Search results for: granular pile
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 386

Search results for: granular pile

326 Settlement Analysis of Axially Loaded Bored Piles: A Case History

Authors: M. Mert, M. T. Ozkan

Abstract:

Pile load tests should be applied to check the bearing capacity calculations and to determine the settlement of the pile corresponding to test load. Strain gauges can be installed into pile in order to determine the shaft resistance of the piles for every soil layer respectively. Detailed results can be obtained by means of strain gauges placed at certain levels into test piles. In the scope of this study, pile load test data obtained from two different projects are examined.  Instrumented static pile load tests were applied on totally 7 test bored piles of different diameters (80 cm, 150 cm, and 200 cm) and different lengths (between 30-76 m) in two different project site. Settlement analysis of test piles is done by using some of load transfer methods and finite element method. Plaxis 3D which is a three-dimensional finite element program is also used for settlement analysis of the test piles. In this study, firstly bearing capacity of test piles are determined and compared with strain gauge data which is required for settlement analysis. Then, settlement values of the test piles are estimated by using load transfer methods developed in recent years and finite element method. The aim of this study is to show similarities and differences between the results obtained from settlement analysis methods and instrumented pile load tests.

Keywords: failure, finite element method, monitoring and instrumentation, pile, settlement

Procedia PDF Downloads 137
325 A Solution to Analyze the Geosynthetic Reinforced Piled Embankments Considering Pile-Soil Interaction

Authors: Feicheng Liu, Weiming Liao, Jianjing Zhang

Abstract:

A pile-supported embankment with geosynthetic-reinforced mat (PSGR embankment) has been considered as an effective solution to reduce the total and differential settlement of the embankment constructed over soft soil. In this paper, a new simplified method proposed firstly incorporates the load transfer between piles and surrounding soil and the settlement of pile, and also considers arching effect in embankment fill, membrane effect of geosynthetic reinforcement, and subsoil resistance, to evaluate the behavior of PSGR embankment. Subsoil settlement is assumed to consist of two parts:(1) the settlement of subsoil surface between piles equivalent to that of pile caps assuming the geosynthetic reinforcement without deformation yet; (2) the subsoil subsiding along with the geosynthetic deforming, and the deflected geosynthetic being considered as centenary. The force equilibrium, including loads acting on the upper surface of geosynthetic, subsoil resistance, as well as the stress-strain relationship of the geosynthetic reinforcement at the edge of pile cap, is established, thus the expression of subsoil resistance is deduced, and subsequently the tension of geosynthetic and stress concentration ratio between piles can be calculated. The proposed method is validated through observed data from three field tests and also compared with other eight analytical solutions available in the literature. In addition, a sensitive analysis is provided to demonstrate the influence of with/without considering pile-soil interaction for evaluating the performance of PSGR embankment.

Keywords: pile-supported embankment, geosynthetic, analytical solution, soil arching effect, the settlement of pile, sensitive analysis

Procedia PDF Downloads 134
324 Sensitivity Analysis of Pile-Founded Fixed Steel Jacket Platforms

Authors: Mohamed Noureldin, Jinkoo Kim

Abstract:

The sensitivity of the seismic response parameters to the uncertain modeling variables of pile-founded fixed steel jacket platforms are investigated using tornado diagram, first-order second-moment, and static pushover analysis techniques. The effects of both aleatory and epistemic uncertainty on seismic response parameters have been investigated for an existing offshore platform. The sources of uncertainty considered in the present study are categorized into three different categories: the uncertainties associated with the soil-pile modeling parameters in clay soil, the platform jacket structure modeling parameters, and the uncertainties related to ground motion excitations. It has been found that the variability in parameters such as yield strength or pile bearing capacity has almost no effect on the seismic response parameters considered, whereas the global structural response is highly affected by the ground motion uncertainty. Also, some uncertainty in soil-pile property such as soil-pile friction capacity has a significant impact on the response parameters and should be carefully modeled. Based on the results, it is highlighted that which uncertain parameters should be considered carefully and which can be assumed with reasonable engineering judgment during the early structural design stage of fixed steel jacket platforms.

