Search results for: gravity separator tanks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 676

Search results for: gravity separator tanks

406 Solid Waste Management through Mushroom Cultivation: An Eco Friendly Approach

Authors: Mary Josephine

Abstract:

Waste of certain process can be the input source of other sectors in order to reduce environmental pollution. Today there are more and more solid wastes are generated, but only very small amount of those are recycled. So, the threatening of environmental pressure to public health is very serious. The methods considered for the treatment of solid waste are biogas tanks or processing to make animal feed and fertilizer, however, they did not perform well. An alternative approach is growing mushrooms on waste residues. This is regarded as an environmental friendly solution with potential economic benefit. The substrate producers do their best to produce quality substrate at low cost. Apart from other methods, this can be achieved by employing biologically degradable wastes used as the resource material component of the substrate. Mushroom growing is a significant tool for the restoration, replenishment and remediation of Earth’s overburdened ecosphere. One of the rational methods of waste utilization involves locally available wastes. The present study aims to find out the yield of mushroom grown on locally available waste for free and to conserve our environment by recycling wastes.

Keywords: biodegradable, environment, mushroom, remediation

Procedia PDF Downloads 368
405 Numerical Study on the Hazards of Gravitational Forces on Cerebral Aneurysms

Authors: Hashem M. Alargha, Mohammad O. Hamdan, Waseem H. Aziz

Abstract:

Aerobatic and military pilots are subjected to high gravitational forces that could cause blackout, physical injuries or death. A CFD simulation using fluid-solid interactions scheme has been conducted to investigate the gravitational effects and hazards inside cerebral aneurysms. Medical data have been used to derive the size and geometry of a simple aneurysm on a T-shaped bifurcation. The results show that gravitational force has no effect on maximum Wall Shear Stress (WSS); hence, it will not cause aneurysm initiation/formation. However, gravitational force cause causes hypertension which could contribute to aneurysm rupture.

Keywords: aneurysm, cfd, wall shear stress, gravity, fluid dynamics, bifurcation artery

Procedia PDF Downloads 344
404 The Optimum Biodiesel Blend in Low Sulfur Diesel and Its Physico-Chemical Properties and Economic Aspect

Authors: Ketsada Sutthiumporn, Sittichot Thongkaw, Malee Santikunaporn

Abstract:

In Thailand, biodiesel has been utilized as an attractive substitute of petroleum diesel and the government imposes a mandatory biodiesel blending requirement in transport sector to improve energy security, support agricultural sector and reduce emissions. Though biodiesel blend has many advantages over diesel fuel such as improved lubricity, low sulfur content and higher flash point, there are still some technical problems such as oxidative stability, poor cold- flow properties and impurity. Such problems were related to the fatty acid composition in feedstock. Moreover, Thailand has announced the use of low sulfur diesel as a base diesel and will be continually upgrading to EURO 5 in 2023. With ultra low sulfur content, it may affect the diesel fuel properties especially lubricity as well. Therefore, in this study, the physical and chemical properties of palm oil-based biodiesel in low sulfur diesel blends from different producers will be investigated by standard methods per ASTM and EN. Also, its economic benefits based on diesel price structure in Thailand will be highlighted. The appropriate biodiesel blend ratio can affect the physico-chemical properties and reasonable price in the country. Properties of biodiesel, including specific gravity, kinematic viscosity, FAME composition, flash point, sulfur, water, oxidation stability and lubricity were measured by standard methods of ASTM and EN. The results show that the FAME composition of biodiesel has the fatty acid of C12:0 to C20:1, mostly in C16:0, C18:0, C18:1, and C18:2, which were main characteristic compositions of palm biodiesel. The physical and chemical properties of biodiesel blended diesel was found to be increases with an increasing amount of biodiesel such as specific gravity, flash point and kinematic viscosity while sulfur value was decreased. Moreover, in this study, the various properties of each biodiesel blends were plotted to determine the appropriate proportional range of biodiesel-blended diesel with an optimum fuel price.It can be seen that the amount of B100 can be filled from 1% up to 7% in which the quality was in accordance with Notification of the department of Energy business.The understanding of relation between physico-chemical properties of palm oil-based biodiesel and pricing is beneficial to guide the better development of desired feedstock in Thailand and to implement biodiesel blends with comparative price and diesel engine performance.

Keywords: fatty acid methyl ester, biodiesel, fuel price structure, palm oil in Thailand

Procedia PDF Downloads 83
403 A Review on Enhancing Heat Transfer Processes by Open-Cell Metal Foams and Industrial Applications

Authors: S. Cheragh Dar, M. Saljooghi, A. Babrgir

Abstract:

In the last couple of decades researchers' attitudes were focused on developing and enhancing heat transfer processes by using new components or cellular solids that divide into stochastic structures and periodic structures. Open-cell metal foams are part of stochastic structures families that they can be considered as an avant-garde technology and they have unique properties, this porous media can have tremendous achievements in thermal processes. This paper argues and surveys postulating possible in industrial thermal issues which include: compact electronic cooling, heat exchanger, aerospace, fines, turbo machinery, automobiles, crygen tanks, biomechanics, high temperature filters and etc. Recently, by surveying exponential rate of publications in thermal open-cell metal foams, all can be demonstrated in a holistic view which can lead researchers to a new level of understanding in different industrial thermal sections.

