducing time and effort and costs in performing the business. We could also say that communication technology contributes to the process of formulating objectives related to the re-engineering strategy. Finally, we recommend the necessity of empowering workers to use information technology and communication more in enterprises, and to integrate them more into the activity of the enterprise by involving them in the decision-making process, and also to keep pace with the development in the field of software, hardware, and technological equipment.

Keywords: information and communication technology, re-engineering, small and medium enterprises, the impact

Procedia PDF Downloads 139
1644 Extension of D Blast Furnace Campaign Life at Tata Steel Ltd

Authors: Biswajit Seal, Dushyant Kumar, Shambhu Nath, A. B. Raju

Abstract:

Extension of blast furnace campaign life is highly desired for blast furnace operators mainly because of reduction of operating cost and to avoid capital expenditure cost. Tata Steel Ltd, Jamshedpur plant operates seven blast furnaces with combination of old and new technologies. The focus of Tata Steel Ltd is to push for increasing productivity with good quality product and increasing campaign life. This has been challenging for older furnaces because older furnaces are generally equipped with less automation, old design and old equipment. Good operational practices, appropriate remedial measures, and regular planned maintenance helps to achieve long campaign life of old furnaces. Good operating practices like stable and consistent productivity, control of burden distribution, remedial measures like stack gunning and shotcreting for protection of stack wall, enhanced cooling system, and intermediate stack repair helps to achieve long campaign life of old blast furnaces. This paper describes experiences with the current old equipment and design of Tata Steel’s D Blast Furnace for campaign life extension.

Keywords: blast furnace, burden distribution, campaign life, productivity

Procedia PDF Downloads 233
1643 Process Safety Evaluation of a Nuclear Power Plant through Virtual Process Hazard Analysis (PHA) using the What-If Technique

Authors: Lormaine Anne Branzuela, Elysa Largo, Julie Marisol Pagalilauan, Neil Concibido, Monet Concepcion Detras

Abstract:

Energy is a necessity both for the people and the country. The demand for energy is continually increasing, but the supply is not doing the same. The reopening of the Bataan Nuclear Power Plant (BNPP) in the Philippines has been circulating in the media for the current time. The general public has been hesitant in accepting the inclusion of nuclear energy in the Philippine energy mix due to perceived unsafe conditions of the plant. This study evaluated the possible operations of a nuclear power plant, which is of the same type as the BNPP, considering the safety of the workers, the public, and the environment using a Process Hazard Analysis (PHA) method. What-If Technique was utilized to identify the hazards and consequences on the operations of the plant, together with the level of risk it entails. Through the brainstorming sessions of the PHA team, it was found that the most critical system on the plant is the primary system. Possible leakages on pipes and equipment due to weakened seals and welds and blockages on coolant path due to fouling were the most common scenarios identified, which further caused the most critical scenario – radioactive leak through sump contamination, nuclear meltdown, and equipment damage and explosion which could result to multiple injuries and fatalities, and environmental impacts.

Keywords: process safety management, process hazard analysis, what-If technique, nuclear power plant

Procedia PDF Downloads 177
1642 Potential Micro Hydro at Irrigation Canal in the Gorontalo Province and Modeling Setling Basin for Reduction of Sedimentation Effect

Authors: Arifin Matoka, Nadjamuddin Harun, Salama Manjang, M. Arsyad Thaha

Abstract:

Along irrigation canals in certain areas falling water level height is have potential for micro hydro power plant (MHP), which generally MHP potential valley away from society consumer of electricity and needed a long conductor cable, so that with the MHP Irrigation is ideal are typical with an Open Flume type turbines. This study is divided into two phases research phase of the potential power that exist in irrigation channels at the Gorontalo Province and stages solution sedimentation effects. The total power generated in the irrigation channel of the results of this study at 781.83 Kw, it is quite significant for the 1737 rural households on average consumes 450 watt per household. In the field of observation, sedimentation lifting effect on the quality of electric power, at which time the turbid sediment concentrations occur significant voltage fluctuations causing damage to some household electrical appliances such as electronic equipment and lighting. This problem is solution by modeling the sedimentation tub (setling basin) to reduce sedimentation thus olso can reduce the regulation load control equipment which can minimize the cost of investment and maintenance.

Keywords: irrigation canals, microhydro powerplant, sedimentation, Gorontalo Province

Procedia PDF Downloads 555
1641 Technical and Practical Aspects of Sizing a Autonomous PV System

Authors: Abdelhak Bouchakour, Mustafa Brahami, Layachi Zaghba

Abstract:

The use of photovoltaic energy offers an inexhaustible supply of energy but also a clean and non-polluting energy, which is a definite advantage. The geographical location of Algeria promotes the development of the use of this energy. Indeed, given the importance of the intensity of the radiation received and the duration of sunshine. For this reason, the objective of our work is to develop a data-processing tool (software) of calculation and optimization of dimensioning of the photovoltaic installations. Our approach of optimization is basing on mathematical models, which amongst other things describe the operation of each part of the installation, the energy production, the storage and the consumption of energy.

Keywords: solar panel, solar radiation, inverter, optimization

Procedia PDF Downloads 578
1640 Strategy of Inventory Analysis with Economic Order Quantity and Quick Response: Case on Filter Inventory for Heavy Equipment in Indonesia

Authors: Lim Sanny, Felix Christian

Abstract:

The use of heavy equipment in Indonesia is always increasing. Cost reduction in procurement of spare parts is the aim of the company. The spare parts in this research are focused in the kind of filters. On the early step, the choosing of priority filter will be studied further by using the ABC analysis. To find out future demand of the filter, this research is using demand forecast by utilizing the QM software for windows. And to find out the best method of inventory control for each kind of filter is by comparing the total cost of Economic Order Quantity and Quick response inventory method. For the three kind of filters which are Cartridge, Engine oil – pn : 600-211-123, Element, Transmission – pn : 424-16-11140, and Element, Hydraulic – pn : 07063-01054, the best forecasting method is Linear regression. The best method for inventory control of Cartridge, Engine oil – pn : 600-211-123 and Element, Transmission – pn : 424-16-11140, is Quick Response Inventory, while the best method for Element, Hydraulic – pn : 07063-01054 is Economic Order Quantity.

