Search results for: indirect load control
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13216

Search results for: indirect load control

13216 Quantifying the Methods of Monitoring Timers in Electric Water Heater for Grid Balancing on Demand-Side Management: A Systematic Mapping Review

Authors: Yamamah Abdulrazaq, Lahieb A. Abrahim, Samuel E. Davies, Iain Shewring

Abstract:

An electric water heater (EWH) is a powerful appliance that uses electricity in residential, commercial, and industrial settings, and the ability to control them properly will result in cost savings and the prevention of blackouts on the national grid. This article discusses the usage of timers in EWH control strategies for demand-side management (DSM). Up to the authors' knowledge, there is no systematic mapping review focusing on the utilisation of EWH control strategies in DSM has yet been conducted. Consequently, the purpose of this research is to identify and examine main papers exploring EWH procedures in DSM by quantifying and categorising information with regard to publication year and source, kind of methods, and source of data for monitoring control techniques. In order to answer the research questions, a total of 31 publications published between 1999 and 2023 were selected depending on specific inclusion and exclusion criteria. The data indicate that direct load control (DLC) has been somewhat more prevalent than indirect load control (ILC). Additionally, the mixing method is much lower than the other techniques, and the proportion of Real-time data (RTD) to non-real-time data (NRTD) is about equal.

Keywords: demand side management, direct load control, electric water heater, indirect load control, non real-time data, real-time data

Procedia PDF Downloads 64
13215 Non-Linear Control in Positioning of PMLSM by Estimates of the Load Force by MRAS Method

Authors: Maamar Yahiaoui, Abdelrrahmene Kechich, Ismail Elkhallile Bousserhene

Abstract:

This article presents a study in simulation by means of MATLAB/Simulink software of the nonlinear control in positioning of a linear synchronous machine with the esteemed force of load, to have effective control in the estimator in all tests the wished trajectory follows and the disturbance of load start. The results of simulation prove clearly that the control proposed can detect the reference of positioning the value estimates of load force equal to the actual value.

Keywords: mathematical model, Matlab, PMLSM, control, linearization, estimator, force, load, current

Procedia PDF Downloads 577
13214 Applying Energy Consumption Schedule and Comparing It with Load Shifting Technique in Residential Load

Authors: Amira M. Attia, Karim H. Youssef, Nabil H. Abbasy

Abstract:

Energy consumption schedule (ECS) technique shifts usage of loads from on peak hours and redistributes them throughout the day according to residents’ operating time preferences. This technique is used as form of indirect control from utility to improve the load curve and hence its load factor and reduce customer’s total electric bill as well. Similarly, load shifting technique achieves ECS purposes but as direct control form applied from utility. In this paper, ECS is simulated twice as optimal constrained mathematical formula, solved by using CVX program in MATLAB® R2013b. First, it is utilized for single residential building with ten apartments to determine max allowable energy consumption per hour for each residential apartment. Then, it is used for single apartment with number of shiftable domestic devices, where operating schedule is deduced using previous simulation output results as constraints. The paper ends by giving differences between ECS technique and load shifting technique via literature and simulation. Based on results assessment, it will be shown whether using ECS or load shifting is more beneficial to both customer and utility.

Keywords: energy consumption schedule, load shifting, comparison, demand side mangement

Procedia PDF Downloads 162
13213 Investigation of Different Control Stratgies for UPFC Decoupled Model and the Impact of Location on Control Parameters

Authors: S. A. Al-Qallaf, S. A. Al-Mawsawi, A. Haider

Abstract:

In order to evaluate the performance of a unified power flow controller (UPFC), mathematical models for steady state and dynamic analysis are to be developed. The steady state model is mainly concerned with the incorporation of the UPFC in load flow studies. Several load flow models for UPFC have been introduced in literature, and one of the most reliable models is the decoupled UPFC model. In spite of UPFC decoupled load flow model simplicity, it is more robust compared to other UPFC load flow models and it contains unique capabilities. Some shortcoming such as additional set of nonlinear equations are to be solved separately after the load flow solution is obtained. The aim of this study is to investigate the different control strategies that can be realized in the decoupled load flow model (individual control and combined control), and the impact of the location of the UPFC in the network on its control parameters.

