Search results for: histopathological features
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3951

Search results for: histopathological features

51 Ensemble Methods in Machine Learning: An Algorithmic Approach to Derive Distinctive Behaviors of Criminal Activity Applied to the Poaching Domain

Authors: Zachary Blanks, Solomon Sonya

Abstract:

Poaching presents a serious threat to endangered animal species, environment conservations, and human life. Additionally, some poaching activity has even been linked to supplying funds to support terrorist networks elsewhere around the world. Consequently, agencies dedicated to protecting wildlife habitats have a near intractable task of adequately patrolling an entire area (spanning several thousand kilometers) given limited resources, funds, and personnel at their disposal. Thus, agencies need predictive tools that are both high-performing and easily implementable by the user to help in learning how the significant features (e.g. animal population densities, topography, behavior patterns of the criminals within the area, etc) interact with each other in hopes of abating poaching. This research develops a classification model using machine learning algorithms to aid in forecasting future attacks that is both easy to train and performs well when compared to other models. In this research, we demonstrate how data imputation methods (specifically predictive mean matching, gradient boosting, and random forest multiple imputation) can be applied to analyze data and create significant predictions across a varied data set. Specifically, we apply these methods to improve the accuracy of adopted prediction models (Logistic Regression, Support Vector Machine, etc). Finally, we assess the performance of the model and the accuracy of our data imputation methods by learning on a real-world data set constituting four years of imputed data and testing on one year of non-imputed data. This paper provides three main contributions. First, we extend work done by the Teamcore and CREATE (Center for Risk and Economic Analysis of Terrorism Events) research group at the University of Southern California (USC) working in conjunction with the Department of Homeland Security to apply game theory and machine learning algorithms to develop more efficient ways of reducing poaching. This research introduces ensemble methods (Random Forests and Stochastic Gradient Boosting) and applies it to real-world poaching data gathered from the Ugandan rain forest park rangers. Next, we consider the effect of data imputation on both the performance of various algorithms and the general accuracy of the method itself when applied to a dependent variable where a large number of observations are missing. Third, we provide an alternate approach to predict the probability of observing poaching both by season and by month. The results from this research are very promising. We conclude that by using Stochastic Gradient Boosting to predict observations for non-commercial poaching by season, we are able to produce statistically equivalent results while being orders of magnitude faster in computation time and complexity. Additionally, when predicting potential poaching incidents by individual month vice entire seasons, boosting techniques produce a mean area under the curve increase of approximately 3% relative to previous prediction schedules by entire seasons.

Keywords: ensemble methods, imputation, machine learning, random forests, statistical analysis, stochastic gradient boosting, wildlife protection

Procedia PDF Downloads 260
50 Understanding Different Facets of Chromosome Abnormalities: A 17-year Cytogenetic Study and Indian Perspectives

Authors: Lakshmi Rao Kandukuri, Mamata Deenadayal, Suma Prasad, Bipin Sethi, Srinadh Buragadda, Lalji Singh

Abstract:

Worldwide; at least 7.6 million children are born annually with severe genetic or congenital malformations and among them 90% of these are born in mid and low-income countries. Precise prevalence data are difficult to collect, especially in developing countries, owing to the great diversity of conditions and also because many cases remain undiagnosed. The genetic and congenital disorder is the second most common cause of infant and childhood mortality and occurs with a prevalence of 25-60 per 1000 births. The higher prevalence of genetic diseases in a particular community may, however, be due to some social or cultural factors. Such factors include the tradition of consanguineous marriage, which results in a higher rate of autosomal recessive conditions including congenital malformations, stillbirths, or mental retardation. Genetic diseases can vary in severity, from being fatal before birth to requiring continuous management; their onset covers all life stages from infancy to old age. Those presenting at birth are particularly burdensome and may cause early death or life-long chronic morbidity. Genetic testing for several genetic diseases identifies changes in chromosomes, genes, or proteins. The results of a genetic test can confirm or rule out a suspected genetic condition or help determine a person's chance of developing or passing on a genetic disorder. Several hundred genetic tests are currently in use and more are being developed. Chromosomal abnormalities are the major cause of human suffering, which are implicated in mental retardation, congenital malformations, dysmorphic features, primary and secondary amenorrhea, reproductive wastage, infertility neoplastic diseases. Cytogenetic evaluation of patients is helpful in the counselling and management of affected individuals and families. We present here especially chromosomal abnormalities which form a major part of genetic disease burden in India. Different programmes on chromosome research and human reproductive genetics primarily relate to infertility since this is a major public health problem in our country, affecting 10-15 percent of couples. Prenatal diagnosis of chromosomal abnormalities in high-risk pregnancies helps in detecting chromosomally abnormal foetuses. Such couples are counselled regarding the continuation of pregnancy. In addition to the basic research, the team is providing chromosome diagnostic services that include conventional and advanced techniques for identifying various genetic defects. Other than routine chromosome diagnosis for infertility, also include patients with short stature, hypogonadism, undescended testis, microcephaly, delayed developmental milestones, familial, and isolated mental retardation, and cerebral palsy. Thus, chromosome diagnostics has found its applicability not only in disease prevention and management but also in guiding the clinicians in certain aspects of treatment. It would be appropriate to affirm that chromosomes are the images of life and they unequivocally mirror the states of human health. The importance of genetic counseling is increasing with the advancement in the field of genetics. The genetic counseling can help families to cope with emotional, psychological, and medical consequences of genetic diseases.

Keywords: India, chromosome abnormalities, genetic disorders, cytogenetic study

Procedia PDF Downloads 279
49 Facies, Diagenetic Analysis and Sequence Stratigraphy of Habib Rahi Formation Dwelling in the Vicinity of Jacobabad Khairpur High, Southern Indus Basin, Pakistan

Authors: Muhammad Haris, Syed Kamran Ali, Mubeen Islam, Tariq Mehmood, Faisal Shah

Abstract:

Jacobabad Khairpur High, part of a Sukkur rift zone, is the separating boundary between Central and Southern Indus Basin, formed as a result of Post-Jurassic uplift after the deposition of Middle Jurassic Chiltan Formation. Habib Rahi Formation of Middle to Late Eocene outcrops in the vicinity of Jacobabad Khairpur High, a section at Rohri near Sukkur is measured in detail for lithofacies, microfacies, diagenetic analysis and sequence stratigraphy. Habib Rahi Formation is richly fossiliferous and consists of mostly limestone with subordinate clays and marl. The total thickness of the formation in this section is 28.8m. The bottom of the formation is not exposed, while the upper contact with the Sirki Shale of the Middle Eocene age is unconformable in some places. A section is measured using Jacob’s Staff method, and traverses were made perpendicular to the strike. Four different lithofacies were identified based on outcrop geology which includes coarse-grained limestone facies (HR-1 to HR-5), massive bedded limestone facies (HR-6 HR-7), and micritic limestone facies (HR-8 to HR-13) and algal dolomitic limestone facie (HR-14). Total 14 rock samples were collected from outcrop for detailed petrographic studies, and thin sections of respective samples were prepared and analyzed under the microscope. On the basis of Dunham’s (1962) classification systems after studying textures, grain size, and fossil content and using Folk’s (1959) classification system after reviewing Allochems type, four microfacies were identified. These microfacies include HR-MF 1: Benthonic Foraminiferal Wackstone/Biomicrite Microfacies, HR-MF 2: Foramineral Nummulites Wackstone-Packstone/Biomicrite Microfacies HR-MF 3: Benthonic Foraminiferal Packstone/Biomicrite Microfacies, HR-MF 4: Bioclasts Carbonate Mudstone/Micrite Microfacies. The abundance of larger benthic Foraminifera’s (LBF), including Assilina sp., A. spiral abrade, A. granulosa, A. dandotica, A. laminosa, Nummulite sp., N. fabiani, N. stratus, N. globulus, Textularia, Bioclasts, and Red algae indicates shallow marine (Tidal Flat) environment of deposition. Based on variations in rock types, grain size, and marina fauna Habib Rahi Formation shows progradational stacking patterns, which indicates coarsening upward cycles. The second order of sea-level rise is identified (spanning from Y-Persian to Bartonian age) that represents the Transgressive System Tract (TST) and a third-order Regressive System Tract (RST) (spanning from Bartonian to Priabonian age). Diagenetic processes include fossils replacement by mud, dolomitization, pressure dissolution associated stylolites features and filling with dark organic matter. The presence of the microfossils includes Nummulite. striatus, N. fabiani, and Assilina. dandotica, signify Bartonian to Priabonian age of Habib Rahi Formation.

Keywords: Jacobabad Khairpur High, Habib Rahi Formation, lithofacies, microfacies, sequence stratigraphy, diagenetic history

Procedia PDF Downloads 427
48 Erectile Dysfunction in A Middle Aged Man 6 Years After Bariatric Surgery: A Case Report

Authors: Thaminda Liyanage, Chamila Shamika Kurukulasuriya

Abstract:

Introduction: Morbid obesity has been successfully treated with bariatric surgery for over 60 years. Although operative procedures have improved and associated complications have reduced substantially, surgery still carries the risk of post-operative malabsorption, malnutrition and a range of gastrointestinal disorders. Overweight by itself can impair libido in both sexes and cause erectile dysfunction in males by inducing a state of hypogonadotropic hypogonadism, proportional to the degree of obesity. Impact of weight reduction on libido and sexual activity remains controversial, however it is broadly accepted that weight loss improves sexual drive. Zinc deficiency, subsequent to malabsorption, may lead to impaired testosterone synthesis in men while excessive and/or rapid weight loss in females may result in reversible amenorrhoea leading to sub-fertility. Methods: We describe a 37 year old male, 6 years post Roux-en-Y gastric bypass surgery, who presented with erectile dysfunction, loss of libido, worsening fatigue and generalized weakness for 4 months. He also complained of constipation and frequent muscle cramps but denied having headache, vomiting or visual disturbances. Patient had lost 38 kg of body weight post gastric bypass surgery over four years {135kg (BMI 42.6 kg/m2) to 97 kg (BMI 30.6 kg/m2)} and the weight had been stable for past two years. He had no recognised co-morbidities at the time of the surgery and noted marked improvement in general wellbeing, physical fitness and psychological confident post surgery, up until four months before presentation. Clinical examination revealed dry pale skin with normal body hair distribution, no thyroid nodules or goitre, normal size testicles and normal neurological examination with no visual field defects or diplopia. He had low serum testosterone, follicular stimulating hormone (FSH), luteinizing hormone (LH), T3, T4, thyroid stimulating hormone (TSH), insulin like growth factor 1 (IGF-1) and 24-hour urine cortisol levels. Serum cortisol demonstrated an appropriate rise to ACTH stimulation test but growth hormone (GH) failed increase on insulin tolerance test. Other biochemical and haematological studies were normal, except for low zinc and folate with minimally raised liver enzymes. MRI scan of the head confirmed a solid pituitary mass with no mass effect on optic chiasm. Results: In this patient clinical, biochemical and radiological findings were consistent with anterior pituitary dysfunction. However, there were no features of raised intracranial pressure or neurological compromise. He was commenced on appropriate home replacement therapy and referred for neurosurgical evaluation. Patient reported marked improvement in his symptoms, specially libido and erectile dysfunction, on subsequent follow up visits. Conclusion: Sexual dysfunction coupled with non specific constitutional symptoms has multiple aetiologies. Clinical symptoms out of proportion to nutritional deficiencies post bariatric surgery should be thoroughly investigated. Close long term follow up is crucial for overall success.