Keywords: fixed jacket offshore platform, pile-soil structure interaction, sensitivity analysis

Procedia PDF Downloads 346
323 Co-Composting of Poultry Manure with Different Organic Amendments

Authors: M. E. Silva, I. Brás

Abstract:

To study the influence of different organic amendments on the quality of poultry manure compost, three pilot composting trials were carried out with different mixes: poultry manure/carcasse meal/ashes/grape pomace (Pile 1), poultry manure/ cellulosic sludge (Pile 2) and poultry manure (Pile 3). For all piles, wood chips were applied as bulking agent. The process was monitored, over time, by evaluating standard physical and chemical parameters, such as, pH, electric conductivity, moisture, organic matter and ash content, total carbon and total nitrogen content, carbon/nitrogen ratio (C/N) and content in mineral elements. Piles 1 and 2 reached a thermophilic phase, however having different trends. Pile 1 reached this phase earlier than Pile 2. For both, the pH showed a slight alkaline character and the electric conductivity was lower than 2 mS/cm. Also, the initial C/N value was 22 and reached values lower than 15 at the end of composting process. The total N content of the Pile 1 increased slightly during composting, in contrast with the others piles. At the end of composting process, the phosphorus content ranged between 54 and 236 mg/kg dry matter, for Pile 2 and 3, respectively. Generally, the Piles 1 and 3 exhibited similar heavy metals content. This study showed that organic amendments can be used as carbon source, given that the final composts presented parameters within the range of those recommended in the 2nd Draft of EU regulation proposal (DG Env.A.2 2001) for compost quality.

Keywords: co-composting, compost quality, organic ammendment, poultry manure

Procedia PDF Downloads 282
322 Design and Construction Validation of Pile Performance through High Strain Pile Dynamic Tests for both Contiguous Flight Auger and Drilled Displacement Piles

Authors: S. Pirrello

Abstract:

Sydney’s booming real estate market has pushed property developers to invest in historically “no-go” areas, which were previously too expensive to develop. These areas are usually near rivers where the sites are underlain by deep alluvial and estuarine sediments. In these ground conditions, conventional bored pile techniques are often not competitive. Contiguous Flight Auger (CFA) and Drilled Displacement (DD) Piles techniques are on the other hand suitable for these ground conditions. This paper deals with the design and construction challenges encountered with these piling techniques for a series of high-rise towers in Sydney’s West. The advantages of DD over CFA piles such as reduced overall spoil with substantial cost savings and achievable rock sockets in medium strength bedrock are discussed. Design performances were assessed with PIGLET. Pile performances are validated in two stages, during constructions with the interpretation of real-time data from the piling rigs’ on-board computer data, and after construction with analyses of results from high strain pile dynamic testing (PDA). Results are then presented and discussed. High Strain testing data are presented as Case Pile Wave Analysis Program (CAPWAP) analyses.

Keywords: contiguous flight auger (CFA) , DEFPIG, case pile wave analysis program (CAPWAP), drilled displacement piles (DD), pile dynamic testing (PDA), PIGLET, PLAXIS, repute, pile performance

Procedia PDF Downloads 255
321 Numerical Investigation on Anchored Sheet Pile Quay Wall with Separated Relieving Platform

Authors: Mahmoud Roushdy, Mohamed El Naggar, Ahmed Yehia Abdelaziz

Abstract:

Anchored sheet pile has been used worldwide as front quay walls for decades. With the increase in vessel drafts and weights, those sheet pile walls need to be upgraded by increasing the depth of the dredging line in front of the wall. A system has recently been used to increase the depth in front of the wall by installing a separated platform supported on a deep foundation (so called Relieving Platform) behind the sheet pile wall. The platform is structurally separated from the front wall. This paper presents a numerical investigation utilizing finite element analysis on the behavior of separated relieve platforms installed within existing anchored sheet pile quay walls. The investigation was done in two steps: a verification step followed by a parametric study. In the verification step, the numerical model was verified based on field measurements performed by others. The validated model was extended within the parametric study to a series of models with different backfill soils, separation gap width, and number of pile rows supporting the platform. The results of the numerical investigation show that using stiff clay as backfill soil (neglecting consolidation) gives better performance for the front wall and the first pile row adjacent to sandy backfills. The degree of compaction of the sandy backfill slightly increases lateral deformations but reduces bending moment acting on pile rows, while the effect is minor on the front wall. In addition, the increase in the separation gap width gradually increases bending moments on the front wall regardless of the backfill soil type, while this effect is reversed on pile rows (gradually decrease). Finally, the paper studies the possibility of reducing the number of pile rows along with the separation to take advantage of the positive separation effect on piles.