Keywords: strategy, inventory, ABC analysis, forecasting, economic order quantity, quick response inventory

Procedia PDF Downloads 338
1639 Bio-Medical Equipment Technicians: Crucial Workforce to Improve Quality of Health Services in Rural Remote Hospitals in Nepal

Authors: C. M. Sapkota, B. P. Sapkota

Abstract:

Background: Continuous developments in science and technology are increasing the availability of thousands of medical devices – all of which should be of good quality and used appropriately to address global health challenges. It is obvious that bio medical devices are becoming ever more indispensable in health service delivery and among the key workforce responsible for their design, development, regulation, evaluation and training in their use: biomedical technician (BMET) is the crucial. As a pivotal member of health workforce, biomedical technicians are an essential component of the quality health service delivery mechanism supporting the attainment of the Sustainable Development Goals. Methods: The study was based on cross sectional descriptive design. Indicators measuring the quality of health services were assessed in Mechi Zonal Hospital (MZH) and Sagarmatha Zonal Hospital (SZH). Indicators were calculated based on the data about hospital utilization and performance of 2018 available in Medical record section of both hospitals. MZH had employed the BMET during 2018 but SZH had no BMET in 2018.Focus Group Discussion with health workers in both hospitals was conducted to validate the hospital records. Client exit interview was conducted to assess the level of client satisfaction in both the hospitals. Results: In MZH there was round the clock availability and utilization of Radio diagnostics equipment, Laboratory equipment. Operation Theater was functional throughout the year. Bed Occupancy rate in MZH was 97% but in SZH it was only 63%.In SZH, OT was functional only 54% of the days in 2018. CT scan machine was just installed but not functional. Computerized X-Ray in SZH was functional only in 72% of the days. Level of client satisfaction was 87% in MZH but was just 43% in SZH. MZH performed all (256) the Caesarean Sections but SZH performed only 36% of 210 Caesarean Sections in 2018. In annual performance ranking of Government Hospitals, MZH was placed in 1st rank while as SZH was placed in 19th rank out of 32 referral hospitals nationwide in 2018. Conclusion: Biomedical technicians are the crucial member of the human resource for health team with the pivotal role. Trained and qualified BMET professionals are required within health-care systems in order to design, evaluate, regulate, acquire, maintain, manage and train on safe medical technologies. Applying knowledge of engineering and technology to health-care systems to ensure availability, affordability, accessibility, acceptability and utilization of the safer, higher quality, effective, appropriate and socially acceptable bio medical technology to populations for preventive, promotive, curative, rehabilitative and palliative care across all levels of the health service delivery.

Keywords: biomedical equipment technicians, BMET, human resources for health, HRH, quality health service, rural hospitals

Procedia PDF Downloads 99
1638 Effect of Soil Resistivity on the Development of a Cathodic Protection System Using Zinc Anode

Authors: Chinedu F. Anochie

Abstract:

The deterioration of materials as a result of their interaction with the environment has been a huge challenge to engineering. Many steps have been taking to tackle corrosion and its effects on harmful effects on engineering materials and structures. Corrosion inhibition, coating, passivation, materials selection, and cathodic protection are some of the methods utilized to curtail the rate at which materials corrode. The use of sacrificial anodes (magnesium, aluminum, or zinc) to protect the metal of interest is a widespread technique used to prevent corrosion in underground structures, ship hauls, and other structures susceptible to corrosion attack. However, certain factors, like resistivity, affect the performance of sacrificial anodes. To establish the effect of soil resistivity on the effectiveness of a cathodic protection system, a mild steel specimen was cathodically protected around Workshop 2 area, Federal University of Technology, Owerri, Nigeria. Design calculations showed that one zinc anode was sufficient to protect the pipe. The specimen (mild steel pipe) was coated with white and black polykene tapes and was subsequently buried in a high resistivity soil. The pipe-to-soil potential measurements were obtained using a digital fluke multimeter. The protection potential obtained on installation was higher than the minimum protection criteria. However, the potential results obtained over a fourteen-day intervals continually decreased to a value significantly lower than the minimum protection criteria. This showed that the sacrificial anode (zinc) was rendered ineffective by the high resistivity of the area of installation. It has been shown that the resistivity of the soil has a marked effect on the feasibility of cathodic protection systems. This work justified that zinc anode cannot be used for cathodic protection around Workshop 2 area, Federal University of Technology, Owerri, Nigeria, because of the high resistivity of the area. An experimental data which explains the effectiveness of galvanic anode cathodic protection system on corrosion control of a small steel structure, exposed to a soil of high resistivity has been established.

Keywords: cathodic protection, corrosion, pipe, sacrificial anode

Procedia PDF Downloads 149
1637 Study the Impact of Welding Poles Type on the Tensile Strength Steel of Low Alloys and High Resistance

Authors: Abdulmagid A. Khattabi, Abdul Fatah M. Emhamed

Abstract:

The steel alloy Introduced after becoming carbon-steel does not meet the requirements of engineering industry; and it cannot be obtained tensile strength from carbon-steel higher than (700MPa), the low alloy steel enters in a lot of heavy engineering equipment parts, molds, agricultural equipment and other industry. In addition, that may be exposed to in-service failure, which may require returned to work, to do the repairs or maintenance by one of the welding methods available. The ability of steel weld determined through palpation of the cracks, which can reduce by many ways. These ways are often expensive and difficult to implement, perhaps the control to choose the type of electrode welding user is one of the easiest and least expensive applications. It has been welding the steel low alloys high resistance by manual metal arc (MMA), and by using a set of welding electrodes which varying in chemical composition and in their prices as well and test their effect on tensile strength. Results showed that using the poles of welding, which have a high proportion of iron powder and low hydrogen. The Tensile resistance is (484MPa) and the weld joint efficiency was (56.9%), but when (OK 47.04) electrode was used the tensile strength increased to (720MPa) and the weld joint efficiency to (84.7%). Using the cheapest electrode (OK 45.00) the weld joint efficiency did not exceed (24.2%), but when using the most expensive electrode (OK 91.28) the weld joint efficiency is (38.1%).