Keywords: obesity, bariatric surgery, erectile dysfunction, loss of libido

Procedia PDF Downloads 262
47 Acoustic Radiation Force Impulse Elastography of the Hepatic Tissue of Canine Brachycephalic Patients

Authors: A. C. Facin, M. C. Maronezi , M. P. Menezes, G. L. Montanhim, L. Pavan, M. A. R. Feliciano, R. P. Nociti, R. A. R. Uscategui, P. C. Moraes

Abstract:

The incidence of brachycephalic syndrome (BS) in the clinical routine of small animals has increased significantly giving the higher proportion of brachycephalic pets in the last years and has been considered as an animal welfare problem. The treatment of BS is surgical and the clinical signs related can be considerably attenuated. Nevertheless, the systemic effects of the BS are still poorly reported and little is known about these when the surgical correction is not performed early. Affected dogs are more likely to develop cardiopulmonary, gastrointestinal and sleep disorders in which the chronic hypoxemia plays a major role. This syndrome is compared with the obstructive sleep apnea (OSA) in humans, both considered as causes of systemic and metabolic dysfunction. Among the several consequences of the BS little is known if the syndrome also affects the hepatic tissue of brachycephalic patients. Elastography is a promising ultrasound technique that evaluates tissue elasticity and has been recently used with the purpose of diagnosis of liver fibrosis. In medicine, it is a growing concern regarding the hepatic injury of patients affected by OSA. This prospective study hypothesizes if there is any consequence of BS in the hepatic parenchyma of brachycephalic dogs that don’t receive any surgical treatment. This study was conducted following the approval of the Animal Ethics and Welfare Committee of the Faculdade de Ciências Agrárias e Veterinárias, UNESP, Campus Jaboticabal, Brazil (protocol no 17944/2017) and funded by Sao Paulo Research Foundation (FAPESP, process no 2017/24809-4). The methodology was based in ARFI elastography using the ACUSON S2000/SIEMENS device, with convex multifrequential transducer and specific software as well as clinical evaluation of the syndrome, in order to determine if they can be used as a prognostic non-invasive tool. On quantitative elastography, it was collected three measures of shear wave velocity (meters per second) and depth in centimeters in the left lateral, left medial, right lateral, right medial and caudate lobe of the liver. The brachycephalic patients, 16 pugs and 30 french bulldogs, were classified using a previously established 4-point functional grading system based on clinical evaluation before and after a 3-minute exercise tolerance test already established and validated. The control group was based on the same features collected in 22 beagles. The software R version 3.3.0 was used for the analysis and the significance level was set at 0.05. The data were analysed for normality of residuals and homogeneity of variances by Shapiro-Wilks test. Comparisons of parametric continuous variables between breeds were performed by using ANOVA with a post hoc test for pair wise comparison. The preliminary results show significant statistic differences between the brachycephalic groups and the control group in all lobes analysed (p ≤ 0,05), with higher values of shear wave velocities in the hepatic tissue of brachycephalic dogs. In this context, the results obtained in this study contributes to the understanding of BS as well as its consequences in our patients, reflecting in evidence that one more systemic consequence of the syndrome may occur in brachycephalic patients, which was not related in the veterinary literature yet.

Keywords: airway obstruction, brachycephalic airway obstructive syndrome, hepatic injury, obstructive sleep apnea

Procedia PDF Downloads 85
46 The Politics of Health Education: A Cultural Analysis of Tobacco Control Communication in India

Authors: Ajay Ivan

Abstract:

This paper focuses on the cultural politics of health-promotional and disease-preventive pedagogic practices in the context of the national tobacco control programme in India. Tobacco consumption is typically problematised as a paradox: tobacco poses objective health risks such as cancer and heart disease, but its production, sale and export contribute significantly to state revenue. A blanket ban on tobacco products, therefore, is infeasible though desirable. Instead, initiatives against tobacco use have prioritised awareness creation and behaviour change to reduce its demand. This paper argues that public health communication is not, as commonly assumed, an apolitical and neutral transmission of disease-preventive information. Drawing on Michel Foucault’s concept of governmentality, it examines such campaigns as techniques of disciplining people rather than coercing them to give up tobacco use, which would be both impractical and counter-productive. At the level of the population, these programmes constitute a security mechanism that reduces risks without eliminating them, so as to ensure an optimal level of public health without hampering the economy. Anti-tobacco pedagogy thus aligns with a contemporary paradigm of health that emphasises risk-assessment and lifestyle management as tools of governance, using pedagogic techniques to teach people how to be healthy. The paper analyses the pictorial health warnings on tobacco packets and anti-tobacco advertisements in movie theatres mandated by the state, along with awareness-creation messages circulated by anti-tobacco advocacy groups in India, to show how they discursively construct tobacco and its consumption as a health risk. Smoking is resignified from a pleasurable and sociable practice to a deadly addiction that jeopardises the health of those who smoke and those who passively inhale the smoke. While disseminating information about the health risks of tobacco, these initiatives employ emotional and affective techniques of persuasion to discipline tobacco users. They incite fear of death and of social ostracism to motivate behaviour change, complementing their appeals to reason. Tobacco is portrayed as a grave moral danger to the family and a detriment to the vitality of the nation, such that using it contradicts one’s duties as a parent or citizen. Awareness programmes reproduce prevailing societal assumptions about health and disease, normalcy and deviance, and proper and improper conduct. Pedagogy thus functions as an apparatus of public health governance, recruiting subjects as volunteers in their own regulation and aligning their personal goals and aspirations to the objectives of tobacco control. The paper links this calculated management of subjectivity and the self-responsibilisation of the pedagogic subject to a distinct mode of neoliberal civic governance in contemporary India. Health features prominently in this mode of governance that serves the biopolitical obligation of the state as laid down in Article 39 of the Constitution, which includes a duty to ensure the health of its citizens. Insofar as the health of individuals is concerned, the problem is how to balance this duty of the state with the fundamental right of the citizen to choose how to live. Public health pedagogy, by directing the citizen’s ‘free’ choice without unduly infringing upon it, offers a tactical solution.

Keywords: public health communication, pedagogic power, tobacco control, neoliberal governance

Procedia PDF Downloads 53
45 Multilocus Phylogenetic Approach Reveals Informative DNA Barcodes for Studying Evolution and Taxonomy of Fusarium Fungi

Authors: Alexander A. Stakheev, Larisa V. Samokhvalova, Sergey K. Zavriev

Abstract:

Fusarium fungi are among the most devastating plant pathogens distributed all over the world. Significant reduction of grain yield and quality caused by Fusarium leads to multi-billion dollar annual losses to the world agricultural production. These organisms can also cause infections in immunocompromised persons and produce the wide range of mycotoxins, such as trichothecenes, fumonisins, and zearalenone, which are hazardous to human and animal health. Identification of Fusarium fungi based on the morphology of spores and spore-forming structures, colony color and appearance on specific culture media is often very complicated due to the high similarity of these features for closely related species. Modern Fusarium taxonomy increasingly uses data of crossing experiments (biological species concept) and genetic polymorphism analysis (phylogenetic species concept). A number of novel Fusarium sibling species has been established using DNA barcoding techniques. Species recognition is best made with the combined phylogeny of intron-rich protein coding genes and ribosomal DNA sequences. However, the internal transcribed spacer of (ITS), which is considered to be universal DNA barcode for Fungi, is not suitable for genus Fusarium, because of its insufficient variability between closely related species and the presence of non-orthologous copies in the genome. Nowadays, the translation elongation factor 1 alpha (TEF1α) gene is the “gold standard” of Fusarium taxonomy, but the search for novel informative markers is still needed. In this study, we used two novel DNA markers, frataxin (FXN) and heat shock protein 90 (HSP90) to discover phylogenetic relationships between Fusarium species. Multilocus phylogenetic analysis based on partial sequences of TEF1α, FXN, HSP90, as well as intergenic spacer of ribosomal DNA (IGS), beta-tubulin (β-TUB) and phosphate permease (PHO) genes has been conducted for 120 isolates of 19 Fusarium species from different climatic zones of Russia and neighboring countries using maximum likelihood (ML) and maximum parsimony (MP) algorithms. Our analyses revealed that FXN and HSP90 genes could be considered as informative phylogenetic markers, suitable for evolutionary and taxonomic studies of Fusarium genus. It has been shown that PHO gene possesses more variable (22 %) and parsimony informative (19 %) characters than other markers, including TEF1α (12 % and 9 %, correspondingly) when used for elucidating phylogenetic relationships between F. avenaceum and its closest relatives – F. tricinctum, F. acuminatum, F. torulosum. Application of novel DNA barcodes confirmed the fact that F. arthrosporioides do not represent a separate species but only a subspecies of F. avenaceum. Phylogeny based on partial PHO and FXN sequences revealed the presence of separate cluster of four F. avenaceum strains which were closer to F. torulosum than to major F. avenaceum clade. The strain F-846 from Moldova, morphologically identified as F. poae, formed a separate lineage in all the constructed dendrograms, and could potentially be considered as a separate species, but more information is needed to confirm this conclusion. Variable sites in PHO sequences were used for the first-time development of specific qPCR-based diagnostic assays for F. acuminatum and F. torulosum. This work was supported by Russian Foundation for Basic Research (grant № 15-29-02527).

Keywords: DNA barcode, fusarium, identification, phylogenetics, taxonomy

Procedia PDF Downloads 292
44 A Comprehensive Approach to Create ‘Livable Streets’ in the Mixed Land Use of Urban Neighborhoods: A Case Study of Bangalore Street

Authors: K. C. Tanuja, Mamatha P. Raj

Abstract:

"People have always lived on streets. They have been the places where children first learned about the world, where neighbours met, the social centres of towns and cities, the rallying points for revolts, the scenes of repression. The street has always been the scene of this conflict, between living and access, between resident and traveller, between street life and the threat of death.” Livable Streets by Donald Appleyard. Urbanisation is happening rapidly all over the world. As population increasing in the urban settlements, its required to provide quality of life to all the inhabitants who live in. Urban design is a place making strategic planning. Urban design principles promote visualising any place environmentally, socially and economically viable. Urban design strategies include building mass, transit development, economic viability and sustenance and social aspects. Cities are wonderful inventions of diversity- People, things, activities, ideas and ideologies. Cities should be smarter and adjustable to present technology and intelligent system. Streets represent the community in terms of social and physical aspects. Streets are an urban form that responds to many issues and are central to urban life. Streets are for livability, safety, mobility, place of interest, economic opportunity, balancing the ecology and for mass transit. Urban streets are places where people walk, shop, meet and engage in different types of social and recreational activities which make urban community enjoyable. Streets knit the urban fabric of activities. Urban streets become livable with the introduction of social network enhancing the pedestrian character by providing good design features which in turn should achieve the minimal impact of motor vehicle use on pedestrians. Livable streets are the spatial definition to the public right of way on urban streets. Streets in India have traditionally been the public spaces where social life happened or created from ages. Streets constitute the urban public realm where people congregate, celebrate and interact. Streets are public places that can promote social interaction, active living and community identity. Streets as potential contributors to a better living environment, knitting together the urban fabric of people and places that make up a community. Livable streets or complete streets are making our streets as social places, roadways and sidewalks accessible, safe, efficient and useable for all people. The purpose of this paper is to understand the concept of livable street and parameters of livability on urban streets. Streets to be designed as the pedestrians are the main users and create spaces and furniture for social interaction which serves for the needs of the people of all ages and abilities. The problems of streets like congestion due to width of the street, traffic movement and adjacent land use and type of movement need to be redesigned and improve conditions defining the clear movement path for vehicles and pedestrians. Well-designed spatial qualities of street enhances the street environment, livability and then achieves quality of life to the pedestrians. A methodology been derived to arrive at the typologies in street design after analysis of existing situation and comparing with livable standards. It was Donald Appleyard‟s Livable Streets laid out the social effects on streets creating the social network to achieve Livable Streets.