Keywords: UPFC, decoupled model, load flow, control parameters

Procedia PDF Downloads 529
13212 The Optimal Indirect Vector Controller Design via an Adaptive Tabu Search Algorithm

Authors: P. Sawatnatee, S. Udomsuk, K-N. Areerak, K-L. Areerak, A. Srikaew

Abstract:

The paper presents how to design the indirect vector control of three-phase induction motor drive systems using the artificial intelligence technique called the adaptive tabu search. The results from the simulation and the experiment show that the drive system with the controller designed from the proposed method can provide the best output speed response compared with those of the conventional method. The controller design using the proposed technique can be used to create the software package for engineers to achieve the optimal controller design of the induction motor speed control based on the indirect vector concept.

Keywords: indirect vector control, induction motor, adaptive tabu search, control design, artificial intelligence

Procedia PDF Downloads 382
13211 An Improved Method on Static Binary Analysis to Enhance the Context-Sensitive CFI

Authors: Qintao Shen, Lei Luo, Jun Ma, Jie Yu, Qingbo Wu, Yongqi Ma, Zhengji Liu

Abstract:

Control Flow Integrity (CFI) is one of the most promising technique to defend Code-Reuse Attacks (CRAs). Traditional CFI Systems and recent Context-Sensitive CFI use coarse control flow graphs (CFGs) to analyze whether the control flow hijack occurs, left vast space for attackers at indirect call-sites. Coarse CFGs make it difficult to decide which target to execute at indirect control-flow transfers, and weaken the existing CFI systems actually. It is an unsolved problem to extract CFGs precisely and perfectly from binaries now. In this paper, we present an algorithm to get a more precise CFG from binaries. Parameters are analyzed at indirect call-sites and functions firstly. By comparing counts of parameters prepared before call-sites and consumed by functions, targets of indirect calls are reduced. Then the control flow would be more constrained at indirect call-sites in runtime. Combined with CCFI, we implement our policy. Experimental results on some popular programs show that our approach is efficient. Further analysis show that it can mitigate COOP and other advanced attacks.

Keywords: contex-sensitive, CFI, binary analysis, code reuse attack

Procedia PDF Downloads 294
13210 A Robust PID Load Frequency Controller of Interconnected Power System Using SDO Software

Authors: Pasala Gopi, P. Linga Reddy

Abstract:

The response of the load frequency control problem in an multi-area interconnected electrical power system is much more complex with increasing size, changing structure and increasing load. This paper deals with Load Frequency Control of three area interconnected Power system incorporating Reheat, Non-reheat and Reheat turbines in all areas respectively. The response of the load frequency control problem in an multi-area interconnected power system is improved by designing PID controller using different tuning techniques and proved that the PID controller which was designed by Simulink Design Optimization (SDO) Software gives the superior performance than other controllers for step perturbations. Finally the robustness of controller was checked against system parameter variations

Keywords: load frequency control, pid controller tuning, step load perturbations, inter connected power system

Procedia PDF Downloads 620
13209 A Statistical Approach to Rationalise the Number of Working Load Test for Quality Control of Pile Installation in Singapore Jurong Formation

Authors: Nuo Xu, Kok Hun Goh, Jeyatharan Kumarasamy

Abstract:

Pile load testing is significant during foundation construction due to its traditional role of design validation and routine quality control of the piling works. In order to verify whether piles can take loadings at specified settlements, piles will have to undergo working load test where the test load should normally up to 150% of the working load of a pile. Selection or sampling of piles for the working load test is done subject to the number specified in Singapore National Annex to Eurocode 7 SS EN 1997-1:2010. This paper presents an innovative way to rationalize the number of pile load test by adopting statistical analysis approach and looking at the coefficient of variance of pile elastic modulus using a case study at Singapore Tuas depot. Results are very promising and have shown that it is possible to reduce the number of working load test without influencing the reliability and confidence on the pile quality. Moving forward, it is suggested that more load test data from other geological formations to be examined to compare with the findings from this paper.