Keywords: steel low alloys high resistance, electrodes welding, tensile test

Procedia PDF Downloads 291
1636 Women Entrepreneurial Skills in Maize Processing and Value Addition in Ogun State, Nigeria

Authors: Wasiu Oyeleke Oyediran

Abstract:

Maize is a common staple food for human consumption and livestock feeds. It provides employment and means of livelihood for women in both rural areas and urban centres in Nigeria. However, the entrepreneurial skills of women engaged in its processing and value addition has not been fully enhanced. This study was therefore carried out to investigate rural women entrepreneurial skills in maize processing and value addition in Ogun State, Nigeria. Snow ball sampling technique was used in the selection of 70 respondents for this study. Data were analyzed with descriptive statistics and chi-square. Results revealed that majority (50.0%) of the respondents were 31 - 40 years of age and 60% of the respondents had spent 6 – 10 years in maize processing. The respondents have great entrepreneurial skills in popcorn (85.7%), corn cake (80.0%), corn balls (64.3%) and kokoro (52.9%) making. The majority of the respondents accessed information and entrepreneurial skills through fellow processors (88.6%) and friends and neighbours (62.9%). Major constraints to maize processing and value addition were scarcity of raw materials during off season periods (95.7%), ineffective preservation methods (88.6%), lack of modern processing equipment (82.9%), and high cost of processing machines (72.9%). Result of chi-square showed that there is significant association between personal characteristics of the respondents and entrepreneurial skills of the women at p < 0.05. It is hereby recommended that subsidized processing equipment should be made available to the maize processors in the study area by the government and NGOs.

Keywords: women, entreprenuerial skills, maize prcessing, value addition

Procedia PDF Downloads 189
1635 Optimized Renewable Energy Mix for Energy Saving in Waste Water Treatment Plants

Authors: J. D. García Espinel, Paula Pérez Sánchez, Carlos Egea Ruiz, Carlos Lardín Mifsut, Andrés López-Aranguren Oliver

Abstract:

This paper shortly describes three main actuations over a Waste Water Treatment Plant (WWTP) for reducing its energy consumption: Optimization of the biological reactor in the aeration stage by including new control algorithms and introducing new efficient equipment, the installation of an innovative hybrid system with zero Grid injection (formed by 100kW of PV energy and 5 kW of mini-wind energy generation) and an intelligent management system for load consumption and energy generation control in the most optimum way. This project called RENEWAT, involved in the European Commission call LIFE 2013, has the main objective of reducing the energy consumptions through different actions on the processes which take place in a WWTP and introducing renewable energies on these treatment plants, with the purpose of promoting the usage of treated waste water for irrigation and decreasing the C02 gas emissions. WWTP is always required before waste water can be reused for irrigation or discharged in water bodies. However, the energetic demand of the treatment process is high enough for making the price of treated water to exceed the one for drinkable water. This makes any policy very difficult to encourage the re-use of treated water, with a great impact on the water cycle, particularly in those areas suffering hydric stress or deficiency. The cost of treating waste water involves another climate-change related burden: the energy necessary for the process is obtained mainly from the electric network, which is, in most of the cases in Europe, energy obtained from the burning of fossil fuels. The innovative part of this project is based on the implementation, adaptation and integration of solutions for this problem, together with a new concept of the integration of energy input and operative energy demand. Moreover, there is an important qualitative jump between the technologies used and the alleged technologies to use in the project which give it an innovative character, due to the fact that there are no similar previous experiences of a WWTP including an intelligent discrimination of energy sources, integrating renewable ones (PV and Wind) and the grid.

Keywords: aeration system, biological reactor, CO2 emissions, energy efficiency, hybrid systems, LIFE 2013 call, process optimization, renewable energy sources, wasted water treatment plants

Procedia PDF Downloads 328
1634 A Study on Impact of Scheduled Preventive Maintenance on Overall Self-Life as Well as Reduction of Operational down Time of Critical Oil Field Mobile Equipment

Authors: Dipankar Deka

Abstract:

Exploration and production of Oil & Gas is a very challenging business on which a nation’s energy security depends on. The exploration and Production of hydrocarbon is a very precise and time-bound process. The striking rate of hydrocarbon in a drilled well is so uncertain that the success rate is only 31% in 2021 as per Rigzone. Huge cost is involved in drilling as well as the production of hydrocarbon from a well. Due to this very reason, no one can effort to lose a well because of faulty machines, which increases the non-productive time (NPT). Numerous activities that include manpower and machines synchronized together works in a precise way to complete the full cycle of exploration, rig movement, drilling and production of crude oil. There are several machines, both fixed and mobile, are used in the complete cycle. Most of these machines have a tight schedule of work operating in various drilling sites that are simultaneously being drilled, providing a very narrow window for maintenance. The shutdown of any of these machines for even a small period of time delays the whole project and increases the cost of production of hydrocarbon by manifolds. Moreover, these machines are custom designed exclusively for oil field operations to be only used in Mining Exploration Licensed area (MEL) earmarked by the government and are imported and very costly in nature. The cost of some of these mobile units like Well Logging Units, Coil Tubing units, Nitrogen pumping units etc. that are used for Well stimulation and activation process exceeds more than 1 million USD per unit. So the increase of self-life of these units also generates huge revenues during the extended duration of their services. In this paper we are considering the very critical mobile oil field equipment like Well Logging Unit, Coil Tubing unit, well-killing unit, Nitrogen pumping unit, MOL Oil Field Truck, Hot Oil Circulation Unit etc., and their extensive preventive maintenance in our auto workshop. This paper is the outcome of 10 years of structured automobile maintenance and minute documentation of each associated event that allowed us to perform the comparative study between the new practices of preventive maintenance over the age-old practice of system-based corrective maintenance and its impact on the self-life of the equipment.