Keywords: livable streets, social interaction, pedestrian use, urban design

Procedia PDF Downloads 117
43 Development of Advanced Virtual Radiation Detection and Measurement Laboratory (AVR-DML) for Nuclear Science and Engineering Students

Authors: Lily Ranjbar, Haori Yang

Abstract:

Online education has been around for several decades, but the importance of online education became evident after the COVID-19 pandemic. Eventhough the online delivery approach works well for knowledge building through delivering content and oversight processes, it has limitations in developing hands-on laboratory skills, especially in the STEM field. During the pandemic, many education institutions faced numerous challenges in delivering lab-based courses, especially in the STEM field. Also, many students worldwide were unable to practice working with lab equipment due to social distancing or the significant cost of highly specialized equipment. The laboratory plays a crucial role in nuclear science and engineering education. It can engage students and improve their learning outcomes. In addition, online education and virtual labs have gained substantial popularity in engineering and science education. Therefore, developing virtual labs is vital for institutions to deliver high-class education to their students, including their online students. The School of Nuclear Science and Engineering (NSE) at Oregon State University, in partnership with SpectralLabs company, has developed an Advanced Virtual Radiation Detection and Measurement Lab (AVR-DML) to offer a fully online Master of Health Physics program. It was essential for us to use a system that could simulate nuclear modules that accurately replicate the underlying physics, the nature of radiation and radiation transport, and the mechanics of the instrumentations used in the real radiation detection lab. It was all accomplished using a Realistic, Adaptive, Interactive Learning System (RAILS). RAILS is a comprehensive software simulation-based learning system for use in training. It is comprised of a web-based learning management system that is located on a central server, as well as a 3D-simulation package that is downloaded locally to user machines. Users will find that the graphics, animations, and sounds in RAILS create a realistic, immersive environment to practice detecting different radiation sources. These features allow students to coexist, interact and engage with a real STEM lab in all its dimensions. It enables them to feel like they are in a real lab environment and to see the same system they would in a lab. Unique interactive interfaces were designed and developed by integrating all the tools and equipment needed to run each lab. These interfaces provide students full functionality for data collection, changing the experimental setup, and live data collection with real-time updates for each experiment. Students can manually do all experimental setups and parameter changes in this lab. Experimental results can then be tracked and analyzed in an oscilloscope, a multi-channel analyzer, or a single-channel analyzer (SCA). The advanced virtual radiation detection and measurement laboratory developed in this study enabled the NSE school to offer a fully online MHP program. This flexibility of course modality helped us to attract more non-traditional students, including international students. It is a valuable educational tool as students can walk around the virtual lab, make mistakes, and learn from them. They have an unlimited amount of time to repeat and engage in experiments. This lab will also help us speed up training in nuclear science and engineering.

Keywords: advanced radiation detection and measurement, virtual laboratory, realistic adaptive interactive learning system (rails), online education in stem fields, student engagement, stem online education, stem laboratory, online engineering education

Procedia PDF Downloads 60
42 Analytical Model of Locomotion of a Thin-Film Piezoelectric 2D Soft Robot Including Gravity Effects

Authors: Zhiwu Zheng, Prakhar Kumar, Sigurd Wagner, Naveen Verma, James C. Sturm

Abstract:

Soft robots have drawn great interest recently due to a rich range of possible shapes and motions they can take on to address new applications, compared to traditional rigid robots. Large-area electronics (LAE) provides a unique platform for creating soft robots by leveraging thin-film technology to enable the integration of a large number of actuators, sensors, and control circuits on flexible sheets. However, the rich shapes and motions possible, especially when interacting with complex environments, pose significant challenges to forming well-generalized and robust models necessary for robot design and control. In this work, we describe an analytical model for predicting the shape and locomotion of a flexible (steel-foil-based) piezoelectric-actuated 2D robot based on Euler-Bernoulli beam theory. It is nominally (unpowered) lying flat on the ground, and when powered, its shape is controlled by an array of piezoelectric thin-film actuators. Key features of the models are its ability to incorporate the significant effects of gravity on the shape and to precisely predict the spatial distribution of friction against the contacting surfaces, necessary for determining inchworm-type motion. We verified the model by developing a distributed discrete element representation of a continuous piezoelectric actuator and by comparing its analytical predictions to discrete-element robot simulations using PyBullet. Without gravity, predicting the shape of a sheet with a linear array of piezoelectric actuators at arbitrary voltages is straightforward. However, gravity significantly distorts the shape of the sheet, causing some segments to flatten against the ground. Our work includes the following contributions: (i) A self-consistent approach was developed to exactly determine which parts of the soft robot are lifted off the ground, and the exact shape of these sections, for an arbitrary array of piezoelectric voltages and configurations. (ii) Inchworm-type motion relies on controlling the relative friction with the ground surface in different sections of the robot. By adding torque-balance to our model and analyzing shear forces, the model can then determine the exact spatial distribution of the vertical force that the ground is exerting on the soft robot. Through this, the spatial distribution of friction forces between ground and robot can be determined. (iii) By combining this spatial friction distribution with the shape of the soft robot, in the function of time as piezoelectric actuator voltages are changed, the inchworm-type locomotion of the robot can be determined. As a practical example, we calculated the performance of a 5-actuator system on a 50-µm thick steel foil. Piezoelectric properties of commercially available thin-film piezoelectric actuators were assumed. The model predicted inchworm motion of up to 200 µm per step. For independent verification, we also modelled the system using PyBullet, a discrete-element robot simulator. To model a continuous thin-film piezoelectric actuator, we broke each actuator into multiple segments, each of which consisted of two rigid arms with appropriate mass connected with a 'motor' whose torque was set by the applied actuator voltage. Excellent agreement between our analytical model and the discrete-element simulator was shown for both for the full deformation shape and motion of the robot.

Keywords: analytical modeling, piezoelectric actuators, soft robot locomotion, thin-film technology

Procedia PDF Downloads 138
41 Recent Findings of Late Bronze Age Mining and Archaeometallurgy Activities in the Mountain Region of Colchis (Southern Lechkhumi, Georgia)

Authors: Rusudan Chagelishvili, Nino Sulava, Tamar Beridze, Nana Rezesidze, Nikoloz Tatuashvili

Abstract:

The South Caucasus is one of the most important centers of prehistoric metallurgy, known for its Colchian bronze culture. Modern Lechkhumi – historical Mountainous Colchis where the existence of prehistoric metallurgy is confirmed by the discovery of many artifacts is a part of this area. Studies focused on prehistoric smelting sites, related artefacts, and ore deposits have been conducted during last ten years in Lechkhumi. More than 20 prehistoric smelting sites and artefacts associated with metallurgical activities (ore roasting furnaces, slags, crucible, and tuyères fragments) have been identified so far. Within the framework of integrated studies was established that these sites were operating in 13-9 centuries B.C. and used for copper smelting. Palynological studies of slags revealed that chestnut (Castanea sativa) and hornbeam (Carpinus sp.) wood were used as smelting fuel. Geological exploration-analytical studies revealed that copper ore mining, processing, and smelting sites were distributed close to each other. Despite recent complex data, the signs of prehistoric mines (trenches) haven’t been found in this part of the study area so far. Since 2018 the archaeological-geological exploration has been focused on the southern part of Lechkhumi and covered the areas of villages Okureshi and Opitara. Several copper smelting sites (Okureshi 1 and 2, Opitara 1), as well as a Colchian Bronze culture settlement, have been identified here. Three mine workings have been found in the narrow gorge of the river Rtkhmelebisgele in the vicinities of the village Opitara. In order to establish a link between the Opitara-Okureshi archaeometallurgical sites, Late Bronze Age settlements, and mines, various scientific analytical methods -mineralized rock and slags petrography and atomic absorption spectrophotometry (AAS) analysis have been applied. The careful examination of Opitara mine workings revealed that there is a striking difference between the mine #1 on the right bank of the river and mines #2 and #3 on the left bank. The first one has all characteristic features of the Soviet period mine working (e. g. high portal with angular ribs and roof showing signs of blasting). In contrast, mines #2 and #3, which are located very close to each other, have round-shaped portals/entrances, low roofs, and fairly smooth ribs and are filled with thick layers of river sediments and collapsed weathered rock mass. A thorough review of the publications related to prehistoric mine workings revealed some striking similarities between mines #2 and #3 with their worldwide analogues. Apparently, the ore extraction from these mines was conducted by fire-setting applying primitive tools. It was also established that mines are cut in Jurassic mineralized volcanic rocks. Ore minerals (chalcopyrite, pyrite, galena) are related to calcite and quartz veins. The results obtained through the petrochemical and petrography studies of mineralized rock samples from Opitara mines and prehistoric slags are in complete correlation with each other, establishing the direct link between copper mining and smelting within the study area. Acknowledgment: This work was supported by the Shota Rustaveli National Science Foundation of Georgia (grant # FR-19-13022).