Keywords: elastic modulus of pile under soil interaction, jurong formation, kentledge test, pile load test

Procedia PDF Downloads 359
13208 Implemented Cascade with Feed Forward by Enthalpy Balance Superheated Steam Temperature Control for a Boiler with Distributed Control System

Authors: Kanpop Saion, Sakreya Chitwong

Abstract:

Control of superheated steam temperature in the steam generation is essential for the efficiency safety and increment age of the boiler. Conventional cascade PID temperature control in the super heater is known to be efficient to compensate disturbance. However, the complex of thermal power plant due to nonlinearity, load disturbance and time delay of steam of superheater system is bigger than other control systems. The cascade loop with feed forward steam temperature control with energy balance compensator using thermodynamic model has been used for the compensation the complex structure of superheater. In order to improve the performance of steam temperature control. The experiment is implemented for 100% load steady and load changing state. The cascade with feed forward with energy balance steam temperature control has stabilized the system as well.

Keywords: cascade with feed forward, boiler, superheated steam temperature control, enthalpy balance

Procedia PDF Downloads 290
13207 Frequency Controller Design for Distributed Generation by Load Shedding: Multi-Agent Systems Approach

Authors: M. R. Vaezi, R. Ghasemi, A. Akramizadeh

Abstract:

Frequency stability of microgrids under islanded operation attracts particular attention recently. A new cooperative frequency control strategy based on centralized multi-agent system (CMAS) is proposed in this study. On this strategy, agents sent data and furthermore each component has its own to center operating decisions (MGCC). After deciding on the information, they are returned. Frequency control strategies include primary and secondary frequency control and disposal of multi-stage load in which this study will also provide a method and algorithm for load shedding. This could also be a big problem for the performance of micro-grid in times of disaster. The simulation results show the promising performance of the proposed structure of the controller based on multi agent systems.

Keywords: frequency control, islanded microgrid, multi-agent system, load shedding

Procedia PDF Downloads 444
13206 Investigating Safe Operation Condition for Iterative Learning Control under Load Disturbances Effect in Singular Values

Authors: Muhammad A. Alsubaie

Abstract:

An iterative learning control framework designed in state feedback structure suffers a lack in investigating load disturbance considerations. The presented work discusses the controller previously designed, highlights the disturbance problem, finds new conditions using singular value principle to assure safe operation conditions with error convergence and reference tracking under the influence of load disturbance. It is known that periodic disturbances can be represented by a delay model in a positive feedback loop acting on the system input. This model can be manipulated by isolating the delay model and finding a controller for the overall system around the delay model to remedy the periodic disturbances using the small signal theorem. The overall system is the base for control design and load disturbance investigation. The major finding of this work is the load disturbance condition found which clearly sets safe operation condition under the influence of load disturbances such that the error tends to nearly zero as the system keeps operating trial after trial.

Keywords: iterative learning control, singular values, state feedback, load disturbance

Procedia PDF Downloads 145
13205 Two Day Ahead Short Term Load Forecasting Neural Network Based

Authors: Firas M. Tuaimah

Abstract:

This paper presents an Artificial Neural Network based approach for short-term load forecasting and exactly for two days ahead. Two seasons have been discussed for Iraqi power system, namely summer and winter; the hourly load demand is the most important input variables for ANN based load forecasting. The recorded daily load profile with a lead time of 1-48 hours for July and December of the year 2012 was obtained from the operation and control center that belongs to the Ministry of Iraqi electricity. The results of the comparison show that the neural network gives a good prediction for the load forecasting and for two days ahead.