Keywords: automobile maintenance, preventive maintenance, symptom based maintenance, workshop technologies

Procedia PDF Downloads 52
1633 Evaluating the Evolution of Public Art across the World and Exploring Its Growth in Urban India

Authors: Mitali Kedia, Parul Kapoor

Abstract:

Public Art is a tool with the power to enrich and enlighten any place; it has been accepted and welcomed effortlessly by many cultures around the World. In this paper, we discuss the implications Public Art has had on the society and how it has evolved over the years, and how in India, art in this aspect is still overlooked and treated as an accessory. Urban aesthetics are still substantially limited to the installation of deities, political figures, and so on. The paper also discusses various possibilities and opportunities on how Public Art can boost a society; it also suggests a framework that can be incorporated in the legal system of the country to make it a part of the city development process.

Keywords: public art, urban fabric, placemaking, community welfare, public art program, imageability

Procedia PDF Downloads 162
1632 Demulsification of Oil from Produced water Using Fibrous Coalescer

Authors: Nutcha Thianbut

Abstract:

In the petroleum drilling industry, besides oil and gas, water is also produced from petroleum production. which will have oil droplets dispersed in the water as an emulsion. Commonly referred to as produced water, most industrial water-based produced water methods use the method of pumping water back into wells or catchment areas. because it cannot be utilized further, but in the compression of water each time, the cost is quite high. And the survey found that the amount of water from the petroleum production process has increased every year. In this research, we would like to study the removal of oil in produced water by the Coalescer device using fibers from agricultural waste as an intermediary. As an alternative to reduce the cost of water management in the petroleum drilling industry. The objectives of this research are 1. To study the fiber pretreatment by chemical process for the efficiency of oil-water separation 2. To study and design the fiber-packed coalescer device to destroy the emulsion of crude oil in water. 3. To study the working conditions of coalescer devices in emulsion destruction. using a fiber medium. In this research, the experiment was divided into two parts. The first part will study the absorbency of fibers. It compares untreated fibers with chemically treated alkaline fibers that change over time as well as adjusting the amount of fiber on the absorbency of the fiber and the second part will study the separation of oil from produced water by Coalescer equipment using fiber as medium to study the optimum condition of coalescer equipment for further development and industrial application.

Keywords: produced water, fiber, surface modification, coalescer

Procedia PDF Downloads 131
1631 Troubleshooting Petroleum Equipment Based on Wireless Sensors Based on Bayesian Algorithm

Authors: Vahid Bayrami Rad

Abstract:

In this research, common methods and techniques have been investigated with a focus on intelligent fault finding and monitoring systems in the oil industry. In fact, remote and intelligent control methods are considered a necessity for implementing various operations in the oil industry, but benefiting from the knowledge extracted from countless data generated with the help of data mining algorithms. It is a avoid way to speed up the operational process for monitoring and troubleshooting in today's big oil companies. Therefore, by comparing data mining algorithms and checking the efficiency and structure and how these algorithms respond in different conditions, The proposed (Bayesian) algorithm using data clustering and their analysis and data evaluation using a colored Petri net has provided an applicable and dynamic model from the point of view of reliability and response time. Therefore, by using this method, it is possible to achieve a dynamic and consistent model of the remote control system and prevent the occurrence of leakage in oil pipelines and refineries and reduce costs and human and financial errors. Statistical data The data obtained from the evaluation process shows an increase in reliability, availability and high speed compared to other previous methods in this proposed method.

Keywords: wireless sensors, petroleum equipment troubleshooting, Bayesian algorithm, colored Petri net, rapid miner, data mining-reliability

Procedia PDF Downloads 22
1630 Beyond the Dust: Workers' Perspectives on Enhancing Silica Exposure Control in Tunnel Construction

Authors: Frederick Anlimah, Vinod Gopaldasani, Catherine MacPhail, Brian Davies

Abstract:

The construction industry, particularly tunnel construction, exposes workers to respirable crystalline silica (RCS), which can cause incurable illnesses such as silicosis and lung cancer. Despite various control measures, exposures remain inadequately controlled. This research aimed to examine what workers on a tunnelling project in Australia think should be done to reduce exposure to dust to protect them from RCS exposure. A qualitative research approach consisting of interviews and focus group discussions was employed for this research. The preliminary analysis of the data reveals a diverse array of solutions proposed to address the different sociotechnical factors that present challenges for effectively reducing dust exposure. Solutions are proposed to address challenges such as cost, time pressure, low-risk perception, inadequate awareness, inadequate enforcement and compliance with personal protective equipment. The findings highlight the need to make dust control a level playing field for all contractors during the bidding process, with more collaboration and enforcement after the signing of contracts. The research highlights that although improvements have been made in the past years regarding dust controls, many opportunities exist to reduce worker exposure to RCS.