Keywords: heat transfer, industrial thermal, cellular solids, open cell metal foam

Procedia PDF Downloads 272
402 Automation of Finite Element Simulations for the Design Space Exploration and Optimization of Type IV Pressure Vessel

Authors: Weili Jiang, Simon Cadavid Lopera, Klaus Drechsler

Abstract:

Fuel cell vehicle has become the most competitive solution for the transportation sector in the hydrogen economy. Type IV pressure vessel is currently the most popular and widely developed technology for the on-board storage, based on their high reliability and relatively low cost. Due to the stringent requirement on mechanical performance, the pressure vessel is subject to great amount of composite material, a major cost driver for the hydrogen tanks. Evidently, the optimization of composite layup design shows great potential in reducing the overall material usage, yet requires comprehensive understanding on underlying mechanisms as well as the influence of different design parameters on mechanical performance. Given the type of materials and manufacturing processes by which the type IV pressure vessels are manufactured, the design and optimization are a nuanced subject. The manifold of stacking sequence and fiber orientation variation possibilities have an out-standing effect on vessel strength due to the anisotropic property of carbon fiber composites, which make the design space high dimensional. Each variation of design parameters requires computational resources. Using finite element analysis to evaluate different designs is the most common method, however, the model-ing, setup and simulation process can be very time consuming and result in high computational cost. For this reason, it is necessary to build a reliable automation scheme to set up and analyze the di-verse composite layups. In this research, the simulation process of different tank designs regarding various parameters is conducted and automatized in a commercial finite element analysis framework Abaqus. Worth mentioning, the modeling of the composite overwrap is automatically generated using an Abaqus-Python scripting interface. The prediction of the winding angle of each layer and corresponding thickness variation on dome region is the most crucial step of the modeling, which is calculated and implemented using analytical methods. Subsequently, these different composites layups are simulated as axisymmetric models to facilitate the computational complexity and reduce the calculation time. Finally, the results are evaluated and compared regarding the ultimate tank strength. By automatically modeling, evaluating and comparing various composites layups, this system is applicable for the optimization of the tanks structures. As mentioned above, the mechanical property of the pressure vessel is highly dependent on composites layup, which requires big amount of simulations. Consequently, to automatize the simulation process gains a rapid way to compare the various designs and provide an indication of the optimum one. Moreover, this automation process can also be operated for creating a data bank of layups and corresponding mechanical properties with few preliminary configuration steps for the further case analysis. Subsequently, using e.g. machine learning to gather the optimum by the data pool directly without the simulation process.

Keywords: type IV pressure vessels, carbon composites, finite element analy-sis, automation of simulation process

Procedia PDF Downloads 93
401 Design and Optimization Fire Alarm System to Protect Gas Condensate Reservoirs With the Use of Nano-Technology

Authors: Hefzollah Mohammadian, Ensieh Hajeb, Mohamad Baqer Heidari

Abstract:

In this paper, for the protection and safety of tanks gases (flammable materials) and also due to the considerable economic value of the reservoir, the new system for the protection, the conservation and fire fighting has been cloned. The system consists of several parts: the Sensors to detect heat and fire with Nanotechnology (nano sensor), Barrier for isolation and protection from a range of two electronic zones, analyzer for detection and locating point of fire accurately, Main electronic board to announce fire, Fault diagnosis in different locations, such as relevant alarms and activate different devices for fire distinguish and announcement. An important feature of this system, high speed and capability of fire detection system in a way that is able to detect the value of the ambient temperature that can be adjusted. Another advantage of this system is autonomous and does not require human operator in place. Using nanotechnology, in addition to speeding up the work, reduces the cost of construction of the sensor and also the notification system and fire extinguish.

Keywords: analyser, barrier, heat resistance, general fault, general alarm, nano sensor

Procedia PDF Downloads 428
400 Vibration Mitigation in Partially Liquid-Filled Vessel Using Passive Energy Absorbers

Authors: Maor Farid, Oleg Gendelman

Abstract:

The following study deals with fluid vibration of a liquid in a partially filled vessel under periodic ground excitation. This external excitation might lead to hidraulic impact applied on the vessel inner walls. In order to model these sloshing dynamic regimes, several equivalent mechanical models were suggested in the literature, such as series of pendula or mass-spring systems that are able to impact the inner tank walls. In the following study, we use the latter methodology, use parameter values documented in literature corresponding to cylindrical tanks and consider structural elasticity of the tank. The hydraulic impulses are modeled by the high-exponent potential function. Additional system parameters are found with the help of Finite-Element (FE) analysis. Model-driven stress assessment method is developed. Finally, vibration mitigation performances of both tuned mass damper (TMD) and nonlinear energy sink (NES) are examined.