Keywords: short-term load forecasting, artificial neural networks, back propagation learning, hourly load demand

Procedia PDF Downloads 433
13204 Improving Load Frequency Control of Multi-Area Power System by Considering Uncertainty by Using Optimized Type 2 Fuzzy Pid Controller with the Harmony Search Algorithm

Authors: Mehrdad Mahmudizad, Roya Ahmadi Ahangar

Abstract:

This paper presents the method of designing the type 2 fuzzy PID controllers in order to solve the problem of Load Frequency Control (LFC). The Harmony Search (HS) algorithm is used to regulate the measurement factors and the effect of uncertainty of membership functions of Interval Type 2 Fuzzy Proportional Integral Differential (IT2FPID) controllers in order to reduce the frequency deviation resulted from the load oscillations. The simulation results implicitly show that the performance of the proposed IT2FPID LFC in terms of error, settling time and resistance against different load oscillations is more appropriate and preferred than PID and Type 1 Fuzzy Proportional Integral Differential (T1FPID) controllers.

Keywords: load frequency control, fuzzy-pid controller, type 2 fuzzy system, harmony search algorithm

Procedia PDF Downloads 250
13203 Load Management Using Multiple Sequential Load Shaping Techniques

Authors: Amira M. Attia, Karim H. Youssef, Nabil H. Abbasi

Abstract:

Demand Side Management (DSM) is an essential characteristic of current and future smart grid systems. As one of DSM functions, load management aims to control customers’ total electric consumption and utility’s load factor by using various load shaping techniques. However, applying load shaping techniques such as load shifting, peak clipping, or strategic conservation individually does not provide the desired level of improvement for load factor increment and/or customer’s bill reduction. In this paper, two load shaping techniques will be simulated as constrained optimization problems. The purpose is to reflect the application of combined load shifting and strategic conservation model together at the same time, and the application of combined load shifting and peak clipping model as well. The problem will be formulated and solved by using disciplined convex programming (CVX) based MATLAB® R2013b. Simulation results will be evaluated and compared for studying the most impactful multi-techniques model in improving load curve.

Keywords: convex programing, demand side management, load shaping, multiple, building energy optimization

Procedia PDF Downloads 290
13202 Overview of Different Approaches Used in Optimal Operation Control of Hybrid Renewable Energy Systems

Authors: K. Kusakana

Abstract:

A hybrid energy system is a combination of renewable energy sources with back up, as well as a storage system used to respond to given load energy requirements. Given that the electrical output of each renewable source is fluctuating with changes in weather conditions, and since the load demand also varies with time; one of the main attributes of hybrid systems is to be able to respond to the load demand at any time by optimally controlling each energy source, storage and back-up system. The induced optimization problem is to compute the optimal operation control of the system with the aim of minimizing operation costs while efficiently and reliably responding to the load energy requirement. Current optimization research and development on hybrid systems are mainly focusing on the sizing aspect. Thus, the aim of this paper is to report on the state-of-the-art of optimal operation control of hybrid renewable energy systems. This paper also discusses different challenges encountered, as well as future developments that can help in improving the optimal operation control of hybrid renewable energy systems.

Keywords: renewable energies, hybrid systems, optimization, operation control

Procedia PDF Downloads 357
13201 Analysis of Electromechanical Torsional Vibration in Large-Power AC Drive System Based on Virtual Inertia Control

Authors: Jin Wang, Chunyi Zhu, Chongjian Li, Dapeng Zheng

Abstract:

A method based on virtual inertia for suppressing electromechanical torsional vibration of a large-power AC drive system is presented in this paper. The main drive system of the rolling mill is the research object, and a two-inertia elastic model is established to study the mechanism of electromechanical torsional vibration. The improvement is made based on the control of the load observer. The virtual inertia control ratio K is added to the speed forward channel, and the feedback loop adds 1-K to design virtual inertia control. The control method combines the advantages of the positive and negative feedback control of the load observer, can achieve the purpose of controlling the moment of inertia of the motor from the perspective of electrical control, and effectively suppress oscillation.