Keywords: tunnel, respirable crystalline silica, RCS, dust exposure, personal protective equipment, worker perspectives

Procedia PDF Downloads 30
1629 Quality Control Assessment of X-Ray Equipment in Hospitals of Katsina State, Nigeria

Authors: Aminu Yakubu Umar

Abstract:

X-ray is the major contributor to the effective dose of both the patient and the personnel. Because of the radiological risks involved, it is usually recommended that dose to patient from X-ray be kept as low as reasonably achievable (ALARA) with adequate image quality. The implementation of quality assurance in diagnostic radiology can help greatly in achieving that, as it is a technique designed to reduce X-ray doses to patients undergoing radiological examination. In this study, quality control was carried out in six hospitals, which involved KVp test, evaluation of total filtration, test for constancy of radiation output, and check for mA linearity. Equipment used include KVp meter, Rad-check meter, aluminum sheets (0.1–1.0 mm) etc. The results of this study indicate that, the age of the X-ray machines in the hospitals ranges from 3-13 years, GHI and GH2 being the oldest and FMC being the newest. In the evaluation of total filtration, the HVL of the X-ray machines in the hospitals varied, ranging from 2.3-5.2 mm. The HVL was found to be highest in AHC (5.2 mm), while it was lowest in GH3 (2.3 mm). All HVL measurements were done at 80 KVp. The variation in voltage accuracy in the hospitals ranges from 0.3%-127.5%. It was only in GH1 that the % variation was below the allowed limit. The test for constancy of radiation output showed that, the coefficient of variation ranges from 0.005–0.550. In GH3, FMC and AHC, the coefficient of linearity were less than the allowed limit, while in GH1, GH2 and GH4 the coefficient of linearity had exceeded the allowed limit. As regard to mA linearity, FMC and AHC had their coefficients of linearity as 0.12 and 0.10 respectively, which were within the accepted limit, while GH1, GH3 and GH4 had their coefficients as 0.16, 0.69 and 0.98 respectively, which exceeded the allowed limit.

Keywords: radiation, X-ray output, quality control, half-value layer, mA linearity, KVp variation

Procedia PDF Downloads 586
1628 Value Chain Analysis of Melon “Egusi” (Citrullus lanatus Thunb. Mansf) among Rural Farm Enterprises in South East, Nigeria

Authors: Chigozirim Onwusiribe, Jude Mbanasor

Abstract:

Egusi Melon (Citrullus Lanatus Thunb. Mansf ) is a very important oil seed that serves a major ingredient in the diet of most of the households in Nigeria. Egusi Melon is very nutritious and very important in meeting the food security needs of Nigerians. Egusi Melon is cultivated in most farm enterprise in South East Nigeria but the profitability of its value chain needs to be investigated. This study analyzed the profitability of the Egusi Melon value chain. Specifically this study developed a value chain map for Egusi Melon, analysed the profitability of each stage of the Egusi Melon Value chain and analysed the determinants of the profitability of the Egusi Melon at each stage of the value chain. Multi stage sampling technique was used to select 125 farm enterprises with similar capacity and characteristics. Questionnaire and interview were used to elicit the required data while descriptive statistics, Food and Agriculture Organization Value Chain Analysis Tool, profitability ratios and multiple regression analysis were used for the data analysis. One of the findings showed that the stages of the Egusi Melon value chain are very profitable. Based on the findings, we recommend the provision of grants by government and donor agencies to the farm enterprises through their cooperative societies, this will provide the necessary funds for the local fabrication of value addition and processing equipment to suit their unique value addition needs not met by the imported equipment.

Keywords: value, chain, melon, farm, enterprises

Procedia PDF Downloads 96
1627 Face Shield Design with Additive Manufacturing Practice Combating COVID-19 Pandemic

Authors: May M. Youssef

Abstract:

This article introduces a design, for additive manufacturing technology, face shield as Personal Protective Equipment from the respiratory viruses such as coronavirus 2. The face shields help to reduce ocular exposure and play a vital role in diverting away from the respiratory COVID-19 air droplets around the users' face. The proposed face shield comprises three assembled polymer parts. The frame with a transparency overhead projector sheet visor is suitable for frontline health care workers and ordinary citizens. The frame design allows tightening the shield around the user’s head and permits rubber elastic straps to be used if required. That ergonomically designed with a unique face mask support used in case of wearing extra protective mask was created using computer aided design (CAD) software package. The finite element analysis (FEA) structural verification of the proposed design is performed by an advanced simulation technique. Subsequently, the prototype model was fabricated by a 3D printing using Fused Deposition Modeling (FDM) as a globally developed face shield product. This study provides a different face shield designs for global production, which showed to be suitable and effective toward supply chain shortages and frequent needs of personal protective goods during coronavirus disease and similar viruses.

Keywords: additive manufacturing, Coronavirus-19, face shield, personal protective equipment, 3D printing

Procedia PDF Downloads 159
1626 Feasibility of Using Musical Intervention to Promote Growth in Preterm Infants in the Neonatal Intensive Care Unit (NICU)

Authors: Yutong An

Abstract:

Premature babies in the Neonatal Intensive Care Unit (NICU) are usually protected in individual incubators to ensure a constant temperature and humidity. Accompanied by 24-hour monitoring by medical equipment, this provides a considerable degree of protection for the growth of preterm babies. However, preterm babies are still continuously exposed to noise at excessively high decibels (>45dB). Such noise has a highly damaging effect on the growth and development of preterm babies. For example, in the short term, it can lead to sleep deprivation, stress reactions, and difficulty calming emotions, while in the long term, it can trigger endocrine disorders, metabolic disorders, and hearing impairment. Fortunately, musical interventions in the NICU have been shown to provide calmness to newborns. This article integrates existing research on three types of music that are beneficial for preterm infants and their respective advantages and disadvantages. This paper aims to present a possibility, based on existing NICU equipment and experimental data related to musical interventions, to reduce the impact of noise on preterm babies in the NICU through a system design approach that incorporates a personalized adjustable music system in the incubator and an overall music enhancement in the open bay of the NICU.