Keywords: nonlinear energy sink (NES), reduced-order modelling, liquid sloshing, vibration mitigation, vibro-impact dynamics

Procedia PDF Downloads 172
399 Impact of Twin Therapeutic Approaches on Certain Biophysiological Parameters among Breast Cancer Patients after Breast Surgery at Selected Hospital

Authors: Selvia Arokiya Mary

Abstract:

Introduction: Worldwide, breast cancer comprises 10.4% of all cancer incidence among women. In 2004, breast cancer caused 519,000 deaths worldwide (7% of cancer deaths; almost 1% of all deaths). Many women who undergo breast surgery suffer from ill-defined pain syndromes. STATEMENT OF THE PROBLEM: A study to assess the effectiveness of twin therapeutic approaches on certain bio-physiological parameters in breast cancer patients after breast surgery at selected hospital, Chennai. Objectives: This study is to 1. assess the level of certain biophysiological parameters in women after mastectomy. 2. assess the effectiveness of twin therapeutic approaches on certain biophysiological parameters in women after mastectomy. 3. correlate the practice of twin therapeutic approaches with certain biophysiological parameters. 4. associate the selected demographic variables with certain biophysiological parameters in women after mastectomy Research Design and Method: Pre experimental research design was used. Fifty women were selected by using convenient sampling technique at government general hospital, Chennai. Results: The Level of pain shows, in the study group 49(98%) of them had moderate in the pre test and after the intervention all of them had mild pain in the post test. In relation to level of shoulder function before the intervention shows that in the study group 49(98%) of them had movement towards gravity and after intervention 24 (48%) of them had movement against gravity maximum resistance. There was a significant reduction in pain and shoulder stiffness level at a ‘P’ level of < 0.001. There was a negative correlation between the pranayama practice and the level of pain, there was a positive correlation between the arm exercise practice and the level of shoulder function. There was no significant association between demographic and clinical variables with the level of pain and shoulder function in the study. Hypothesis: There is a significant difference in level of pain and shoulder function among women following breast surgery who receive pranayama & arm exercise programme. The pranayama had effect in terms of reduction of pain, arm exercise programme had effect in prevention of arm stiffness among post operative women following breast surgery. Thus the stated hypothesis was accepted. Conclusion: On the basis of the findings of the present study there was Advancing age related to increasing risk of breast cancer, level of pain also the type of surgery was associated with level of pain and shoulder function, There fore it is to be concluded that the study participants may get benefited by practice of pranayama and arm exercise program.

Keywords: biophysiological parameters breast surgery, lumpectomy , mastectomy, radical mastectomy, twin therapeutic approach, pranayama, arm exercise

Procedia PDF Downloads 219
398 Scope of Heavy Oil as a Fuel of the Future

Authors: Kiran P. Chadayamuri, Saransh Bagdi

Abstract:

Increasing imbalance between energy supply and demand has made nations and companies involved in the energy sector to boost up their research and find suitable solutions. With the high rates at which conventional oil and gas resources are depleting, efficient exploration and exploitation of heavy oil could just be the answer. Heavy oil may be defined as crude oil having API gravity value of less than 20⁰. They are highly viscous, have low hydrogen to carbon ratios and are known to produce high carbon residues. They have high contents of asphaltenes, heavy metals, sulphur and nitrogen in them. Due to these properties extraction, transportation and refining of crude oil have its share of challenges. Lack of suitable technology has hindered its production in the past, but now things are going in a more positive direction. The aim of this paper is to study the various advantages of heavy oil, associated limitations and its feasibility as a fuel of the future.

Keywords: energy, heavy oil, fuel, future

Procedia PDF Downloads 260
397 Comparison of the Distillation Curve Obtained Experimentally with the Curve Extrapolated by a Commercial Simulator

Authors: Lívia B. Meirelles, Erika C. A. N. Chrisman, Flávia B. de Andrade, Lilian C. M. de Oliveira

Abstract:

True Boiling Point distillation (TBP) is one of the most common experimental techniques for the determination of petroleum properties. This curve provides information about the performance of petroleum in terms of its cuts. The experiment is performed in a few days. Techniques are used to determine the properties faster with a software that calculates the distillation curve when a little information about crude oil is known. In order to evaluate the accuracy of distillation curve prediction, eight points of the TBP curve and specific gravity curve (348 K and 523 K) were inserted into the HYSYS Oil Manager, and the extended curve was evaluated up to 748 K. The methods were able to predict the curve with the accuracy of 0.6%-9.2% error (Software X ASTM), 0.2%-5.1% error (Software X Spaltrohr).