Keywords: electromechanical torsional vibration, large-power AC drive system, load observer, simulation design

Procedia PDF Downloads 105
13200 Analog Voltage Inverter Drive for Capacitive Load with Adaptive Gain Control

Authors: Sun-Ki Hong, Yong-Ho Cho, Ki-Seok Kim, Tae-Sam Kang

Abstract:

Piezoelectric actuator is treated as RC load when it is modeled electrically. For some piezoelectric actuator applications, arbitrary voltage is required to actuate. Especially for unidirectional arbitrary voltage driving like as sine wave, some special inverter with circuit that can charge and discharge the capacitive energy can be used. In this case, the difference between power supply level and the object voltage level for RC load is varied. Because the control gain is constant, the controlled output is not uniform according to the voltage difference. In this paper, for charge and discharge circuit for unidirectional arbitrary voltage driving for piezoelectric actuator, the controller gain is controlled according to the voltage difference. With the proposed simple idea, the load voltage can have controlled smoothly although the voltage difference is varied. The appropriateness is proved from the simulation of the proposed circuit.

Keywords: analog voltage inverter, capacitive load, gain control, dc-dc converter, piezoelectric, voltage waveform

Procedia PDF Downloads 632
13199 Optimal Load Control Strategy in the Presence of Stochastically Dependent Renewable Energy Sources

Authors: Mahmoud M. Othman, Almoataz Y. Abdelaziz, Yasser G. Hegazy

Abstract:

This paper presents a load control strategy based on modification of the Big Bang Big Crunch optimization method. The proposed strategy aims to determine the optimal load to be controlled and the corresponding time of control in order to minimize the energy purchased from substation. The presented strategy helps the distribution network operator to rely on the renewable energy sources in supplying the system demand. The renewable energy sources used in the presented study are modeled using the diagonal band Copula method and sequential Monte Carlo method in order to accurately consider the multivariate stochastic dependence between wind power, photovoltaic power and the system demand. The proposed algorithms are implemented in MATLAB environment and tested on the IEEE 37-node feeder. Several case studies are done and the subsequent discussions show the effectiveness of the proposed algorithm.

Keywords: big bang big crunch, distributed generation, load control, optimization, planning

Procedia PDF Downloads 324
13198 The Role of Metacognitive Strategy Intervention through Dialogic Interaction on Listeners’ Level of Cognitive Load

Authors: Ali Babajanzade, Hossein Bozorgian

Abstract:

Cognitive load plays an important role in learning in general and L2 listening comprehension in particular. This study is an attempt to investigate the effect of metacognitive strategy intervention through dialogic interaction (MSIDI) on L2 listeners’ cognitive load. A mixed-method design with 50 participants of male and female Iranian lower-intermediate learners between 20 to 25 years of age was used. An experimental group (n=25) received weekly interventions based on metacognitive strategy intervention through dialogic interaction for ten sessions. The second group, which was control (n=25), had the same listening samples with the regular procedure without a metacognitive intervention program in each session. The study used three different instruments: a) a modified version of the cognitive load questionnaire, b) digit span tests, and c) focused group interviews to investigate listeners’ level of cognitive load throughout the process. Results testified not only improvements in listening comprehension in MSIDI but a radical shift of cognitive load rate within this group. In other words, listeners experienced a lower level of cognitive load in MSIDI in comparison with their peers in the control group.

Keywords: cognitive load theory, human mental functioning, metacognitive theory, listening comprehension, sociocultural theory

Procedia PDF Downloads 127
13197 Load Maximization of Two-Link Flexible Manipulator Using Suppression Vibration with Piezoelectric Transducer

Authors: Hamidreza Heidari, Abdollah Malmir Nasab

Abstract:

In this paper, the energy equations of a two-link flexible manipulator were extracted using the Euler-Bernoulli beam hypotheses. Applying Assumed mode and considering some finite degrees of freedom, we could obtain dynamic motions of each manipulator using Euler-Lagrange equations. Using its claws, the robots can carry a certain load with the ached control of vibrations for robot flexible links during the travelling path using the piezoceramics transducer; dynamic load carrying capacity increase. The traveling path of flexible robot claw has been taken from that of equivalent rigid manipulator and coupled; therefore to avoid the role of Euler-Bernoulli beam assumptions and linear strains, material and physical characteristics selection of robot cause deflection of link ends not exceed 5% of link length. To do so, the maximum load carrying capacity of robot is calculated at the horizontal plan. The increasing of robot load carrying capacity with vibration control is 53%.