Keywords: music interventions, neonatal intensive care unit (NICU), premature babies, neonatal nursing

Procedia PDF Downloads 34
1625 Leadership and Management Strategies of Sports Administrator in Asia

Authors: Mark Christian Inductivo Siwa, Jesrelle Ormoc Bontuyan

Abstract:

This study was conducted in selected tertiary schools in selected universities in Asian countries such as Philippines, Thailand, and China, which are the top performing countries in Southeast Asian Games or SEA Games and Asian School Games (ASG), also known as the Youth SEA Games and Asian Games. The respondents of the study are sports administrators/directors and coaches in selected Southeast Asian countries such as Philippines, Thailand, and in Asia which is China. This study has generated a progressive sports operational model of Sports Leadership and Management in Selected Universities in Asia. This study utilized mixed-method research. It is a methodology for conducting research that involves collecting, analyzing and integrating quantitative (e.g., experiments, surveys) and qualitative (e.g., focus groups, interviews) research. This approach to research is used to provide integration for a better understanding of the research problem than either of each alone. This study particularly employed the explanatory sequential design of mixed methods, which involved two phases: the quantitative phase, which involves the collection and analysis of quantitative data, followed by the qualitative phase, which involves the collection and analysis of qualitative data. This study will prioritize the quantitative data and the findings will be followed up during the interpretation phase in the qualitative data of the study. The qualitative data help explain or build upon initial quantitative results. In phase I, the researcher began with the collection and analysis of the quantitative data. His investigation gave greater emphasis on the quantitative methods, particularly employed surveys with the coaches and sports directors of the three selected universities in Asia. In Phase II, the researcher subsequently collected and analyzed the qualitative data obtained through an interview with the sports directors to follow from or connect to the results of the quantitative phase. This study followed the data analysis spiral so that the researcher could follow – up or explain the quantitative results. The researcher engaged in the process of moving in analytic circles. Based on the school's mission and vision, the sports leadership and management consistently followed the key factors to take into account when leading the organization and managing the process in sports leadership and management when formulating objectives/goals, budget, equipment care and maintenance, facilities, training matrix, and consideration. Also, sports management demonstrates the need for development in terms of the upkeep and care of equipment as well as athlete funding. The development of goals or sports management goals, sports facilities and equipment, as well as improvements in demonstrating training and consideration, and incentives, should also include a maintenance plan. The study concluded with a progressive sports operational model that was created based on the result of the study.

Keywords: sports leadership and management, formulating objectives, budget, equipment care and maintenance, training, consideration, incentives, progressive sports operational model

Procedia PDF Downloads 56
1624 Study on Acoustic Source Detection Performance Improvement of Microphone Array Installed on Drones Using Blind Source Separation

Authors: Youngsun Moon, Yeong-Ju Go, Jong-Soo Choi

Abstract:

Most drones that currently have surveillance/reconnaissance missions are basically equipped with optical equipment, but we also need to use a microphone array to estimate the location of the acoustic source. This can provide additional information in the absence of optical equipment. The purpose of this study is to estimate Direction of Arrival (DOA) based on Time Difference of Arrival (TDOA) estimation of the acoustic source in the drone. The problem is that it is impossible to measure the clear target acoustic source because of the drone noise. To overcome this problem is to separate the drone noise and the target acoustic source using Blind Source Separation(BSS) based on Independent Component Analysis(ICA). ICA can be performed assuming that the drone noise and target acoustic source are independent and each signal has non-gaussianity. For maximized non-gaussianity each signal, we use Negentropy and Kurtosis based on probability theory. As a result, we can improve TDOA estimation and DOA estimation of the target source in the noisy environment. We simulated the performance of the DOA algorithm applying BSS algorithm, and demonstrated the simulation through experiment at the anechoic wind tunnel.

Keywords: aeroacoustics, acoustic source detection, time difference of arrival, direction of arrival, blind source separation, independent component analysis, drone

Procedia PDF Downloads 130
1623 Human-factor and Ergonomics in Bottling Lines

Authors: Parameshwaran Nair

Abstract:

Filling and packaging lines for bottling of beverages into glass, PET or aluminum containers require specialized expertise and a different configuration of equipment like – Filler, Warmer, Labeller, Crater/Recrater, Shrink Packer, Carton Erector, Carton Sealer, Date Coder, Palletizer, etc. Over the period of time, the packaging industry has evolved from manually operated single station machines to highly automized high-speed lines. Human factor and ergonomics have gained significant consideration in this course of transformation. A pre-requisite for such bottling lines, irrespective of the container type and size, is to be suitable for multi-format applications. It should also be able to handle format changeovers with minimal adjustment. It should have variable capacity and speeds, for providing great flexibility of use in managing accumulation times as a function of production characteristics. In terms of layout as well, it should demonstrate flexibility for operator movement and access to machine areas for maintenance. Packaging technology during the past few decades has risen to these challenges by a series of major breakthroughs interspersed with periods of refinement and improvement. The milestones are many and varied and are described briefly in this paper. In order to have a brief understanding of the human factor and ergonomics in the modern packaging lines, this paper, highlights the various technologies, design considerations and statutory requirements in packaging equipment for different types of containers used in India.