Keywords: anchored sheet pile, relieving platform, separation gap, upgrade quay wall

Procedia PDF Downloads 59
320 Off-Shore Wind Turbines: The Issue of Soil Plugging during Pile Installation

Authors: Mauro Iannazzone, Carmine D'Agostino

Abstract:

Off-shore wind turbines are currently considered as a reliable source of renewable energy Worldwide and especially in the UK. Most of the operational off-shore wind turbines located in shallow waters (i.e. < 30 m) are supported on monopiles. Monopiles are open-ended steel tubes with diameter ranging between 4 to 6 m. It is expected that future off-shore wind farms will be located in water depths as high as 70 m. Therefore, alternative foundation arrangements are needed. Foundations for off-shore structures normally consist of open-ended piles driven into the soil by means of impact hammers. During pile installation, the soil inside the pile may be mobilized by the increasing shear strength such as to prevent more soil from entering the pile. This phenomenon is known as soil plugging, and represents an important issue as it may change significantly the driving resistance of open-ended piles. In fact, if the plugging formation is unexpected, the installation may require more powerful and more expensive hammers. Engineers need to estimate whether the driven pile will be installed in a plugged or unplugged mode. As a consequence, a prediction of the degree of soil plugging is required in order to correctly predict the drivability of the pile. This work presents a brief review of the state-of-the-art of pile driving and approaches used to predict formation of soil plugs. In addition, a novel analytical approach is proposed, which is based on the vertical equilibrium of a plugged pile. Differently from previous studies, this research takes into account the enhancement of the stress within the soil plug. Finally, the work presents and discusses a series of experimental tests, which are carried out on small-scale models piles to validate the analytical solution.

Keywords: off-shore wind turbines, pile installation, soil plugging, wind energy

Procedia PDF Downloads 290
319 Evaluation of Pile Performance in Different Layers of Soil

Authors: Orod Zarrin, Mohesn Ramezan Shirazi, Hassan Moniri

Abstract:

The use of pile foundations technique is developed to support structures and buildings on soft soil. The most important dynamic load that can affect the pile structure is earthquake vibrations. Pile foundations during earthquake excitation indicate that piles are subject to damage by affecting the superstructure integrity and serviceability. During an earthquake, two types of stresses can damage the pile head, inertial load that is caused by superstructure and deformation which caused by the surrounding soil. Soil deformation and inertial load are associated with the acceleration developed in an earthquake. The acceleration amplitude at the ground surface depends on the magnitude of earthquakes, soil properties and seismic source distance. According to the investigation, the damage is between the liquefiable and non-liquefiable layers and also soft and stiff layers. This damage crushes the pile head by increasing the inertial load which is applied by the superstructure. On the other hand, the cracks on the piles due to the surrounding soil are directly related to the soil profile and causes cracks from small to large. However, the large cracks reason have been listed such as liquefaction, lateral spreading, and inertial load. In the field of designing, elastic response of piles is always a challenge for designer in liquefaction soil, by allowing deflection at top of piles. Moreover, absence of plastic hinges in piles should be insured, because the damage in the piles is not observed directly. In this study, the performance and behavior of pile foundations during liquefaction and lateral spreading are investigated. In addition, emphasize on the soil behavior in the liquefiable and non-liquefiable layers by different aspect of piles damage such as ranking, location and degree of damage are going to discuss.

Keywords: pile, earthquake, liquefaction, non-liquefiable, damage

Procedia PDF Downloads 278
318 Simulation of Soil-Pile Interaction of Steel Batter Piles Penetrated in Sandy Soil Subjected to Pull-Out Loads

Authors: Ameer A. Jebur, William Atherton, Rafid M. Alkhaddar, Edward Loffill

Abstract:

Superstructures like offshore platforms, tall buildings, transition towers, skyscrapers and bridges are normally designed to resist compression, uplift and lateral forces from wind waves, negative skin friction, ship impact and other applied loads. Better understanding and the precise simulation of the response of batter piles under the action of independent uplift loads is a vital topic and an area of active research in the field of geotechnical engineering. This paper investigates the use of finite element code (FEC) to examine the behaviour of model batter piles penetrated in dense sand, subjected to pull-out pressure by means of numerical modelling. The concept of the Winkler Model (beam on elastic foundation) has been used in which the interaction between the pile embedded depth and adjacent soil in the bearing zone is simulated by nonlinear p-y curves. The analysis was conducted on different pile slenderness ratios (lc⁄d) ranging from 7.5, 15.22 and 30 respectively. In addition, the optimum batter angle for a model steel pile penetrated in dense sand has been chosen to be 20° as this is the best angle for this simulation as demonstrated by other researcher published in literature. In this numerical analysis, the soil response is idealized as elasto-plastic and the model piles are described as elastic materials for the purpose of simulation. The results revealed that the applied loads affect the pullout pile capacity as well as the lateral pile response for dense sand together with varying shear strength parameters linked to the pile critical depth. Furthermore, the pile pull-out capacity increases with increasing the pile aspect ratios.