Keywords: distillation curve, petroleum distillation, simulation, true boiling point curve

Procedia PDF Downloads 412
396 Thermodynamic Modeling of Cryogenic Fuel Tanks with a Model-Based Inverse Method

Authors: Pedro A. Marques, Francisco Monteiro, Alessandra Zumbo, Alessia Simonini, Miguel A. Mendez

Abstract:

Cryogenic fuels such as Liquid Hydrogen (LH₂) must be transported and stored at extremely low temperatures. Without expensive active cooling solutions, preventing fuel boil-off over time is impossible. Hence, one must resort to venting systems at the cost of significant energy and fuel mass loss. These losses increase significantly in propellant tanks installed on vehicles, as the presence of external accelerations induces sloshing. Sloshing increases heat and mass transfer rates and leads to significant pressure oscillations, which might further trigger propellant venting. To make LH₂ economically viable, it is essential to minimize these factors by using advanced control techniques. However, these require accurate modelling and a full understanding of the tank's thermodynamics. The present research aims to implement a simple thermodynamic model capable of predicting the state of a cryogenic fuel tank under different operating conditions (i.e., filling, pressurization, fuel extraction, long-term storage, and sloshing). Since this model relies on a set of closure parameters to drive the system's transient response, it must be calibrated using experimental or numerical data. This work focuses on the former approach, wherein the model is calibrated through an experimental campaign carried out on a reduced-scale model of a cryogenic tank. The thermodynamic model of the system is composed of three control volumes: the ullage, the liquid, and the insulating walls. Under this lumped formulation, the governing equations are derived from energy and mass balances in each region, with mass-averaged properties assigned to each of them. The gas-liquid interface is treated as an infinitesimally thin region across which both phases can exchange mass and heat. This results in a coupled system of ordinary differential equations, which must be closed with heat and mass transfer coefficients between each control volume. These parameters are linked to the system evolution via empirical relations derived from different operating regimes of the tank. The derivation of these relations is carried out using an inverse method to find the optimal relations that allow the model to reproduce the available data. This approach extends classic system identification methods beyond linear dynamical systems via a nonlinear optimization step. Thanks to the data-driven assimilation of the closure problem, the resulting model accurately predicts the evolution of the tank's thermodynamics at a negligible computational cost. The lumped model can thus be easily integrated with other submodels to perform complete system simulations in real time. Moreover, by setting the model in a dimensionless form, a scaling analysis allowed us to relate the tested configurations to a representative full-size tank for naval applications. It was thus possible to compare the relative importance of different transport phenomena between the laboratory model and the full-size prototype among the different operating regimes.

Keywords: destratification, hydrogen, modeling, pressure-drop, pressurization, sloshing, thermodynamics

Procedia PDF Downloads 64
395 Poisson Type Spherically Symmetric Spacetimes

Authors: Gonzalo García-Reyes

Abstract:

Conformastat spherically symmetric exact solutions of Einstein's field equations representing matter distributions made of fluid both perfect and anisotropic from given solutions of Poisson's equation of Newtonian gravity are investigated. The approach is used in the construction of new relativistic models of thick spherical shells and three-component models of galaxies (bulge, disk, and dark matter halo), writing, in this case, the metric in cylindrical coordinates. In addition, the circular motion of test particles (rotation curves) along geodesics on the equatorial plane of matter configurations and the stability of the orbits against radial perturbations are studied. The models constructed satisfy all the energy conditions.

Keywords: general relativity, exact solutions, spherical symmetry, galaxy, kinematics and dynamics, dark matter

Procedia PDF Downloads 52
394 Strength Analysis of RCC Dams Subject to the Layer-by-Layer Construction Method

Authors: Archil Motsonelidze, Vitaly Dvalishvili

Abstract:

Existing roller compacted concrete (RCC) dams indicate that the layer-by-layer construction method gives considerable economies as compared with the conventional methods. RCC dams have also gained acceptance in the regions of high seismic activity. Earthquake resistance analysis of RCC gravity dams based on nonlinear finite element technique is presented. An elastic-plastic approach is used to describe the material of a dam while it is under static conditions (period of construction). Seismic force, as an acceleration equivalent to that produced by a real earthquake, is supposed to act when the dam is completed. The materials of the dam and foundation may be nonhomogeneous and anisotropic. The “dam-foundation” system is idealized as a plain strain problem.