Keywords: archaeometallurgy, Mountainous Colchis, mining, ore minerals

Procedia PDF Downloads 150
40 Modeling and Performance Evaluation of an Urban Corridor under Mixed Traffic Flow Condition

Authors: Kavitha Madhu, Karthik K. Srinivasan, R. Sivanandan

Abstract:

Indian traffic can be considered as mixed and heterogeneous due to the presence of various types of vehicles that operate with weak lane discipline. Consequently, vehicles can position themselves anywhere in the traffic stream depending on availability of gaps. The choice of lateral positioning is an important component in representing and characterizing mixed traffic. The field data provides evidence that the trajectory of vehicles in Indian urban roads have significantly varying longitudinal and lateral components. Further, the notion of headway which is widely used for homogeneous traffic simulation is not well defined in conditions lacking lane discipline. From field data it is clear that following is not strict as in homogeneous and lane disciplined conditions and neighbouring vehicles ahead of a given vehicle and those adjacent to it could also influence the subject vehicles choice of position, speed and acceleration. Given these empirical features, the suitability of using headway distributions to characterize mixed traffic in Indian cities is questionable, and needs to be modified appropriately. To address these issues, this paper attempts to analyze the time gap distribution between consecutive vehicles (in a time-sense) crossing a section of roadway. More specifically, to characterize the complex interactions noted above, the influence of composition, manoeuvre types, and lateral placement characteristics on time gap distribution is quantified in this paper. The developed model is used for evaluating various performance measures such as link speed, midblock delay and intersection delay which further helps to characterise the vehicular fuel consumption and emission on urban roads of India. Identifying and analyzing exact interactions between various classes of vehicles in the traffic stream is essential for increasing the accuracy and realism of microscopic traffic flow modelling. In this regard, this study aims to develop and analyze time gap distribution models and quantify it by lead lag pair, manoeuvre type and lateral position characteristics in heterogeneous non-lane based traffic. Once the modelling scheme is developed, this can be used for estimating the vehicle kilometres travelled for the entire traffic system which helps to determine the vehicular fuel consumption and emission. The approach to this objective involves: data collection, statistical modelling and parameter estimation, simulation using calibrated time-gap distribution and its validation, empirical analysis of simulation result and associated traffic flow parameters, and application to analyze illustrative traffic policies. In particular, video graphic methods are used for data extraction from urban mid-block sections in Chennai, where the data comprises of vehicle type, vehicle position (both longitudinal and lateral), speed and time gap. Statistical tests are carried out to compare the simulated data with the actual data and the model performance is evaluated. The effect of integration of above mentioned factors in vehicle generation is studied by comparing the performance measures like density, speed, flow, capacity, area occupancy etc under various traffic conditions and policies. The implications of the quantified distributions and simulation model for estimating the PCU (Passenger Car Units), capacity and level of service of the system are also discussed.

Keywords: lateral movement, mixed traffic condition, simulation modeling, vehicle following models

Procedia PDF Downloads 317
39 Effects of Combined Lewis Acid and Ultrasonic Pretreatment on the Physicochemical Properties of Heat-Treated Moso Bamboo

Authors: Tianfang Zhang, Luxi He, Zhengbin He, Songlin Yi

Abstract:

Moso bamboo is a common non-wood forest resource in Asia that is widely used in construction, furniture, and other fields. Influenced by the heterogeneous structure and various hygroscopic groups of bamboo, the deformation occurs as moisture absorption and desorption when the environment temperature and humidity conditions change. Thermal modification is a well-established commercial technology for improving the dimensional stability of bamboo. However, the higher energy consumption and carbon emissions limit its further development. Previous studies have indicated that inorganic salt-assisted thermal modification could lead to significant reductions in moisture absorption and energy consumption. Represented by metal chlorides, it could show Lewis acid properties when dissolved in water, generating metal ion ligand complexes. In addition, ultrasonic treatment, as an efficient and environmentally friendly physical treatment method, improved the accessibility of pretreatment chemical impregnation agents and intensified mass and heat transfer during reactions. To save energy and reduce deformation, this study elucidates the influence of zinc chloride-ultrasonic treatment on the physicochemical properties of heat-treated bamboo, and the details of the bamboo deformation mechanism with Lewis acid are explained. Three sets of parameters (inorganic salt concentration, ultrasonic frequency and heat treatment temperature) were designed, and an optimized process was proposed to clarify this scientific question, that is: 5% (w/w) zinc chloride solution, 40 kHz ultrasonic waves and heat treatment at 160 °C. The samples were characterized by different means to analyze changes in their macroscopic features, pore structure, chemical structure and chemical composition. The results suggested that the maximum weight loss rate was reduced by at least 19.75%. The maximum thermal degradation peak of hemicellulose was significantly shifted forward. The hygroscopicity was reduced by 10.15%, the relative crystallinity was increased by 4.4%, the surface contact angle was increased by 25.2%, and the color change was increased by 23.60 in the optimal condition. From the electron microscope observation, the treated surface became rougher, and cracks appeared in some weaker areas, accelerating starch loss and removing granular attachments around the pits. By ion diffusion, zinc ions diffused into hemicellulose and a partial amorphous region of cellulose. Parts of the cell wall structure were subjected to swelling and degradation, leading to the broken state of parenchyma cells. From the Raman spectrum, compared to conventional thermal modifications, hemicellulose thermal degradation and lignin migration is promoted by Lewis acid under dilute acid-thermal condition. As shown in this work, the combined Lewis acid and ultrasonic pretreatment as an environmentally friendly, safe, and efficient physic-chemical combined pretreatment method improved the dimensional stability of Moso bamboo and lowered the thermal degradation conditions. This method has great potential for development in the field of bamboo heat treatment, and it might provide some guidance for making dark bamboo flooring.

Keywords: Moso bamboo, Lewis acid, ultrasound, heat treatment

Procedia PDF Downloads 33
38 In-Depth Investigations on the Sequences of Accidents of Powered Two Wheelers Based on Police Crash Reports of Medan, North Sumatera Province Indonesia, Using Decision Aiding Processes

Authors: Bangun F., Crevits B., Bellet T., Banet A., Boy G. A., Katili I.

Abstract:

This paper seeks the incoherencies in cognitive process during an accident of Powered Two Wheelers (PTW) by understanding the factual sequences of events and causal relations for each case of accident. The principle of this approach is undertaking in-depth investigations on case per case of PTW accidents based on elaborate data acquisitions on accident sites that officially stamped in Police Crash Report (PCRs) 2012 of Medan with criteria, involved at least one PTW and resulted in serious injury and fatalities. The analysis takes into account four modules: accident chronologies, perpetrator, and victims, injury surveillance, vehicles and road infrastructures, comprising of traffic facilities, road geometry, road alignments and weather. The proposal for improvement could have provided a favorable influence on the chain of functional processes and events leading to collision. Decision Aiding Processes (DAP) assists in structuring different entities at different decisional levels, as each of these entities has its own objectives and constraints. The entities (A) are classified into 6 groups of accidents: solo PTW accidents; PTW vs. PTW; PTW vs. pedestrian; PTW vs. motor-trishaw; and PTW vs. other vehicles and consecutive crashes. The entities are also distinguished into 4 decisional levels: level of road users and street systems; operational level (crash-attended police officers or CAPO and road engineers), tactical level (Regional Traffic Police, Department of Transportation, and Department of Public Work), and strategic level (Traffic Police Headquarters (TCPHI)), parliament, Ministry of Transportation and Ministry of Public Work). These classifications will lead to conceptualization of Problem Situations (P) and Problem Formulations (I) in DAP context. The DAP concerns the sequences process of the incidents until the time the accident occurs, which can be modelled in terms of five activities of procedural rationality: identification on initial human features (IHF), investigation on proponents attributes (PrAT), on Injury Surveillance (IS), on the interaction between IHF and PrAt and IS (intercorrelation), then unravel the sequences of incidents; filtering and disclosure, which include: what needs to activate, modify or change or remove, what is new and what is priority. These can relate to the activation or modification or new establishment of law. The PrAt encompasses the problems of environmental, road infrastructure, road and traffic facilities, and road geometry. The evaluation model (MP) is generated to bridge P and I since MP is produced by the intercorrelations among IHF, PrAT and IS extracted from the PCRs 2012 of Medan. There are 7 findings of incoherences: lack of knowledge and awareness on the traffic regulations and the risks of accidents, especially when riding between 0 < x < 10 km from house, riding between 22 p.m.–05.30 a.m.; lack of engagements on procurement of IHF Data by CAPO; lack of competency of CAPO on data procurement in accident-sites; no intercorrelation among IHF and PrAt and IS in the database systems of PCRs; lack of maintenance and supervision on the availabilities and the capacities of traffic facilities and road infrastructure; instrumental bias with wash-back impacts towards the TCPHI; technical robustness with wash-back impacts towards the CAPO and TCPHI.

Keywords: decision aiding processes, evaluation model, PTW accidents, police crash reports

Procedia PDF Downloads 127
37 Fuzzy Data, Random Drift, and a Theoretical Model for the Sequential Emergence of Religious Capacity in Genus Homo

Authors: Margaret Boone Rappaport, Christopher J. Corbally

Abstract:

The ancient ape ancestral population from which living great ape and human species evolved had demographic features affecting their evolution. The population was large, had great genetic variability, and natural selection was effective at honing adaptations. The emerging populations of chimpanzees and humans were affected more by founder effects and genetic drift because they were smaller. Natural selection did not disappear, but it was not as strong. Consequences of the 'population crash' and the human effective population size are introduced briefly. The history of the ancient apes is written in the genomes of living humans and great apes. The expansion of the brain began before the human line emerged. Coalescence times for some genes are very old – up to several million years, long before Homo sapiens. The mismatch between gene trees and species trees highlights the anthropoid speciation processes, and gives the human genome history a fuzzy, probabilistic quality. However, it suggests traits that might form a foundation for capacities emerging later. A theoretical model is presented in which the genomes of early ape populations provide the substructure for the emergence of religious capacity later on the human line. The model does not search for religion, but its foundations. It suggests a course by which an evolutionary line that began with prosimians eventually produced a human species with biologically based religious capacity. The model of the sequential emergence of religious capacity relies on cognitive science, neuroscience, paleoneurology, primate field studies, cognitive archaeology, genomics, and population genetics. And, it emphasizes five trait types: (1) Documented, positive selection of sensory capabilities on the human line may have favored survival, but also eventually enriched human religious experience. (2) The bonobo model suggests a possible down-regulation of aggression and increase in tolerance while feeding, as well as paedomorphism – but, in a human species that remains cognitively sharp (unlike the bonobo). The two species emerged from the same ancient ape population, so it is logical to search for shared traits. (3) An up-regulation of emotional sensitivity and compassion seems to have occurred on the human line. This finds support in modern genetic studies. (4) The authors’ published model of morality's emergence in Homo erectus encompasses a cognitively based, decision-making capacity that was hypothetically overtaken, in part, by religious capacity. Together, they produced a strong, variable, biocultural capability to support human sociability. (5) The full flowering of human religious capacity came with the parietal expansion and smaller face (klinorhynchy) found only in Homo sapiens. Details from paleoneurology suggest the stage was set for human theologies. Larger parietal lobes allowed humans to imagine inner spaces, processes, and beings, and, with the frontal lobe, led to the first theologies composed of structured and integrated theories of the relationships between humans and the supernatural. The model leads to the evolution of a small population of African hominins that was ready to emerge with religious capacity when the species Homo sapiens evolved two hundred thousand years ago. By 50-60,000 years ago, when human ancestors left Africa, they were fully enabled.