Keywords: slenderness ratio, soil-pile interaction, winkler model (beam on elastic foundation), pull-out capacity

Procedia PDF Downloads 313
317 2D Numerical Analysis for Determination of the Effect of Bored Piles Constructed against the Landslide near Karabuk University Stadium

Authors: Dogan Cetin, Burak Turk, Mahmut Candan

Abstract:

Landslides cause remarkable damage and loss of human life every year around the world. They may be made more likely by factors such as earthquakes, heavy precipitation, and incorrect construction activities near or on slopes. The stadium of Karabük University is located at the bottom of a very high slope. After construction of the stadium, severe deformations were observed on the social activity area surrounding the stadium. Some inclinometers were placed behind the stadium to detect the possible landslide activity. According to measurements of the inclinometers, irregular soil movements were detected at depths between 20 m and 45 m. Also, significant heaves and settlements were observed behind the stadium walls located at the toe of the slope. The heaves indicate that the stadium walls were under threat of a significant landslide. After inclinometer readings and field observations, the potential failure geometry was estimated. The protection system was designed based on numerous numerical analysis performed by 2-D Plaxis software. After the design was completed, protective geotechnical work was started. Before the geotechnical work began, new inclinometers were installed to monitor earth movement during the work and afterward. The total horizontal length of the possible failure surface is 220 m. Geotechnical work included two-row-pile construction and three-row-pile construction on the slope. The bored piles were 120 cm in diameter for two-row-pile construction, and 150 cm in diameter for three-row-pile construction. Pile length is 31.30 m for two-row-pile construction and 31.40 m for three-row-pile construction. The distance between two-row-pile and three-row-pile construction is 60 m. With these bored piles, the landslide was divided into three parts. In this way, the earth's pressure was reduced. After a number of inclinometer readings, it was seen that deformation continued during the work, but after the work was done, the movement reversed, and total deformation stayed in mm dimension. It can be said that the protection work eliminated the possible landslide.

Keywords: landslide, landslide protection, inclinometer measurement, bored piles

Procedia PDF Downloads 117
316 Implication of Soil and Seismic Ground Motion Variability on Dynamic Pile Group Impedance for Bridges

Authors: Muhammad Tariq Chaudhary

Abstract:

Bridges constitute a vital link in a transportation system and their functionality after an earthquake is critical in reducing disruption to social and economic activities of the society. Bridges supported on pile foundations are commonly used in many earthquake-prone regions. In order to properly design or investigate the performance of such structures, it is imperative that the effect of soil-foundation-structure interaction be properly taken into account. This study focused on the influence of soil and seismic ground motion variability on the dynamic impedance of pile-group foundations typically used for medium-span (about 30 m) urban viaduct bridges. Soil profiles corresponding to various AASHTO soil classes were selected from actual data of such bridges and / or from the literature. The selected soil profiles were subjected to 1-D wave propagation analysis to determine effective values of soil shear modulus and damping ratio for a suite of properly selected actual seismic ground motions varying in PGA from 0.01g to 0.64g, and having variable velocity and frequency content. The effective values of the soil parameters were then employed to determine the dynamic impedance of pile groups in horizontal, vertical and rocking modes in various soil profiles. Pile diameter was kept constant for bridges in various soil profiles while pile length and number of piles were changed based on AASHTO design requirements for various soil profiles and earthquake ground motions. Conclusions were drawn regarding variability in effective soil shear modulus, soil damping, shear wave velocity and pile group impedance for various soil profiles and ground motions and its implications for design and evaluation of pile-supported bridges. It was found that even though the effective soil parameters underwent drastic variation with increasing PGA, the pile group impedance was not affected much in properly designed pile foundations due to the corresponding increase in pile length or increase in a number of piles or both when subjected to increasing PGA or founded in weaker soil profiles.