Keywords: human-factor, ergonomics, bottling lines, automized high-speed lines

Procedia PDF Downloads 394
1622 A Web and Cloud-Based Measurement System Analysis Tool for the Automotive Industry

Authors: C. A. Barros, Ana P. Barroso

Abstract:

Any industrial company needs to determine the amount of variation that exists within its measurement process and guarantee the reliability of their data, studying the performance of their measurement system, in terms of linearity, bias, repeatability and reproducibility and stability. This issue is critical for automotive industry suppliers, who are required to be certified by the 16949:2016 standard (replaces the ISO/TS 16949) of International Automotive Task Force, defining the requirements of a quality management system for companies in the automotive industry. Measurement System Analysis (MSA) is one of the mandatory tools. Frequently, the measurement system in companies is not connected to the equipment and do not incorporate the methods proposed by the Automotive Industry Action Group (AIAG). To address these constraints, an R&D project is in progress, whose objective is to develop a web and cloud-based MSA tool. This MSA tool incorporates Industry 4.0 concepts, such as, Internet of Things (IoT) protocols to assure the connection with the measuring equipment, cloud computing, artificial intelligence, statistical tools, and advanced mathematical algorithms. This paper presents the preliminary findings of the project. The web and cloud-based MSA tool is innovative because it implements all statistical tests proposed in the MSA-4 reference manual from AIAG as well as other emerging methods and techniques. As it is integrated with the measuring devices, it reduces the manual input of data and therefore the errors. The tool ensures traceability of all performed tests and can be used in quality laboratories and in the production lines. Besides, it monitors MSAs over time, allowing both the analysis of deviations from the variation of the measurements performed and the management of measurement equipment and calibrations. To develop the MSA tool a ten-step approach was implemented. Firstly, it was performed a benchmarking analysis of the current competitors and commercial solutions linked to MSA, concerning Industry 4.0 paradigm. Next, an analysis of the size of the target market for the MSA tool was done. Afterwards, data flow and traceability requirements were analysed in order to implement an IoT data network that interconnects with the equipment, preferably via wireless. The MSA web solution was designed under UI/UX principles and an API in python language was developed to perform the algorithms and the statistical analysis. Continuous validation of the tool by companies is being performed to assure real time management of the ‘big data’. The main results of this R&D project are: MSA Tool, web and cloud-based; Python API; New Algorithms to the market; and Style Guide of UI/UX of the tool. The MSA tool proposed adds value to the state of the art as it ensures an effective response to the new challenges of measurement systems, which are increasingly critical in production processes. Although the automotive industry has triggered the development of this innovative MSA tool, other industries would also benefit from it. Currently, companies from molds and plastics, chemical and food industry are already validating it.

Keywords: automotive Industry, industry 4.0, Internet of Things, IATF 16949:2016, measurement system analysis

Procedia PDF Downloads 176
1621 Defect Identification in Partial Discharge Patterns of Gas Insulated Switchgear and Straight Cable Joint

Authors: Chien-Kuo Chang, Yu-Hsiang Lin, Yi-Yun Tang, Min-Chiu Wu

Abstract:

With the trend of technological advancement, the harm caused by power outages is substantial, mostly due to problems in the power grid. This highlights the necessity for further improvement in the reliability of the power system. In the power system, gas-insulated switches (GIS) and power cables play a crucial role. Long-term operation under high voltage can cause insulation materials in the equipment to crack, potentially leading to partial discharges. If these partial discharges (PD) can be analyzed, preventative maintenance and replacement of equipment can be carried out, there by improving the reliability of the power grid. This research will diagnose defects by identifying three different defects in GIS and three different defects in straight cable joints, for a total of six types of defects. The partial discharge data measured will be converted through phase analysis diagrams and pulse sequence analysis. Discharge features will be extracted using convolutional image processing, and three different deep learning models, CNN, ResNet18, and MobileNet, will be used for training and evaluation. Class Activation Mapping will be utilized to interpret the black-box problem of deep learning models, with each model achieving an accuracy rate of over 95%. Lastly, the overall model performance will be enhanced through an ensemble learning voting method.

Keywords: partial discharge, gas-insulated switches, straight cable joint, defect identification, deep learning, ensemble learning

Procedia PDF Downloads 41
1620 Alumina Supported Cu-Mn-Cr Catalysts for CO and VOCs oxidation

Authors: Krasimir Ivanov, Elitsa Kolentsova, Dimitar Dimitrov, Petya Petrova, Tatyana Tabakova

Abstract:

This work studies the effect of chemical composition on the activity and selectivity of γ–alumina supported CuO/ MnO2/Cr2O3 catalysts toward deep oxidation of CO, dimethyl ether (DME) and methanol. The catalysts were prepared by impregnation of the support with an aqueous solution of copper nitrate, manganese nitrate and CrO3 under different conditions. Thermal, XRD and TPR analysis were performed. The catalytic measurements of single compounds oxidation were carried out on continuous flow equipment with a four-channel isothermal stainless steel reactor. Flow-line equipment with an adiabatic reactor for simultaneous oxidation of all compounds under the conditions that mimic closely the industrial ones was used. The reactant and product gases were analyzed by means of on-line gas chromatographs. On the basis of XRD analysis it can be concluded that the active component of the mixed Cu-Mn-Cr/γ–alumina catalysts consists of at least six compounds – CuO, Cr2O3, MnO2, Cu1.5Mn1.5O4, Cu1.5Cr1.5O4 and CuCr2O4, depending on the Cu/Mn/Cr molar ratio. Chemical composition strongly influences catalytic properties, this influence being quite variable with regards to the different processes. The rate of CO oxidation rapidly decrease with increasing of chromium content in the active component while for the DME was observed the reverse trend. It was concluded that the best compromise are the catalysts with Cu/(Mn + Cr) molar ratio 1:5 and Mn/Cr molar ratio from 1:3 to 1:4.

Keywords: Cu-Mn-Cr oxide catalysts, volatile organic compounds, deep oxidation, dimethyl ether (DME)

Procedia PDF Downloads 340
1619 Proposal of Non-Destructive Inspection Function Based on Internet of Things Technology Using Drone

Authors: Byoungjoon Yu, Jihwan Park, Sujung Sin, Junghyun Im, Minsoo Park, Sehwan Park, Seunghee Park

Abstract:

In this paper, we propose a technology to monitor the soundness of an Internet-based bridge using a non-conductive inspection function. There has been a collapse accident due to the aging of the bridge structure, and it is necessary to prepare for the deterioration of the bridge. The NDT/SHM system for maintenance of existing bridge structures requires a large number of inspection personnel and expensive inspection costs, and access of expensive and large equipment to measurement points is required. Because current drone inspection equipment can only be inspected through camera, it is difficult to inspect inside damage accurately, and the results of an internal damage evaluation are subjective, and it is difficult for non-specialists to recognize the evaluation results. Therefore, it is necessary to develop NDT/SHM techniques for maintenance of new-concept bridge structures that allow for free movement and real-time evaluation of measurement results. This work is financially supported by Korea Ministry of Land, Infrastructure, and Transport (MOLIT) as 'Smart City Master and Doctor Course Grant Program' and a grant (14SCIP-B088624-01) from Construction Technology Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government.