Keywords: genetic drift, genomics, parietal expansion, religious capacity

Procedia PDF Downloads 312
36 Application of Satellite Remote Sensing in Support of Water Exploration in the Arab Region

Authors: Eman Ghoneim

Abstract:

The Arabian deserts include some of the driest areas on Earth. Yet, its landforms reserved a record of past wet climates. During humid phases, the desert was green and contained permanent rivers, inland deltas and lakes. Some of their water would have seeped and replenished the groundwater aquifers. When the wet periods came to an end, several thousand years ago, the entire region transformed into an extended band of desert and its original fluvial surface was totally covered by windblown sand. In this work, radar and thermal infrared images were used to reveal numerous hidden surface/subsurface features. Radar long wavelength has the unique ability to penetrate surface dry sands and uncover buried subsurface terrain. Thermal infrared also proven to be capable of spotting cooler moist areas particularly in hot dry surfaces. Integrating Radarsat images and GIS revealed several previously unknown paleoriver and lake basins in the region. One of these systems, known as the Kufrah, is the largest yet identified river basin in the Eastern Sahara. This river basin, which straddles the border between Egypt and Libya, flowed north parallel to the adjacent Nile River with an extensive drainage area of 235,500 km2 and massive valley width of 30 km in some parts. This river was most probably served as a spillway for an overflow from Megalake Chad to the Mediterranean Sea and, thus, may have acted as a natural water corridor used by human ancestors to migrate northward across the Sahara. The Gilf-Kebir is another large paleoriver system located just east of Kufrah and emanates from the Gilf Plateau in Egypt. Both river systems terminate with vast inland deltas at the southern margin of the Great Sand Sea. The trends of their distributary channels indicate that both rivers drained to a topographic depression that was periodically occupied by a massive lake. During dry climates, the lake dried up and roofed by sand deposits, which is today forming the Great Sand Sea. The enormity of the lake basin provides explanation as to why continuous extraction of groundwater in this area is possible. A similar lake basin, delimited by former shorelines, was detected by radar space data just across the border of Sudan. This lake, called the Northern Darfur Megalake, has a massive size of 30,750 km2. These former lakes and rivers could potentially hold vast reservoirs of groundwater, oil and natural gas at depth. Similar to radar data, thermal infrared images were proven to be useful in detecting potential locations of subsurface water accumulation in desert regions. Analysis of both Aster and daily MODIS thermal channels reveal several subsurface cool moist patches in the sandy desert of the Arabian Peninsula. Analysis indicated that such evaporative cooling anomalies were resulted from the subsurface transmission of the Monsoonal rainfall from the mountains to the adjacent plain. Drilling a number of wells in several locations proved the presence of productive water aquifers confirming the validity of the used data and the adopted approaches for water exploration in dry regions.

Keywords: radarsat, SRTM, MODIS, thermal infrared, near-surface water, ancient rivers, desert, Sahara, Arabian peninsula

Procedia PDF Downloads 216
35 Experimental Characterisation of Composite Panels for Railway Flooring

Authors: F. Pedro, S. Dias, A. Tadeu, J. António, Ó. López, A. Coelho

Abstract:

Railway transportation is considered the most economical and sustainable way to travel. However, future mobility brings important challenges to railway operators. The main target is to develop solutions that stimulate sustainable mobility. The research and innovation goals for this domain are efficient solutions, ensuring an increased level of safety and reliability, improved resource efficiency, high availability of the means (train), and satisfied passengers with the travel comfort level. These requirements are in line with the European Strategic Agenda for the 2020 rail sector, promoted by the European Rail Research Advisory Council (ERRAC). All these aspects involve redesigning current equipment and, in particular, the interior of the carriages. Recent studies have shown that two of the most important requirements for passengers are reasonable ticket prices and comfortable interiors. Passengers tend to use their travel time to rest or to work, so train interiors and their systems need to incorporate features that meet these requirements. Among the various systems that integrate train interiors, the flooring system is one of the systems with the greatest impact on passenger safety and comfort. It is also one of the systems that takes more time to install on the train, and which contributes seriously to the weight (mass) of all interior systems. Additionally, it presents a strong impact on manufacturing costs. The design of railway floor, in the development phase, is usually made relying on a design software that allows to draw and calculate several solutions in a short period of time. After obtaining the best solution, considering the goals previously defined, experimental data is always necessary and required. This experimental phase has such great significance, that its outcome can provoke the revision of the designed solution. This paper presents the methodology and some of the results of an experimental characterisation of composite panels for railway application. The mechanical tests were made for unaged specimens and for specimens that suffered some type of aging, i.e. heat, cold and humidity cycles or freezing/thawing cycles. These conditionings aim to simulate not only the time effect, but also the impact of severe environmental conditions. Both full solutions and separated components/materials were tested. For the full solution, (panel) these were: four-point bending tests, tensile shear strength, tensile strength perpendicular to the plane, determination of the spreading of water, and impact tests. For individual characterisation of the components, more specifically for the covering, the following tests were made: determination of the tensile stress-strain properties, determination of flexibility, determination of tear strength, peel test, tensile shear strength test, adhesion resistance test and dimensional stability. The main conclusions were that experimental characterisation brings a huge contribution to understand the behaviour of the materials both individually and assembled. This knowledge contributes to the increase the quality and improvements of premium solutions. This research work was framed within the POCI-01-0247-FEDER-003474 (coMMUTe) Project funded by Portugal 2020 through the COMPETE 2020.

Keywords: durability, experimental characterization, mechanical tests, railway flooring system

Procedia PDF Downloads 122
34 A Study of Seismic Design Approaches for Steel Sheet Piles: Hydrodynamic Pressures and Reduction Factors Using CFD and Dynamic Calculations

Authors: Helena Pera, Arcadi Sanmartin, Albert Falques, Rafael Rebolo, Xavier Ametller, Heiko Zillgen, Cecile Prum, Boris Even, Eric Kapornyai

Abstract:

Sheet piles system can be an interesting solution when dealing with harbors or quays designs. However, current design methods lead to conservative approaches due to the lack of specific basis of design. For instance, some design features still deal with pseudo-static approaches, although being a dynamic problem. Under this concern, the study particularly focuses on hydrodynamic water pressure definition and stability analysis of sheet pile system under seismic loads. During a seismic event, seawater produces hydrodynamic pressures on structures. Currently, design methods introduce hydrodynamic forces by means of Westergaard formulation and Eurocodes recommendations. They apply constant hydrodynamic pressure on the front sheet pile during the entire earthquake. As a result, the hydrodynamic load may represent 20% of the total forces produced on the sheet pile. Nonetheless, some studies question that approach. Hence, this study assesses the soil-structure-fluid interaction of sheet piles under seismic action in order to evaluate if current design strategies overestimate hydrodynamic pressures. For that purpose, this study performs various simulations by Plaxis 2D, a well-known geotechnical software, and CFD models, which treat fluid dynamic behaviours. Knowing that neither Plaxis nor CFD can resolve a soil-fluid coupled problem, the investigation imposes sheet pile displacements from Plaxis as input data for the CFD model. Then, it provides hydrodynamic pressures under seismic action, which fit theoretical Westergaard pressures if calculated using the acceleration at each moment of the earthquake. Thus, hydrodynamic pressures fluctuate during seismic action instead of remaining constant, as design recommendations propose. Additionally, these findings detect that hydrodynamic pressure contributes a 5% to the total load applied on sheet pile due to its instantaneous nature. These results are in line with other studies that use added masses methods for hydrodynamic pressures. Another important feature in sheet pile design is the assessment of the geotechnical overall stability. It uses pseudo-static analysis since the dynamic analysis cannot provide a safety calculation. Consequently, it estimates the seismic action. One of its relevant factors is the selection of the seismic reduction factor. A huge amount of studies discusses the importance of it but also about all its uncertainties. Moreover, current European standards do not propose a clear statement on that, and they recommend using a reduction factor equal to 1. This leads to conservative requirements when compared with more advanced methods. Under this situation, the study calibrates seismic reduction factor by fitting results from pseudo-static to dynamic analysis. The investigation concludes that pseudo-static analyses could reduce seismic action by 40-50%. These results are in line with some studies from Japanese and European working groups. In addition, it seems suitable to account for the flexibility of the sheet pile-soil system. Nevertheless, the calibrated reduction factor is subjected to particular conditions of each design case. Further research would contribute to specifying recommendations for selecting reduction factor values in the early stages of the design. In conclusion, sheet pile design still has chances for improving its design methodologies and approaches. Consequently, design could propose better seismic solutions thanks to advanced methods such as findings of this study.

Keywords: computational fluid dynamics, hydrodynamic pressures, pseudo-static analysis, quays, seismic design, steel sheet pile

Procedia PDF Downloads 116
33 Thermally Conductive Polymer Nanocomposites Based on Graphene-Related Materials

Authors: Alberto Fina, Samuele Colonna, Maria del Mar Bernal, Orietta Monticelli, Mauro Tortello, Renato Gonnelli, Julio Gomez, Chiara Novara, Guido Saracco

Abstract:

Thermally conductive polymer nanocomposites are of high interest for several applications including low-temperature heat recovery, heat exchangers in a corrosive environment and heat management in electronics and flexible electronics. In this paper, the preparation of thermally conductive nanocomposites exploiting graphene-related materials is addressed, along with their thermal characterization. In particular, correlations between 1- chemical and physical features of the nanoflakes and 2- processing conditions with the heat conduction properties of nanocomposites is studied. Polymers are heat insulators; therefore, the inclusion of conductive particles is the typical solution to obtain a sufficient thermal conductivity. In addition to traditional microparticles such as graphite and ceramics, several nanoparticles have been proposed, including carbon nanotubes and graphene, for the use in polymer nanocomposites. Indeed, thermal conductivities for both carbon nanotubes and graphenes were reported in the wide range of about 1500 to 6000 W/mK, despite such property may decrease dramatically as a function of the size, number of layers, the density of topological defects, re-hybridization defects as well as on the presence of impurities. Different synthetic techniques have been developed, including mechanical cleavage of graphite, epitaxial growth on SiC, chemical vapor deposition, and liquid phase exfoliation. However, the industrial scale-up of graphene, defined as an individual, single-atom-thick sheet of hexagonally arranged sp2-bonded carbons still remains very challenging. For large scale bulk applications in polymer nanocomposites, some graphene-related materials such as multilayer graphenes (MLG), reduced graphene oxide (rGO) or graphite nanoplatelets (GNP) are currently the most interesting graphene-based materials. In this paper, different types of graphene-related materials were characterized for their chemical/physical as well as for thermal properties of individual flakes. Two selected rGOs were annealed at 1700°C in vacuum for 1 h to reduce defectiveness of the carbon structure. Thermal conductivity increase of individual GNP with annealing was assessed via scanning thermal microscopy. Graphene nano papers were prepared from both conventional RGO and annealed RGO flakes. Characterization of the nanopapers evidenced a five-fold increase in the thermal diffusivity on the nano paper plane for annealed nanoflakes, compared to pristine ones, demonstrating the importance of structural defectiveness reduction to maximize the heat dissipation performance. Both pristine and annealed RGO were used to prepare polymer nanocomposites, by melt reactive extrusion. Thermal conductivity showed two- to three-fold increase in the thermal conductivity of the nanocomposite was observed for high temperature treated RGO compared to untreated RGO, evidencing the importance of using low defectivity nanoflakes. Furthermore, the study of different processing paremeters (time, temperature, shear rate) during the preparation of poly (butylene terephthalate) nanocomposites evidenced a clear correlation with the dispersion and fragmentation of the GNP nanoflakes; which in turn affected the thermal conductivity performance. Thermal conductivity of about 1.7 W/mK, i.e. one order of magnitude higher than for pristine polymer, was obtained with 10%wt of annealed GNPs, which is in line with state of the art nanocomposites prepared by more complex and less upscalable in situ polymerization processes.