Keywords: finite element method, layer-by-layer construction, RCC dams, strength analysis

Procedia PDF Downloads 527
393 3D Numerical Analysis of Stone Columns Reinforced with Horizontal and Vertical Geosynthetic Materials

Authors: R. Ziaie Moayed, A. Khalili

Abstract:

Improvement and reinforcement of soils with poor strength and engineering properties for constructing low height structures or structures such as liquid storage tanks, bridge columns, and heavy structures have necessitated applying particular techniques. Stone columns are among the well-known methods applied in such soils. This method provides an economically justified way for improving engineering properties of soft clay and loose sandy soils. Stone column implementation in these soils increases their bearing capacity and reduces the settlement of foundation build on them. In the present study, the finite difference based FLAC3D software was used to investigate the performance and effect of soil reinforcement through stone columns without lining and those with geosynthetic lining with different levels of stiffness in horizontal and vertical modes in clayey soils. The results showed that soil improvement using stone columns with lining in vertical and horizontal modes results in improvement of bearing capacity and foundation settlement.

Keywords: bearing capacity, FLAC3D, geosynthetic, settlement, stone column

Procedia PDF Downloads 146
392 Effects of Starvation Stress on Antioxidant Defense System in Rainbow Trout (Oncorhynchus mykiss)

Authors: Metin Çenesi̇z, Büşra Şahi̇n

Abstract:

The sustainability of aquaculture is possible through the conscious use of resources and minimization of environmental impacts. These can be achieved through science-based planning, ecosystem-based management, strict observations and controls. The ideal water temperature for rainbow trout, which are intensively farmed in the Black Sea Region of Turkey, should be below 20 oC. In summer, the water temperature exceeds this value in some dams where production is carried out. For this reason, it has become obligatory to transfer to dams where the water temperature is low in order to provide suitable temperature conditions. There are many factors that may cause stress to trout during transportation. Some of these stress factors are starvation of the fish for a while to avoid contamination of the water, mobility and noise during transportation and loading, dissolved oxygen content and composition of the water in the transportation tanks, etc. The starvation stress caused by starvation/lack of food during transportation causes a certain amount of loss of macronutrients such as carbohydrates, proteins and fats in the tissues. This situation causes changes in metabolic activities and the energy balance of fish species. In this study, oxidant-antioxidant values and stress markers of rainbow trout starved before transplantation will be evaluated.

Keywords: oncorhynchus mykiss, starvation stress, TAS, TOS

Procedia PDF Downloads 44
391 A Review on the Hydrodynamic Characteristics of Caisson Breakwater

Authors: T. J. Jemi Jeya, V. Sriram, V. Sundar

Abstract:

Caisson breakwaters are gravity structures resting on the seabed and piercing the free surface sunk in coastal waters to break the energy in the waves and protect the water area behind them by creating tranquil conditions on its lee side for the purpose of berthing of vessels. A number of formula and methodologies have been proposed for calculating the forces on caissons due to waves, most of which being evolved through intensive laboratory and field measurements. The reflection of waves from such breakwaters often generates clapotis, leading to an amplification of waves in its vicinity. This result in increased pressures and forces, forcing researchers to modify its seaside shape as well as placing dissipaters in the form of screens. Apart from the above aspects, this paper also discusses the other important phenomena, like overtopping that dictates the stability of caisson breakwaters.

Keywords: caisson breakwater, Jarlan type breakwater, screens, circular breakwater

Procedia PDF Downloads 344
390 Techno-Economic Analysis of Solar Energy for Cathodic Protection of Oil and Gas Buried Pipelines in Southwestern of Iran

Authors: M. Goodarzi, M. Mohammadi, A. Gharib

Abstract:

Solar energy is a renewable energy which has attracted special attention in many countries. Solar cathodic protectionsystems harness the sun’senergy to protect underground pipelinesand tanks from galvanic corrosion. The object of this study is to design and the economic analysis a cathodic protection system by impressed current supplied with solar energy panels applied to underground pipelines. In the present study, the technical and economic analysis of using solar energy for cathodic protection system in southwestern of Iran (Khuzestan province) is investigated. For this purpose, the ecological conditions such as the weather data, air clearness and sunshine hours are analyzed. The economic analyses were done using computer code to investigate the feasibility analysis from the using of various energy sources in order to cathodic protection system. The overall research methodology is divided into four components: Data collection, design of elements, techno economical evaluation, and output analysis. According to the results, solar renewable energy systems can supply adequate power for cathodic protection system purposes.

Keywords: renewable energy, solar energy, solar cathodic protection station, lifecycle cost method

Procedia PDF Downloads 505
389 Microbial Corrosion on Oil and Gas Facilities: A Case Study of Oil and Gas Facilities in the Niger-Delta

Authors: Frederick Otite Ighovojah

Abstract:

Corrosion in the oil and gas industries is one of the most common causes of failure. Such failure includes leaks in above-ground storage tanks (AGST). The involvement of microorganisms in the corrosion process in AGST systems is often ignored, and this outlines the need to investigate the effect of microbial corrosion in oil and gas facilities. This study's methodology comprised gathering generated water samples from a nearby AGST oil facility that was operating, which were then equally divided into two batch reactors, 1 and 2. Each batch reactor was filled with five prepared X60 coupons using sterilized forceps. To provide nutrients for the microorganisms in batch reactor 1 during the test period, 2g of NPK 15- 15-15 fertilizer was added on a weekly basis. To kill the microorganisms and significantly lower their concentration in the generated water, 5ml of dissolved ozone (a biocide) with a 0.5ppm concentration was added to batch reactor 2. The weight loss measurement (WLM) was used to evaluate for corrosion. Coupons were removed from each batch reactor, and weight loss was measured at every interval of 336 hrs for 2016 hrs. The overall results obtained indicated that coupons from the batch 1 reactor showed a higher corrosion rate and higher mass loss, and this was due to the metabolic production of an aggressive compound in the medium.