Keywords: Structural Health Monitoring, SHM, non-contact sensing, nondestructive testing, NDT, Internet of Things, autonomous self-driving drone

Procedia PDF Downloads 234
1618 Localization Problem in Optical Fiber Sensors

Authors: M. Zyczkowski, P. Markowski, M. Karol

Abstract:

The security industry is making many efforts to lower the costs of system installation. However, the dominant technique is the application of fiber optic sensors. It is necessary to determine the location of the disorder of long optical fiber cables. For a number of years, many research centers developed their own solutions. The article presents the construction of the sensor systems with the possibility of disorder location. We present a methodology for determining location of the disorder. The aim of investigations is to answer the question of which of optical sensor configuration offer the best performance for location of the disorder.

Keywords: fiber optic sensor, security sensor, fiber cables, system instillation

Procedia PDF Downloads 606
1617 Evaluation of the Biological Activity of New Antimicrobial and Biodegradable Textile Materials for Protective Equipment

Authors: Safa Ladhari, Alireza Saidi, Phuong Nguyen-Tri

Abstract:

During health crises, such as COVID-19, using disposable protective equipment (PEs) (masks, gowns, etc.) causes long-term problems, increasing the volume of hazardous waste that must be handled safely and expensively. Therefore, producing textiles for antimicrobial and reusable materials is highly desirable to decrease the use of disposable PEs that should be treated as hazardous waste. In addition, if these items are used regularly in the workplace or for daily activities by the public, they will most likely end up in household waste. Furthermore, they may pose a high risk of contagion to waste collection workers if contaminated. Therefore, to protect the whole population in times of sanitary crisis, it is necessary to equip these materials with tools that make them resilient to the challenges of carrying out daily activities without compromising public health and the environment and without depending on them external technologies and producers. In addition, the materials frequently used for EPs are plastics of petrochemical origin. The subject of the present work is replacing petroplastics with bioplastic since it offers better biodegradability. The chosen polymer is polyhydroxybutyrate (PHB), a family of polyhydroxyalkanoates synthesized by different bacteria. It has similar properties to conventional plastics. However, it is renewable, biocompatible, and has attractive barrier properties compared to other polyesters. These characteristics make it ideal for EP protection applications. The current research topic focuses on the preparation and rapid evaluation of the biological activity of nanotechnology-based antimicrobial agents to treat textile surfaces used for PE. This work will be carried out to provide antibacterial solutions that can be transferred to a workplace application in the fight against short-term biological risks. Three main objectives are proposed during this research topic: 1) the development of suitable methods for the deposition of antibacterial agents on the surface of textiles; 2) the development of a method for measuring the antibacterial activity of the prepared textiles and 3) the study of the biodegradability of the prepared textiles. The studied textile is a non-woven fabric based on a biodegradable polymer manufactured by the electrospinning method. Indeed, nanofibers are increasingly studied due to their unique characteristics, such as high surface-to-volume ratio, improved thermal, mechanical, and electrical properties, and confinement effects. The electrospun film will be surface modified by plasma treatment and then loaded with hybrid antibacterial silver and titanium dioxide nanoparticles by the dip-coating method. This work uses simple methods with emerging technologies to fabricate nanofibers with suitable size and morphology to be used as components for protective equipment. The antibacterial agents generally used are based on silver, zinc, copper, etc. However, to our knowledge, few researchers have used hybrid nanoparticles to ensure antibacterial activity with biodegradable polymers. Also, we will exploit visible light to improve the antibacterial effectiveness of the fabric, which differs from the traditional contact mode of killing bacteria and presents an innovation of active protective equipment. Finally, this work will allow for the innovation of new antibacterial textile materials through a simple and ecological method.

Keywords: protective equipment, antibacterial textile materials, biodegradable polymer, electrospinning, hybrid antibacterial nanoparticles

Procedia PDF Downloads 48
1616 Character and Evolution of Electronic Waste: A Technologically Developing Country's Experience

Authors: Karen C. Olufokunbi, Odetunji A. Odejobi

Abstract:

The discourse of this paper is the examination of the generation, accumulation and growth of e-waste in a developing country. Images and other data about computer e-waste were collected using a digital camera, 290 copies of questionnaire and three structured interviews using Obafemi Awolowo University (OAU), Ile-Ife, Nigeria environment as a case study. The numerical data were analysed using R data analysis and process tool. Automata-based techniques and Petri net modeling tool were used to design and simulate a computational model for the recovery of saleable materials from e-waste. The R analysis showed that at a 95 percent confidence level, the computer equipment that will be disposed by 2020 will be 417 units. Compared to the 800 units in circulation in 2014, 50 percent of personal computer components will become e-waste. This indicates that personal computer components were in high demand due to their low costs and will be disposed more rapidly when replaced by new computer equipment Also, 57 percent of the respondents discarded their computer e-waste by throwing it into the garbage bin or by dumping it. The simulated model using Coloured Petri net modelling tool for the process showed that the e-waste dynamics is a forward sequential process in the form of a pipeline meaning that an e-waste recovery of saleable materials process occurs in identifiable discrete stages indicating that e-waste will continue to accumulate and grow in volume with time.

Keywords: Coloured Petri net, computational modelling, electronic waste, electronic waste process dynamics

Procedia PDF Downloads 133