Keywords: graphene, graphene-related materials, scanning thermal microscopy, thermally conductive polymer nanocomposites

Procedia PDF Downloads 244
32 Biodeterioration and Biodegradation of Historic Parks of UK by Algae

Authors: Syeda Fatima Manzelat

Abstract:

The present study aims to study the groups of algal genera that are responsible for the biodeterioration, biodegradation, and biological pollution of the structures and features of the two historic parks of the UK. Different sites of Campbell Park and Great Linford Manor Park in Milton Keynes are selected to study the morphological, aesthetic, and physical effects of the algal growth. Specimens and swabs were collected mechanically from selected sites. Algal specimens are preserved in Lugol’s solution and labelled with standard information. Photomicrograph analysis of slides using taxonomic keys and visual observation identified algal species that are homogenously and non-homogenously mixed in the aerial, terrestrial, and aquatic habitats. A qualitative study revealed seven classes of Algae. Most of the algal genera isolated have proven records of potential biodegradation, discoloration, and biological pollution. Chlorophyceae was predominantly represented by eleven genera: Chlorella, Chlorococcum Cladophora, Coenochloris Cylindrocapsa, Microspora, Prasiola, Spirogyra, Trentepholia, Ulothrix and Zygnema. Charophyceae is represented by four genera: Cosmarium, Klebsormidium, Mesotaenium, and Mougeotia. Xanthophyceae with two genera, Tribonema and Vaucheria. Bacillariophyceae (Diatoms) are represented by six genera: Acnanthes, Bacillaria, Fragilaria, Gomphonema, Synedra, and Tabellaria, Dinophyceae with a Dinoflagellate. Rhodophyceae included Bangia and Batrachospermum, Cyanophyceae with five genera, Chroococcus, Gloeocapsa, Scytonema, Stigonema and Oscillatoria. The quantitative analysis by statistical method revealed that Chlorophyceae was the predominant class, with eleven genera isolated from different sites of the two parks. Coenochloris of Chlorophyceae was isolated from thirteen sites during the study, followed by Gloeocapsa of Cyanophyceae, which is isolated from 12 sites. These two algae impart varying shades of green colour on the surfaces on which they form biofilms. Prasiola, Vaucheria, and Trentepholia were isolated only from Great Linford Park. Trentepholia imparted a significant orange colour to the walls and trees of the sites. The compounds present in algae that are responsible for discoloration are the green pigment chlorophyll, orange pigment β-carotene, and yellow pigment quinone. Mesotaenium, Dinoflagellate, Gomphonema, Fragilaria, Tabellaria and two unidentified genera were isolated from Campbell Park only. Largest number of algal genera (25) were isolated from the canal of Campbell Park followed by (21) from the canal at Great Linford Manor Park. The Algae were found to grow on surfaces of walls, wooden fencings, metal sculptures, and railings. The Algae are reported to induce surface erosion, natural weathering, and cracking, leading to technical and mechanical instability and extensive damage to building materials. The algal biofilms secrete different organic acids, which are responsible for biosolubilization and biodeterioration of the building materials. The aquatic algal blooms isolated during the study release toxins which are responsible for allergy, skin rashes, vomiting, diarrhea, fever, muscle spasms, and lung and throat infections. The study identifies the places and locations at the historic sites which need to be paid attention. It provides an insight to the conservation strategies to overcome the negative impacts of bio colonization by algae. Prevention measures by different treatments need to be regularly monitored.

Keywords: algae, biodegradation, historic gardens, UK

Procedia PDF Downloads 17
31 Well Inventory Data Entry: Utilization of Developed Technologies to Progress the Integrated Asset Plan

Authors: Danah Al-Selahi, Sulaiman Al-Ghunaim, Bashayer Sadiq, Fatma Al-Otaibi, Ali Ameen

Abstract:

In light of recent changes affecting the Oil & Gas Industry, optimization measures have become imperative for all companies globally, including Kuwait Oil Company (KOC). To keep abreast of the dynamic market, a detailed Integrated Asset Plan (IAP) was developed to drive optimization across the organization, which was facilitated through the in-house developed software “Well Inventory Data Entry” (WIDE). This comprehensive and integrated approach enabled centralization of all planned asset components for better well planning, enhancement of performance, and to facilitate continuous improvement through performance tracking and midterm forecasting. Traditionally, this was hard to achieve as, in the past, various legacy methods were used. This paper briefly describes the methods successfully adopted to meet the company’s objective. IAPs were initially designed using computerized spreadsheets. However, as data captured became more complex and the number of stakeholders requiring and updating this information grew, the need to automate the conventional spreadsheets became apparent. WIDE, existing in other aspects of the company (namely, the Workover Optimization project), was utilized to meet the dynamic requirements of the IAP cycle. With the growth of extensive features to enhance the planning process, the tool evolved into a centralized data-hub for all asset-groups and technical support functions to analyze and infer from, leading WIDE to become the reference two-year operational plan for the entire company. To achieve WIDE’s goal of operational efficiency, asset-groups continuously add their parameters in a series of predefined workflows that enable the creation of a structured process which allows risk factors to be flagged and helps mitigation of the same. This tool dictates assigned responsibilities for all stakeholders in a method that enables continuous updates for daily performance measures and operational use. The reliable availability of WIDE, combined with its user-friendliness and easy accessibility, created a platform of cross-functionality amongst all asset-groups and technical support groups to update contents of their respective planning parameters. The home-grown entity was implemented across the entire company and tailored to feed in internal processes of several stakeholders across the company. Furthermore, the implementation of change management and root cause analysis techniques captured the dysfunctionality of previous plans, which in turn resulted in the improvement of already existing mechanisms of planning within the IAP. The detailed elucidation of the 2 year plan flagged any upcoming risks and shortfalls foreseen in the plan. All results were translated into a series of developments that propelled the tool’s capabilities beyond planning and into operations (such as Asset Production Forecasts, setting KPIs, and estimating operational needs). This process exemplifies the ability and reach of applying advanced development techniques to seamlessly integrated the planning parameters of various assets and technical support groups. These techniques enables the enhancement of integrating planning data workflows that ultimately lay the founding plans towards an epoch of accuracy and reliability. As such, benchmarks of establishing a set of standard goals are created to ensure the constant improvement of the efficiency of the entire planning and operational structure.

Keywords: automation, integration, value, communication

Procedia PDF Downloads 113
30 Biophilic Design Strategies: Four Case-Studies from Northern Europe

Authors: Carmen García Sánchez

Abstract:

The UN's 17 Sustainable Development Goals – specifically the nº 3 and nº 11- urgently call for new architectural design solutions at different design scales to increase human contact with nature in the health and wellbeing promotion of primarily urban communities. The discipline of Interior Design offers an important alternative to large-scale nature-inclusive actions which are not always possible due to space limitations. These circumstances provide an immense opportunity to integrate biophilic design, a complex emerging and under-developed approach that pursues sustainable design strategies for increasing the human-nature connection through the experience of the built environment. Biophilic design explores the diverse ways humans are inherently inclined to affiliate with nature, attach meaning to and derive benefit from the natural world. It represents a biological understanding of architecture which categorization is still in progress. The internationally renowned Danish domestic architecture built in the 1950´s and early 1960´s - a golden age of Danish modern architecture - left a leading legacy that has greatly influenced the domestic sphere and has further led the world in terms of good design and welfare. This study examines how four existing post-war domestic buildings establish a dialogue with nature and her variations over time. The case-studies unveil both memorable and unique biophilic resources through sophisticated and original design expressions, where transformative processes connect the users to the natural setting and reflect fundamental ways in which they attach meaning to the place. In addition, fascinating analogies in terms of this nature interaction with particular traditional Japanese architecture inform the research. They embody prevailing lessons for our time today. The research methodology is based on a thorough literature review combined with a phenomenological analysis into how these case-studies contribute to the connection between humans and nature, after conducting fieldwork throughout varying seasons to document understanding in nature transformations multi-sensory perception (via sight, touch, sound, smell, time and movement) as a core research strategy. The cases´ most outstanding features have been studied attending the following key parameters: 1. Space: 1.1. Relationships (itineraries); 1.2. Measures/scale; 2. Context: Context: Landscape reading in different weather/seasonal conditions; 3. Tectonic: 3.1. Constructive joints, elements assembly; 3.2. Structural order; 4. Materiality: 4.1. Finishes, 4.2. Colors; 4.3. Tactile qualities; 5. Daylight interplay. Departing from an artistic-scientific exploration this groundbreaking study provides sustainable practical design strategies, perspectives, and inspiration to boost humans´ contact with nature through the experience of the interior built environment. Some strategies are associated with access to outdoor space or require ample space, while others can thrive in a dense urban context without direct access to the natural environment. The objective is not only to produce knowledge, but to phase in biophilic design in the built environment, expanding its theory and practice into a new dimension. Its long-term vision is to efficiently enhance the health and well-being of urban communities through daily interaction with Nature.

Keywords: sustainability, biophilic design, architectural design, interior design, nature, Danish architecture, Japanese architecture

Procedia PDF Downloads 39
29 Pulmonary Disease Identification Using Machine Learning and Deep Learning Techniques

Authors: Chandu Rathnayake, Isuri Anuradha

Abstract:

Early detection and accurate diagnosis of lung diseases play a crucial role in improving patient prognosis. However, conventional diagnostic methods heavily rely on subjective symptom assessments and medical imaging, often causing delays in diagnosis and treatment. To overcome this challenge, we propose a novel lung disease prediction system that integrates patient symptoms and X-ray images to provide a comprehensive and reliable diagnosis.In this project, develop a mobile application specifically designed for detecting lung diseases. Our application leverages both patient symptoms and X-ray images to facilitate diagnosis. By combining these two sources of information, our application delivers a more accurate and comprehensive assessment of the patient's condition, minimizing the risk of misdiagnosis. Our primary aim is to create a user-friendly and accessible tool, particularly important given the current circumstances where many patients face limitations in visiting healthcare facilities. To achieve this, we employ several state-of-the-art algorithms. Firstly, the Decision Tree algorithm is utilized for efficient symptom-based classification. It analyzes patient symptoms and creates a tree-like model to predict the presence of specific lung diseases. Secondly, we employ the Random Forest algorithm, which enhances predictive power by aggregating multiple decision trees. This ensemble technique improves the accuracy and robustness of the diagnosis. Furthermore, we incorporate a deep learning model using Convolutional Neural Network (CNN) with the RestNet50 pre-trained model. CNNs are well-suited for image analysis and feature extraction. By training CNN on a large dataset of X-ray images, it learns to identify patterns and features indicative of lung diseases. The RestNet50 architecture, known for its excellent performance in image recognition tasks, enhances the efficiency and accuracy of our deep learning model. By combining the outputs of the decision tree-based algorithms and the deep learning model, our mobile application generates a comprehensive lung disease prediction. The application provides users with an intuitive interface to input their symptoms and upload X-ray images for analysis. The prediction generated by the system offers valuable insights into the likelihood of various lung diseases, enabling individuals to take appropriate actions and seek timely medical attention. Our proposed mobile application has significant potential to address the rising prevalence of lung diseases, particularly among young individuals with smoking addictions. By providing a quick and user-friendly approach to assessing lung health, our application empowers individuals to monitor their well-being conveniently. This solution also offers immense value in the context of limited access to healthcare facilities, enabling timely detection and intervention. In conclusion, our research presents a comprehensive lung disease prediction system that combines patient symptoms and X-ray images using advanced algorithms. By developing a mobile application, we provide an accessible tool for individuals to assess their lung health conveniently. This solution has the potential to make a significant impact on the early detection and management of lung diseases, benefiting both patients and healthcare providers.