Keywords: AGST, microbial corrosion, reactor, X60 steel

Procedia PDF Downloads 51
388 Inertial Spreading of Drop on Porous Surfaces

Authors: Shilpa Sahoo, Michel Louge, Anthony Reeves, Olivier Desjardins, Susan Daniel, Sadik Omowunmi

Abstract:

The microgravity on the International Space Station (ISS) was exploited to study the imbibition of water into a network of hydrophilic cylindrical capillaries on time and length scales long enough to observe details hitherto inaccessible under Earth gravity. When a drop touches a porous medium, it spreads as if laid on a composite surface. The surface first behaves as a hydrophobic material, as liquid must penetrate pores filled with air. When contact is established, some of the liquid is drawn into pores by a capillarity that is resisted by viscous forces growing with length of the imbibed region. This process always begins with an inertial regime that is complicated by possible contact pinning. To study imbibition on Earth, time and distance must be shrunk to mitigate gravity-induced distortion. These small scales make it impossible to observe the inertial and pinning processes in detail. Instead, in the International Space Station (ISS), astronaut Luca Parmitano slowly extruded water spheres until they touched any of nine capillary plates. The 12mm diameter droplets were large enough for high-speed GX1050C video cameras on top and side to visualize details near individual capillaries, and long enough to observe dynamics of the entire imbibition process. To investigate the role of contact pinning, a text matrix was produced which consisted nine kinds of porous capillary plates made of gold-coated brass treated with Self-Assembled Monolayers (SAM) that fixed advancing and receding contact angles to known values. In the ISS, long-term microgravity allowed unambiguous observations of the role of contact line pinning during the inertial phase of imbibition. The high-speed videos of spreading and imbibition on the porous plates were analyzed using computer vision software to calculate the radius of the droplet contact patch with the plate and height of the droplet vs time. These observations are compared with numerical simulations and with data that we obtained at the ESA ZARM free-fall tower in Bremen with a unique mechanism producing relatively large water spheres and similarity in the results were observed. The data obtained from the ISS can be used as a benchmark for further numerical simulations in the field.

Keywords: droplet imbibition, hydrophilic surface, inertial phase, porous medium

Procedia PDF Downloads 107
387 Covariance and Quantum Cosmology: A Comparison of Two Matter Clocks

Authors: Theodore Halnon, Martin Bojowald

Abstract:

In relativity, time is relative between reference frames. However, quantum mechanics requires a specific time coordinate in order to write an evolution equation for wave functions. This difference between the two theories leads to the problem of time in quantum gravity. One method to study quantum relativity is to interpret the dynamics of a matter field as a clock. In order to test the relationship between different reference frames, an isotropic cosmological model with two matter ingredients is introduced. One is given by a scalar field and one by vacuum energy or a cosmological constant. There are two matter fields, and thus two different Hamiltonians are derived from the respective clock rates. Semi-classical solutions are found for these equations and a comparison is made of the physical predictions that they imply.

Keywords: cosmology, deparameterization, general relativity, quantum mechanics

Procedia PDF Downloads 276
386 Percolation Transition in an Agglomeration of Spherical Particles

Authors: Johannes J. Schneider, Mathias S. Weyland, Peter Eggenberger Hotz, William D. Jamieson, Oliver Castell, Alessia Faggian, Rudolf M. Füchslin

Abstract:

Agglomerations of polydisperse systems of spherical particles are created in computer simulations using a simplified stochastic-hydrodynamic model: Particles sink to the bottom of the cylinder, taking into account gravity reduced by the buoyant force, the Stokes friction force, the added mass effect, and random velocity changes. Two types of particles are considered, with one of them being able to create connections to neighboring particles of the same type, thus forming a network within the agglomeration at the bottom of a cylinder. Decreasing the fraction of these particles, a percolation transition occurs. The critical regime is determined by investigating the maximum cluster size and the percolation susceptibility.