Keywords: flexible link, DLCC, active control vibration, assumed mode method

Procedia PDF Downloads 374
13196 On the Design of Robust Governors of Steam Power Systems Using Polynomial and State-Space Based H∞ Techniques: A Comparative Study

Authors: Rami A. Maher, Ibraheem K. Ibraheem

Abstract:

This work presents a comparison study between the state-space and polynomial methods for the design of the robust governor for load frequency control of steam turbine power systems. The robust governor is synthesized using the two approaches and the comparison is extended to include time and frequency domains performance, controller order, and uncertainty representation, weighting filters, optimality and sub-optimality. The obtained results are represented through tables and curves with reasons of similarities and dissimilarities.

Keywords: robust control, load frequency control, steam turbine, H∞-norm, system uncertainty, load disturbance

Procedia PDF Downloads 388
13195 Smart Monitoring and Control of Tap Changer Using Intelligent Electronic Device

Authors: K. N. Dinesh Babu, M. V. Gopalan, G. R. Manjunatha, R. Ramaprabha, V. Rajini

Abstract:

In this paper, monitoring and control of tap changer mechanism of a transformer implementation in an intelligent electronic device (IED) is discussed. Its been a custom for decades to provide a separate panel for on load tap changer control for monitoring the tap position. However this facility cannot either record or transfer the information to remote control centers. As there is a technology shift towards the smart grid protection and control standards, the need for implementing remote control and monitoring has necessitated the implementation of this feature in numerical relays. This paper deals with the programming, settings and logic implementation which is applicable to both IEC 61850 compatible and non-compatible IEDs thereby eliminating the need for separate tap changer control equipment. The monitoring mechanism has been implemented in a 28MVA, 110 /6.9kV transformer with 16 tap position with GE make T60 IED at Ultratech cement limited Gulbarga, Karnataka and is in successful service.

Keywords: transformer protection, tap changer control, tap position monitoring, on load tap changer, intelligent electronic device (IED)

Procedia PDF Downloads 574
13194 T-S Fuzzy Modeling Based on Power Coefficient Limit Nonlinearity Applied to an Isolated Single Machine Load Frequency Deviation Control

Authors: R. S. Sheu, H. Usman, M. S. Lawal

Abstract:

Takagi-Sugeno (T-S) fuzzy model based control of a load frequency deviation in a single machine with limit nonlinearity on power coefficient is presented in the paper. Two T-S fuzzy rules with only rotor angle variable as input in the premise part, and linear state space models in the consequent part involving characteristic matrices determined from limits set on the power coefficient constant are formulated, state feedback control gains for closed loop control was determined from the formulated Linear Matrix Inequality (LMI) with eigenvalue optimization scheme for asymptotic and exponential stability (speed of esponse). Numerical evaluation of the closed loop object was carried out in Matlab. Simulation results generated of both the open and closed loop system showed the effectiveness of the control scheme in maintaining load frequency stability.

Keywords: T-S fuzzy model, state feedback control, linear matrix inequality (LMI), frequency deviation control

Procedia PDF Downloads 373
13193 A Neural Network Control for Voltage Balancing in Three-Phase Electric Power System

Authors: Dana M. Ragab, Jasim A. Ghaeb

Abstract:

The three-phase power system suffers from different challenging problems, e.g. voltage unbalance conditions at the load side. The voltage unbalance usually degrades the power quality of the electric power system. Several techniques can be considered for load balancing including load reconfiguration, static synchronous compensator and static reactive power compensator. In this work an efficient neural network is designed to control the unbalanced condition in the Aqaba-Qatrana-South Amman (AQSA) electric power system. It is designed for highly enhanced response time of the reactive compensator for voltage balancing. The neural network is developed to determine the appropriate set of firing angles required for the thyristor-controlled reactor to balance the three load voltages accurately and quickly. The parameters of AQSA power system are considered in the laboratory model, and several test cases have been conducted to test and validate the proposed technique capabilities. The results have shown a high performance of the proposed Neural Network Control (NNC) technique for correcting the voltage unbalance conditions at three-phase load based on accuracy and response time.