Keywords: CNN, random forest, decision tree, machine learning, deep learning

Procedia PDF Downloads 49
28 Shakespeare's Hamlet in Ballet: Transformation of an Archival Recording of a Neoclassical Ballet Performance into a Contemporary Transmodern Dance Video Applying Postmodern Concepts and Techniques

Authors: Svebor Secak

Abstract:

This four-year artistic research project hosted by the University of New England, Australia has set the goal to experiment with non-conventional ways of presenting a language-based narrative in dance using insights of recent theoretical writing on performance, addressing the research question: How to transform an archival recording of a neoclassical ballet performance into a new artistic dance video by implementing postmodern philosophical concepts? The Creative Practice component takes the form of a dance video Hamlet Revisited which is a reworking of the archival recording of the neoclassical ballet Hamlet, augmented by new material, produced using resources, technicians and dancers of the Croatian National Theatre in Zagreb. The methodology for the creation of Hamlet Revisited consisted of extensive field and desk research after which three dancers were shown the recording of original Hamlet and then created their artistic response to it based on their reception and appreciation of it. The dancers responded differently, based upon their diverse dancing backgrounds and life experiences. They began in the role of the audience observing video of the original ballet and transformed into the role of the choreographer-performer. Their newly recorded material was edited and juxtaposed with the archival recording of Hamlet and other relevant footage, allowing for postmodern features such as aleatoric content, synchronicity, eclecticism and serendipity, that way establishing communication on a receptive reader-response basis, thus blending the roles of the choreographer, performer and spectator, creating an original work of art whose significance lies in the relationship and communication between styles, old and new choreographic approaches, artists and audiences and the transformation of their traditional roles and relationships. In editing and collating, the following techniques were used with the intention to avoid the singular narrative: fragmentation, repetition, reverse-motion, multiplication of images, split screen, overlaying X-rays, image scratching, slow-motion, freeze-frame and simultaneity. Key postmodern concepts considered were: deconstruction, diffuse authorship, supplementation, simulacrum, self-reflexivity, questioning the role of the author, intertextuality and incredulity toward grand narratives - departing from the original story, thus personalising its ontological themes. From a broad brush of diverse concepts and techniques applied in an almost prescriptive manner, the project focuses on intertextuality that proves to be valid on at least two levels. The first is the possibility of a more objective analysis in combination with a semiotic structuralist approach moving from strict relationships between signs to a multiplication of signifiers, considering the dance text as an open construction, containing the elusive and enigmatic quality of art that leaves the interpretive position open. The second one is the creation of the new work where the author functions as the editor, aware and conscious of the interplay of disparate texts and their sources which co-act in the mind during the creative process. It is argued here that the eclectic combination of the old and new material through constant oscillations of different discourses upon the same topic resulted in a transmodern integrationist recent work of art that might be applied as a model for reconsidering existing choreographic creations.

Keywords: Ballet Hamlet, intertextuality, transformation, transmodern dance video

Procedia PDF Downloads 220
27 Precocious Puberty Due to an Autonomous Ovarian Cyst in a 3-Year-Old Girl: Case Report

Authors: Aleksandra Chałupnik, Zuzanna Chilimoniuk, Joanna Borowik, Aleksandra Borkowska, Anna Torres

Abstract:

Background: Precocious puberty is the occurrence of secondary sexual characteristics in girls before the age of 8. The diverse etiology of premature puberty is crucial to determine whether it is true precocious puberty, depending on the activation of the hypothalamic-pituitary-gonadal axis, or pseudo-precocious, which is independent of the activation of this axis. Whatever the cause, premature action of the sex hormones leads to the common symptoms of various forms of puberty. These include the development of sexual characteristics, acne, acceleration of growth rate and acceleration of skeletal maturation. Due to the possible genetic basis of the disorders, an interdisciplinary search for the cause is needed. Case report: The case report concerns a patient of a pediatric gynecology clinic who, at the age of two years, developed advanced thelarhe (M3) and started recurrent vaginal bleeding. In August 2019, gonadotropin suppression initially and after LHRH stimulation and high estradiol levels were reported at the Endocrinology Department. Imaging examinations showed a cyst in the right ovary projection. The bone age was six years. The entire clinical picture indicated pseudo- (peripheral) precocious in the course of ovarian autonomic cyst. In the follow-up ultrasound performed in September, the image of the cyst was stationary and normalization of estradiol levels and clinical symptoms was noted. In December 2019, cyst regression and normal gonadotropin and estradiol concentrations were found. In June 2020, white mucus tinged with blood on the underwear, without any other disturbing symptoms, was observed for several days. Two consecutive USG examinations carried out in the same month confirmed the change in the right ovary, the diameter of which was 25 mm with a very high level of estradiol. Germinal tumor markers were normal. On the Tanner scale, the patient scored M2P1. The labia and hymen had puberty features. The correct vaginal entrance was visible. Another active vaginal bleeding occurred in the first week of July 2020. The considered laparoscopic treatment was abandoned due to the lack of oncological indications. Treatment with Tamoxifen was recommended in July 2020. In the initiating period of treatment, no maturation progression, and even reduction of symptoms, no acceleration of growth and a marked reduction in the size of the cysts were noted. There was no bleeding. After the size of the cyst and hormonal activity increased again, the treatment was changed to Anastrozole, the effect of which led to a reduction in the size of the cyst. Conclusions: The entire clinical picture indicates alleged (peripheral) puberty. Premature puberty in girls, which is manifested as enlarged mammary glands with high levels of estrogens secreted by autonomic ovarian cysts and prepubertal levels of gonadotropins, may indicate McCune-Albright syndrome. Vaginal bleeding may also occur in this syndrome. Cancellation of surgical treatment of the cyst made it impossible to perform a molecular test that would allow to confirm the diagnosis. Taking into account the fact that cysts are often one of the first symptoms of McCune-Albrigt syndrome, it is important to remember about multidisciplinary care for the patient and careful search for skin and bone changes or other hormonal disorders.

Keywords: McCune Albrigth's syndrome, ovarian cyst, pediatric gynaecology, precocious puberty

Procedia PDF Downloads 158
26 Enabling Wire Arc Additive Manufacturing in Aircraft Landing Gear Production and Its Benefits

Authors: Jun Wang, Chenglei Diao, Emanuele Pagone, Jialuo Ding, Stewart Williams

Abstract:

As a crucial component in aircraft, landing gear systems are responsible for supporting the plane during parking, taxiing, takeoff, and landing. Given the need for high load-bearing capacity over extended periods, 300M ultra-high strength steel (UHSS) is often the material of choice for crafting these systems due to its exceptional strength, toughness, and fatigue resistance. In the quest for cost-effective and sustainable manufacturing solutions, Wire Arc Additive Manufacturing (WAAM) emerges as a promising alternative for fabricating 300M UHSS landing gears. This is due to its advantages in near-net-shape forming of large components, cost-efficiency, and reduced lead times. Cranfield University has conducted an extensive preliminary study on WAAM 300M UHSS, covering feature deposition, interface analysis, and post-heat treatment. Both Gas Metal Arc (GMA) and Plasma Transferred Arc (PTA)-based WAAM methods were explored, revealing their feasibility for defect-free manufacturing. However, as-deposited 300M features showed lower strength but higher ductility compared to their forged counterparts. Subsequent post-heat treatments were effective in normalising the microstructure and mechanical properties, meeting qualification standards. A 300M UHSS landing gear demonstrator was successfully created using PTA-based WAAM, showcasing the method's precision and cost-effectiveness. The demonstrator, measuring Ф200mm x 700mm, was completed in 16 hours, using 7 kg of material at a deposition rate of 1.3kg/hr. This resulted in a significant reduction in the Buy-to-Fly (BTF) ratio compared to traditional manufacturing methods, further validating WAAM's potential for this application. A "cradle-to-gate" environmental impact assessment, which considers the cumulative effects from raw material extraction to customer shipment, has revealed promising outcomes. Utilising Wire Arc Additive Manufacturing (WAAM) for landing gear components significantly reduces the need for raw material extraction and refinement compared to traditional subtractive methods. This, in turn, lessens the burden on subsequent manufacturing processes, including heat treatment, machining, and transportation. Our estimates indicate that the carbon footprint of the component could be halved when switching from traditional machining to WAAM. Similar reductions are observed in embodied energy consumption and other environmental impact indicators, such as emissions to air, water, and land. Additionally, WAAM offers the unique advantage of part repair by redepositing only the necessary material, a capability not available through conventional methods. Our research shows that WAAM-based repairs can drastically reduce environmental impact, even when accounting for additional transportation for repairs. Consequently, WAAM emerges as a pivotal technology for reducing environmental impact in manufacturing, aiding the industry in its crucial and ambitious journey towards Net Zero. This study paves the way for transformative benefits across the aerospace industry, as we integrate manufacturing into a hybrid solution that offers substantial savings and access to more sustainable technologies for critical component production.