Keywords: binary system, maximum cluster size, percolation, polydisperse

Procedia PDF Downloads 22
385 Heat and Mass Transfer Study of Supercooled Large Droplet Icing

Authors: Du Yanxia, Stephan E. Bansmer, Gui Yewei, Xiao Guangming, Yang Xiaofeng

Abstract:

The heat and mass transfer characteristics of icing coupled with film flow is studied and the coupled model of the thermal behavior with the flow simulation by single-step method is developed. The behavior of ice and water was analyzed. The results show that under supercooled large droplet (SLD) icing conditions, the film flow is an important phonomena in icing accretion process. The pressure gradient, gravity and shear stress are the main factors affecting the film flow on icing surface, which has important influence on the shape and rate of icing. To predict SLD ice accretion accurately, the heat and mass transfer of ice and film flow should be taken into account.

Keywords: SLD, aircraft, icing, heat and mass transfer

Procedia PDF Downloads 602
384 Decision Location and Resource Requirement for Relief Goods Assembly

Authors: Glenda B. Minguito, Jenith L. Banluta

Abstract:

One of the critical aspects of humanitarian operations is the distribution of relief goods to the affected community. The common assumption is that relief goods are prepositioned during disasters which are not applicable in developing countries like the Philippines. During disasters, the on-the-ground government agencies and responders have to procure, sort, weigh and pack the relief goods. There is a need to review the relief goods preparation as it seriously affects the delivery of necessary aid for human survival. This study also identifies the ideal location of the assembly hub to minimize the distance to the affected community. This paper reveals that location and resources are dependent on the type of disasters encountered at the local level. The Center-of-Gravity method and Multiple Activity Chart were applied in the analysis.

Keywords: humanitarian supply chain, location decision, resource allocation, local level

Procedia PDF Downloads 119
383 Investigation of Airship Motion Sensitivity to Geometric Parameters

Authors: Han Ding, Wang Xiaoliang, Duan Dengping

Abstract:

During the process of airship design, the layout and the geometric shape of the hull and fins are crucial to the motion characteristics of the airship. In this paper, we obtained the quantification motion sensitivity of the airship to geometric parameters through turning circles and horizontal/vertical zigzag maneuvers by the parameterization of airship shape and building the dynamic model using Lagrangian approach and MATLAB Simulink program. In the dynamics simulation program, the affection of geometric parameters to the mass, center of gravity, moments of inertia, product of inertia, added mass and the aerodynamic forces and moments have been considered.

Keywords: airship, Lagrangian approach, turning circles, horizontal/vertical zigzag maneuvers

Procedia PDF Downloads 394
382 Increasing the Use of LNG on the Java Island (Bali Province) through the Development of Small-Scale LNG Projects

Authors: Herman Susilo, Rahmat Budiman

Abstract:

Bali province is one of the most famous tourist destinations in Indonesia. As a central tourist destination, Bali is very concerned about the use of clean energy. Since Bali is an area that does not have natural resources, so all of its energy sources are imported from java island and other islands. As an example, currently, Pertagas is developing the use of LNG for the needs of the retail industry. Right now, LNG is transported from the LNG plant facility in Bontang (Kalimantan Province) using ISO Tanks which are transported by cargo ships and then transported by trucks to the island of Bali. After that, LNG from ISO Tank is breakbulk into LNG Cylinders for distribution to retail customers. The existing distribution scheme is very long and costly since the source of LNG is come from another island (Kalimantan) and is relatively far away. To solve this problem, we plan to build the mini-LNG plant on Java Island since there are lots of gas sources available. There are some small gas reserves (flared or stranded gas) that are not yet monetized and are less valuable (cheaper) because the volume is very small. After liquifying the gas from the gas field, the LNG is transported by the truck using ISO Tank. After that, LNG from ISO Tank is breakbulk into LNG Cylinders for distribution to retail customers. From this new LNG distribution scheme, there are 4-5 USD/MMBTU saving compared to the existing distribution scheme. It is hoped that with these cost savings, the number of retail LNG sales can increase rapidly.

Keywords: LNG, LNG retail, mini LNG, small scale LNG

Procedia PDF Downloads 74
381 Strongly Disordered Conductors and Insulators in Holography

Authors: Matthew Stephenson

Abstract:

We study the electrical conductivity of strongly disordered, strongly coupled quantum field theories, holographically dual to non-perturbatively disordered uncharged black holes. The computation reduces to solving a diffusive hydrostatic equation for an emergent horizon fluid. We demonstrate that a large class of theories in two spatial dimensions have a universal conductivity independent of disorder strength, and rigorously rule out disorder-driven conductor-insulator transitions in many theories. We present a (fine-tuned) axion-dilaton bulk theory which realizes the conductor-insulator transition, interpreted as a classical percolation transition in the horizon fluid. We address aspects of strongly disordered holography that can and cannot be addressed via mean-field modeling, such as massive gravity.