Keywords: three-phase power system, reactive power control, voltage unbalance factor, neural network, power quality

Procedia PDF Downloads 170
13192 Fuzzy-Sliding Controller Design for Induction Motor Control

Authors: M. Bouferhane, A. Boukhebza, L. Hatab

Abstract:

In this paper, the position control of linear induction motor using fuzzy sliding mode controller design is proposed. First, the indirect field oriented control LIM is derived. Then, a designed sliding mode control system with an integral-operation switching surface is investigated, in which a simple adaptive algorithm is utilized for generalised soft-switching parameter. Finally, a fuzzy sliding mode controller is derived to compensate the uncertainties which occur in the control, in which the fuzzy logic system is used to dynamically control parameter settings of the SMC control law. The effectiveness of the proposed control scheme is verified by numerical simulation. The experimental results of the proposed scheme have presented good performances compared to the conventional sliding mode controller.

Keywords: linear induction motor, vector control, backstepping, fuzzy-sliding mode control

Procedia PDF Downloads 465
13191 Government Intervention in Land Market

Authors: Waqar Ahmad Bajwa

Abstract:

In the land market, there are two kinds of government intervention. First one is the control of development and second is the supply of land. In the both intervention Government has a lot of benefits. In development control the government designation of conservation areas and the effects of growth controls which may increase the price of land. On other hand Government also apply charge fee on land. The second type of intervention is to increase the supply of land, either by direct action or indirect action, as in the Pakistan, by obligatory purchase or important domain.

Keywords: supply of control, control of development, charge fee, land control

Procedia PDF Downloads 245
13190 Direct and Indirect Effects of Childhood Traumas, Emotion Regulation Difficulties and Age on Tendency to Violence

Authors: Selin Kara-Bahçekapılı, Bengisu Nehir Aydın

Abstract:

Objective: In this study, it is aimed to examine the relationship between childhood traumas (overprotection-control, emotional/physical/sexual abuse, emotional/physical neglect), age, emotional regulation difficulties, and the tendency of violence in adults. In the study, the direct and indirect effects of 6 sub-factors of childhood traumas, emotion regulation difficulties, and age on tendency to violence are evaluated on a model that theoretically reveals. Method: The population of this cross-sectional study consists of individuals between the ages of 18-65 living in Turkey. The data from 527 participants were obtained by online surveys and convenience sampling method within the scope of the study. As a result of exclusion criteria and then outlier data analysis, the data of 443 participants were included in the analysis. Data were collected by demographic information form, childhood trauma scale, emotion regulation difficulty scale, and violence tendency scale. Research data were analyzed by SPSS and AMOS using correlation, path analysis, direct and indirect effects. Results: According to the research findings, the variables in the model explained 28.2% of the variance of the mean scores of the individuals' tendency to violence. Emotion regulation difficulties have the most direct effect on the tendency to violence (d=.387; p<.01). The effects of excessive protection and control, emotional neglect, and physical neglect variables on the tendency to violence are not significant. When the significant and indirect effects of the variables on tendency to violence over emotion regulation difficulties are examined, age has a negative effect, emotional neglect has a positive effect, emotional abuse has a positive effect, and overprotection-control has a positive effect. The indirect effects of sexual abuse, physical neglect, and physical abuse on tendency to violence are not significant. Childhood traumas and age variables in the model explained 24.1% of the variance of the mean scores of the individuals’ emotion regulation difficulties. The variable that most affects emotion regulation difficulties is age (d=-.268; p<.001). The direct effects of sexual abuse, physical neglect, and physical abuse on emotion regulation difficulties are not significant. Conclusion: The results of the research emphasize the critical role of difficulty in emotion regulation on the tendency to violence. Difficulty in emotion regulation affects the tendency to violence both directly and by mediating different variables. In addition, it is seen that some sub-factors of childhood traumas have direct and/or indirect effects on the tendency to violence. Emotional abuse and age have both direct and indirect effects on the tendency to violence over emotion regulation difficulties.