Keywords: WAAM, aircraft landing gear, microstructure, mechanical performance, life cycle assessment

Procedia PDF Downloads 120
25 Case Report: A Case of Confusion with Review of Sedative-Hypnotic Alprazolam Use

Authors: Agnes Simone

Abstract:

A 52-year-old male with unknown psychiatric and medical history was brought to the Psychiatric Emergency Room by ambulance directly from jail. He had been detained for three weeks for possession of a firearm while intoxicated. On initial evaluation, the patient was unable to provide a reliable history. He presented with odd jerking movements of his extremities and catatonic features, including mutism and stupor. His vital signs were stable. Patient was transferred to the medical emergency department for work-up of altered mental status. Due to suspicion for opioid overdose, the patient was given naloxone (Narcan) with no improvement. Laboratory work-up included complete blood count, comprehensive metabolic panel, thyroid stimulating hormone, vitamin B12, folate, magnesium, rapid plasma reagin, HIV, blood alcohol level, aspirin, and Tylenol blood levels, urine drug screen, and urinalysis, which were all negative. CT head and chest X-Ray were also negative. With this negative work-up, the medical team concluded there was no organic etiology and requested inpatient psychiatric admission. Upon re-evaluation by psychiatry, it was evident that the patient continued to have an altered mental status. Of note, the medical team did not include substance withdrawal in the differential diagnosis due to stable vital signs and a negative urine drug screen. The psychiatry team decided to check California's prescription drug monitoring program (CURES) and discovered that the patient was prescribed benzodiazepine alprazolam (Xanax) 2mg BID, a sedative-hypnotic, and hydrocodone/acetaminophen 10mg/325mg (Norco) QID, an opioid. After a thorough chart review, his daughter's contact information was found, and she confirmed his benzodiazepine and opioid use, with recent escalation and misuse. It was determined that the patient was experiencing alprazolam withdrawal, given this collateral information, his current symptoms, negative urine drug screen, and recent abrupt discontinuation of medications while incarcerated. After admission to the medical unit and two doses of alprazolam 2mg, the patient's mental status, alertness, and orientation improved, but he had no memory of the events that led to his hospitalization. He was discharged with a limited supply of alprazolam and a close follow-up to arrange a taper. Accompanying this case report, a qualitative review of presentations with alprazolam withdrawal was completed. This case and the review highlights: (1) Alprazolam withdrawal can occur at low doses and within just one week of use. (2) Alprazolam withdrawal can present without any vital sign instability. (3) Alprazolam withdrawal does not respond to short-acting benzodiazepines but does respond to certain long-acting benzodiazepines due to its unique chemical structure. (4) Alprazolam withdrawal is distinct from and more severe than other benzodiazepine withdrawals. This case highlights (1) the importance of physician utilization of drug-monitoring programs. This case, in particular, relied on California's drug monitoring program. (2) The importance of obtaining collateral information, especially in cases in which the patient is unable to provide a reliable history. (3) The importance of including substance intoxication and withdrawal in the differential diagnosis even when there is a negative urine drug screen. Toxidrome of withdrawal can be delayed. (4) The importance of discussing addiction and withdrawal risks of medications with patients.

Keywords: addiction risk of benzodiazepines, alprazolam withdrawal, altered mental status, benzodiazepines, drug monitoring programs, sedative-hypnotics, substance use disorder

Procedia PDF Downloads 93
24 Synthesis of Carbonyl Iron Particles Modified with Poly (Trimethylsilyloxyethyl Methacrylate) Nano-Grafts

Authors: Martin Cvek, Miroslav Mrlik, Michal Sedlacik, Tomas Plachy

Abstract:

Magnetorheological elastomers (MREs) are multi-phase composite materials containing micron-sized ferromagnetic particles dispersed in an elastomeric matrix. Their properties such as modulus, damping, magneto-striction, and electrical conductivity can be controlled by an external magnetic field and/or pressure. These features of the MREs are used in the development of damping devices, shock attenuators, artificial muscles, sensors or active elements of electric circuits. However, imperfections on the particle/matrix interfaces result in the lower performance of the MREs when compared with theoretical values. Moreover, magnetic particles are susceptible to corrosion agents such as acid rains or sea humidity. Therefore, the modification of particles is an effective tool for the improvement of MRE performance due to enhanced compatibility between particles and matrix as well as improvements of their thermo-oxidation and chemical stability. In this study, the carbonyl iron (CI) particles were controllably modified with poly(trimethylsilyloxyethyl methacrylate) (PHEMATMS) nano-grafts to develop magnetic core–shell structures exhibiting proper wetting with various elastomeric matrices resulting in improved performance within a frame of rheological, magneto-piezoresistance, pressure-piezoresistance, or radio-absorbing properties. The desired molecular weight of PHEMATMS nano-grafts was precisely tailored using surface-initiated atom transfer radical polymerization (ATRP). The CI particles were firstly functionalized using a 3-aminopropyltriethoxysilane agent, followed by esterification reaction with α-bromoisobutyryl bromide. The ATRP was performed in the anisole medium using ethyl α-bromoisobutyrate as a macroinitiator, N, N´, N´´, N´´-pentamethyldiethylenetriamine as a ligand, and copper bromide as an initiator. To explore the effect PHEMATMS molecular weights on final properties, two variants of core-shell structures with different nano-graft lengths were synthesized, while the reaction kinetics were designed through proper reactant feed ratios and polymerization times. The PHEMATMS nano-grafts were characterized by nuclear magnetic resonance and gel permeation chromatography proving information to their monomer conversions, molecular chain lengths, and low polydispersity indexes (1.28 and 1.35) as the results of the executed ATRP. The successful modifications were confirmed via Fourier transform infrared- and energy-dispersive spectroscopies while expected wavenumber outputs and element presences, respectively, of constituted PHEMATMS nano-grafts, were occurring in the spectra. The surface morphology of bare CI and their PHEMATMS-grafted analogues was further studied by scanning electron microscopy, and the thicknesses of grafted polymeric layers were directly observed by transmission electron microscopy. The contact angles as a measure of particle/matrix compatibility were investigated employing the static sessile drop method. The PHEMATMS nano-grafts enhanced compatibility of hydrophilic CI with low-surface-energy hydrophobic polymer matrix in terms of their wettability and dispersibility in an elastomeric matrix. Thus, the presence of possible defects at the particle/matrix interface is reduced, and higher performance of modified MREs is expected.

Keywords: atom transfer radical polymerization, core-shell, particle modification, wettability

Procedia PDF Downloads 174
23 Impacts of School-Wide Positive Behavioral Interventions and Supports on Student Academics, Behavior and Mental Health

Authors: Catherine Bradshaw

Abstract:

Educators often report difficulty managing behavior problems and other mental health concerns that students display at school. These concerns also interfere with the learning process and can create distraction for teachers and other students. As such, schools play an important role in both preventing and intervening with students who experience these types of challenges. A number of models have been proposed to serve as a framework for delivering prevention and early intervention services in schools. One such model is called Positive Behavioral Interventions and Supports (PBIS), which has been scaled-up to over 26,000 schools in the U.S. and many other countries worldwide. PBIS aims to improve a range of student outcomes through early detection of and intervention related to behavioral and mental health symptoms. PBIS blends and applies social learning, behavioral, and organizational theories to prevent disruptive behavior and enhance the school’s organizational health. PBIS focuses on creating and sustaining tier 1 (universal), tier 2 (selective), and tier 3 (individual) systems of support. Most schools using PBIS have focused on the core elements of the tier 1 supports, which includes the following critical features. The formation of a PBIS team within the school to lead implementation. Identification and training of a behavioral support ‘coach’, who serves as a on-site technical assistance provider. Many of the individuals identified to serve as a PBIS coach are also trained as a school psychologist or guidance counselor; coaches typically have prior PBIS experience and are trained to conduct functional behavioral assessments. The PBIS team also identifies a set of three to five positive behavioral expectations that are implemented for all students and by all staff school-wide (e.g., ‘be respectful, responsible, and ready to learn’); these expectations are posted in all settings across the school, including in the classroom, cafeteria, playground etc. All school staff define and teach the school-wide behavioral expectations to all students and review them regularly. Finally, PBIS schools develop or adopt a school-wide system to reward or reinforce students who demonstrate those 3-5 positive behavioral expectations. Staff and administrators create an agreed upon system for responding to behavioral violations that include definitions about what constitutes a classroom-managed vs. an office-managed discipline problem. Finally, a formal system is developed to collect, analyze, and use disciplinary data (e.g., office discipline referrals) to inform decision-making. This presentation provides a brief overview of PBIS and reports findings from a series of four U.S. based longitudinal randomized controlled trials (RCTs) documenting the impacts of PBIS on school climate, discipline problems, bullying, and academic achievement. The four RCTs include 80 elementary, 40 middle, and 58 high schools and results indicate a broad range of impacts on multiple student and school-wide outcomes. The session will highlight lessons learned regarding PBIS implementation and scale-up. We also review the ways in which PBIS can help educators and school leaders engage in data-based decision-making and share data with other decision-makers and stakeholders (e.g., students, parents, community members), with the overarching goal of increasing use of evidence-based programs in schools.

Keywords: positive behavioral interventions and supports, mental health, randomized trials, school-based prevention

Procedia PDF Downloads 200
22 Linguistic Insights Improve Semantic Technology in Medical Research and Patient Self-Management Contexts

Authors: William Michael Short

Abstract:

Semantic Web’ technologies such as the Unified Medical Language System Metathesaurus, SNOMED-CT, and MeSH have been touted as transformational for the way users access online medical and health information, enabling both the automated analysis of natural-language data and the integration of heterogeneous healthrelated resources distributed across the Internet through the use of standardized terminologies that capture concepts and relationships between concepts that are expressed differently across datasets. However, the approaches that have so far characterized ‘semantic bioinformatics’ have not yet fulfilled the promise of the Semantic Web for medical and health information retrieval applications. This paper argues within the perspective of cognitive linguistics and cognitive anthropology that four features of human meaning-making must be taken into account before the potential of semantic technologies can be realized for this domain. First, many semantic technologies operate exclusively at the level of the word. However, texts convey meanings in ways beyond lexical semantics. For example, transitivity patterns (distributions of active or passive voice) and modality patterns (configurations of modal constituents like may, might, could, would, should) convey experiential and epistemic meanings that are not captured by single words. Language users also naturally associate stretches of text with discrete meanings, so that whole sentences can be ascribed senses similar to the senses of words (so-called ‘discourse topics’). Second, natural language processing systems tend to operate according to the principle of ‘one token, one tag’. For instance, occurrences of the word sound must be disambiguated for part of speech: in context, is sound a noun or a verb or an adjective? In syntactic analysis, deterministic annotation methods may be acceptable. But because natural language utterances are typically characterized by polyvalency and ambiguities of all kinds (including intentional ambiguities), such methods leave the meanings of texts highly impoverished. Third, ontologies tend to be disconnected from everyday language use and so struggle in cases where single concepts are captured through complex lexicalizations that involve profile shifts or other embodied representations. More problematically, concept graphs tend to capture ‘expert’ technical models rather than ‘folk’ models of knowledge and so may not match users’ common-sense intuitions about the organization of concepts in prototypical structures rather than Aristotelian categories. Fourth, and finally, most ontologies do not recognize the pervasively figurative character of human language. However, since the time of Galen the widespread use of metaphor in the linguistic usage of both medical professionals and lay persons has been recognized. In particular, metaphor is a well-documented linguistic tool for communicating experiences of pain. Because semantic medical knowledge-bases are designed to help capture variations within technical vocabularies – rather than the kinds of conventionalized figurative semantics that practitioners as well as patients actually utilize in clinical description and diagnosis – they fail to capture this dimension of linguistic usage. The failure of semantic technologies in these respects degrades the efficiency and efficacy not only of medical research, where information retrieval inefficiencies can lead to direct financial costs to organizations, but also of care provision, especially in contexts of patients’ self-management of complex medical conditions.

Keywords: ambiguity, bioinformatics, language, meaning, metaphor, ontology, semantic web, semantics

Procedia PDF Downloads 97