Keywords: theoretical physics, black holes, holography, high energy

Procedia PDF Downloads 147
380 Fabric Drapemeter Development towards the Analysis of Its Behavior in 3-D Design

Authors: Aida Sheeta, M. Nashat Fors, Sherwet El Gholmy, Marwa Issa

Abstract:

Globalization has raised the customer preferences not only towards the high-quality garments but also the right fitting, comfort and aesthetic apparels. This only can be accomplished by the good interaction between fabric mechanical and physical properties as well as the required style. Consequently, this paper provides an integrated review of the fabric drape terminology because it is considered as an essential feature in which the fabric can form folds with the help of the gravity. Moreover, an instrument has been fabricated in order to analyze the static and dynamic drape behaviors using different fabric types. In addition, the obtained results find out the parameters affecting the drape coefficient using digital image processing for various kind of commercial fabrics. This was found to be an essential first step in order to analyze the behavior of this fabric when it is fabricated in a certain 3-D garment design.

Keywords: cloth fitting, fabric drape nodes, garment silhouette, image processing

Procedia PDF Downloads 161
379 Impact of Length of Straw by the Use of a Straw Mill on the Selective Feeding of Young Cattle and Their Effects for the Cattle

Authors: Heiko Scholz

Abstract:

When feeding high qualitysilagetoheifersfromthe age of two, there is a riskofenergyoversupply. Depending on the feeding valueorscarceavailability ofsilageorcorn silage diets withhighproportionsof straw is often incorporated. Foran energetically standardized young cattle supply of strawproportion can be more than 20% of dry matter. It was investigated whether the grinding of straw with the strawmillselective feeding significantly limits. The investigation has been carried out with young cattle in the second year. 78 animals were kept and fed under similar conditions in two groups. The experimental group (EG) consisted of cattle 12 to 15 months, and in the control group (CG), the cattle were 15 to 20 months old. The experimental feeding took place in five days of feed distribution, and residual feed were weighed. The ration of EG contained ground with the straw mill straw, and CG was further fed rotor-cut pressed straw. To determine the selective seizure samples of feed distributionandtheremainingfood with the particle separator boxandthecrude protein-and energy-content have been determined. The grinding of the straw increased the daily feed intake.IntheEGan increase infeed intakewas observedby grinding of the straw. Feed intakedirectlyon the day for changing the dietoflongonground straw increased by more than 2.0 kgofDMper animal. In the following days, the feed intakewasincreasedby 0.9kg DMper animal and day on average (7.4 vs. 8.3 kg DM per day). The results of the screen distribution of residual feed point to a differentiated feeding behavior between the groups. In the EG, the particle length of the residual feed to a large extent with the template matches. The acid-base-balance (NSBA)valuesofEGarewithin normal limits. Ifstrawsharesof25% and more are federations to young cattle (heifers), the theparticlelengthof straw has significant impact ontheselectivefeeding behavior. Aparticlelength of 1.5cmcompared to7.5 cmlongpreventedstrawcertainly discarding of the straw on the feeding barn. The feed intake increases whenshortstrawis mixed into theTMR.

Keywords: straw mill, heifer, feed selection, dry matter intake

Procedia PDF Downloads 165
378 Assessing Impacts of Climate Change on Rural Water Resources

Authors: Ntandoyenkosi Moyo

Abstract:

Majority of rural Eastern Cape villages of South Africa households do not have access to safe water supply. Due to changes in climatic conditions for example higher temperatures, these sources become not reliable in supplying adequate and safe water to the population. These rural populations due to the drying up of water resources have to find other alternative ways to get water. Climate change has an impact on the reliability of water resources and this has an impact on rural communities. This study seeks to establish what alternative ways do people use when affected by unfavorable conditions like less rainfall and increased temperatures. The study also seeks to investigate any local and provincial intervention in the provision of water to the village. Interventions can be in the form of programmes or initiatives that involve water supply strategies. The community should participate fully in making sure that their place is serviced. The study will identify households with improved sources (JOJO tanks) and those with unimproved sources (rivers) and investigate what alternatives they resort to when their sources dry up. The study also investigates community views on whether they have any challenges of water supply (reliability and adequacy) as required by section 27(1) (b) of the constitution which states that everyone should have access to safe and clean water.

Keywords: rural water resources, temperature, improved sources, unimproved sources

Procedia PDF Downloads 299
377 Optimization Method of Dispersed Generation in Electrical Distribution Systems

Authors: Mahmoud Samkan

Abstract:

Dispersed Generation (DG) is a promising solution to many power system problems such as voltage regulation and power loss. This paper proposes a heuristic two-step method to optimize the location and size of DG for reducing active power losses and, therefore, improve the voltage profile in radial distribution networks. In addition to a DG placed at the system load gravity center, this method consists in assigning a DG to each lateral of the network. After having determined the central DG placement, the location and size of each lateral DG are predetermined in the first step. The results are then refined in the second step. This method is tested for 33-bus system for 100% DG penetration. The results obtained are compared with those of other methods found in the literature.

Keywords: optimal location, optimal size, dispersed generation (DG), radial distribution networks, reducing losses

Procedia PDF Downloads 420