Keywords: childhood trauma, emotion regulation difficulties, tendency to violence, path analysis

Procedia PDF Downloads 69
13189 Voltage Stabilization of Hybrid PV and Battery Systems by Considering Temperature and Irradiance Changes in Standalone Operation

Authors: S. Jalilzadeh, S. M. Mohseni Bonab

Abstract:

Solar and battery energy storage systems are very useful for consumers who live in deprived areas and do not have access to electricity distribution networks. Nowadays one of the problems that photo voltaic systems (PV) have changing of output power in temperature and irradiance variations, which directly affects the load that is connected to photo voltaic systems. In this paper, with considering the fact that the solar array varies with change in temperature and solar power radiation, a voltage stabilizer system of a load connected to photo voltaic array is designed to stabilize the load voltage and to transfer surplus power of the battery. Also, in proposed hybrid system, the needed load power amount is supplemented considering the voltage stabilization in standalone operation for supplying unbalanced AC load. Electrical energy storage system for voltage control and improvement of the performance of PV by a DC/DC converter is connected to the DC bus. The load is also feed by an AC/DC converter. In this paper, when the voltage increases in its reference limit, the battery gets charged by the photo voltaic array and when it decreases in its defined limit, the power gets injected to the DC bus by this battery. The constant of DC bus Voltage is the cause for the reduced harmonics generated by the inverter. In addition, a series of filters are provided in the inverter output in to reduced harmonics. The inverter control circuit is designed that the voltage and frequency of the load remain almost constant at different load conditions. This paper has focused on controlling strategies of converters to improve their performance.

Keywords: photovoltaic array (PV), DC/DC Boost converter, battery converter, inverters control

Procedia PDF Downloads 461
13188 Comparison of Direct and Indirect Tensile Strength of Brittle Materials and Accurate Estimate of Tensile Strength

Authors: M. Etezadi, A. Fahimifar

Abstract:

In many geotechnical designs in rocks and rock masses, tensile strength of rock and rock mass is needed. The difficulties associated with performing a direct uniaxial tensile test on a rock specimen have led to a number of indirect methods for assessing the tensile strength that in the meantime the Brazilian test is more popular. Brazilian test is widely applied in rock engineering because specimens are easy to prepare, the test is easy to conduct and uniaxial compression test machines are quite common. This study compares experimental results of direct and Brazilian tensile tests carried out on two rock types and three concrete types using 39 cylindrical and 28 disc specimens. The tests are performed using Servo-Control device. The relationship between direct and indirect tensile strength of specimens is extracted using linear regression. In the following, tensile strength of direct and indirect test is evaluated using finite element analysis. The results are analyzed and effective factors on results are studied. According to the experimental results Brazilian test is shown higher tensile strength than direct test. Because of decreasing the contact surface of grains and increasing the uniformity in concrete specimens with fine aggregate (largest grain size= 6mm), higher tensile strength in direct test is shown. The experimental and numerical results of tensile strength are compared and empirical relationship witch is obtained from experimental tests is validated.

Keywords: tensile strength, brittle materials, direct and indirect tensile test, numerical modeling

Procedia PDF Downloads 522
13187 Comparison of DPC and FOC Vector Control Strategies on Reducing Harmonics Caused by Nonlinear Load in the DFIG Wind Turbine

Authors: Hamid Havasi, Mohamad Reza Gholami Dehbalaei, Hamed Khorami, Shahram Karimi, Hamdi Abdi

Abstract:

Doubly-fed induction generator (DFIG) equipped with a power converter is an efficient tool for converting mechanical energy of a variable speed system to a fixed-frequency electrical grid. Since electrical energy sources faces with production problems such as harmonics caused by nonlinear loads, so in this paper, compensation performance of DPC and FOC method on harmonics reduction of a DFIG wind turbine connected to a nonlinear load in MATLAB Simulink model has been simulated and effect of each method on nonlinear load harmonic elimination has been compared. Results of the two mentioned control methods shows the advantage of the FOC method on DPC method for harmonic compensation. Also, the fifth and seventh harmonic components of the network and THD greatly reduced.

Keywords: DFIG machine, energy conversion, nonlinear load, THD, DPC, FOC

Procedia PDF Downloads 566