Keywords: bridge, pile foundation, dynamic foundation impedance, soil profile, shear wave velocity, seismic ground motion, seismic wave propagation

Procedia PDF Downloads 287
315 Estimating Pile Toe Levels for Capacity Assessment of Piers and Wharves in the Philippines

Authors: Ailvy Faith Zamora, Serj Donn David, Michael Anderson

Abstract:

There are a number of decades-old piers and wharves in Manila, Philippines, that are currently being used for container and bulk cargo handling port operations. These structures fulfill a very important role in the economy and hence have undergone rehabilitation and assessment of capacity to accommodate current and future operational requirements. The capacity assessment would include structural and pile geotechnical evaluation. Unfortunately, old marine structures in the Philippines may not have a complete set of as-built information. In certain instances, critical information, such as pile toe levels, is missing in the documentation. A combination of direct tests, geophysical tests, and numerical analysis/modelling has been performed to estimate existing pile toe levels of open-type piers and anchored quay wall wharves in Manila. These techniques were applied to both concrete and steel piles. This paper presents the tools utilized, testing setup, and techniques used for estimating toe levels of existing piles for certain structures, including the challenges encountered and applied solutions.

Keywords: geophysical testing, pile toe level, structural assessment, piers, wharves

Procedia PDF Downloads 92
314 Dynamic Analysis of Mono-Pile: Spectral Element Method

Authors: Rishab Das, Arnab Banerjee, Bappaditya Manna

Abstract:

Mono-pile foundations are often used in soft soils in order to support heavy mega-structures, whereby often these deep footings may undergo dynamic excitation due to many causes like earthquake, wind or wave loads acting on the superstructure, blasting, and unbalanced machines, etc. A comprehensive analytical study is performed to study the dynamics of the mono-pile system embedded in cohesion-less soil. The soil is considered homogeneous and visco-elastic in nature and is analytically modeled using complex springs. Considering the N number of the elements of the pile, the final global stiffness matrix is obtained by using the theories of the spectral element matrix method. Further, statically condensing the intermediate internal nodes of the global stiffness matrix results to a smaller sub matrix containing the nodes experiencing the external translation and rotation, and the stiffness and damping functions (impedance functions) of the embedded piles are determined. Proper plots showing the variation of the real and imaginary parts of these impedance functions with the dimensionless frequency parameter are obtained. The plots obtained from this study are validated by that provided by Novak,1974. Further, the dynamic analysis of the resonator impregnated pile is proposed within this study. Moreover, with the aid of Wood's 1g laboratory scaling law, a proper scaled-down resonator-pile model is 3D printed using PLA material. Dynamic analysis of the scaled model is carried out in the time domain, whereby the lateral loads are imposed on the pile head. The response obtained from the sensors through the LabView software is compared with the proposed theoretical data.

Keywords: mono-pile, visco-elastic, impedance, LabView

Procedia PDF Downloads 89
313 The Evaluation of the Safety Coefficient of Soil Slope Stability by Group Pile

Authors: Seyed Abolhassan Naeini, Hamed Yekehdehghan

Abstract:

One of the factors that affect the constructions adjacent to a slope is stability. There are various methods for the stability of the slopes, one of which is the use of concrete group piles. This study, using FLAC3D software, has tried to investigate the changes in safety coefficient because of the use of concrete group piles. In this research, furthermore, the optimal position of the piles has been investigated and the results show that the group pile does not affect the toe of the slope. In addition, the effect of the piles' burial depth on the slope has been studied. Results show that by increasing the piles burial depth on a slope, the level of stability and as a result the safety coefficient increases. In the investigation of reducing the distance between the piles and increasing the depth of underground water, it was observed that the obtained safety coefficient increased. Finally, the effect of the resistance of the lower stabilizing layer of the slope on stabilization was investigated by the pile group. The results showed that due to the behavior of the pile as a deep foundation, the stronger the soil layers are in the stable part of a stronger slope (in terms of resistance parameters), the more influential the piles are in enhancing the coefficient of safety.

Keywords: safety coefficient, group pile, slope, stability, FLAC3D software

Procedia PDF Downloads 67
312 Cantilever Secant Pile Constructed in Sand: Capping Beam Analysis and Design - Part I

Authors: Khaled R. Khater

Abstract:

The paper theme is soil retaining structures. Cantilever secant-pile wall is triggering scientific point of curiosity. Specially the capping beams structural analysis and its interaction with secant piles as one integrated matrix. It is believed that straining actions of this integrated matrix are most probably induced due to a combination of induced line load and non-uniform horizontal pile tips displacement. The strategy that followed throughout this study starts by converting the pile head horizontal displacements generated by Plaxis-2D model to a system of concentrated line load acting per meter run along the capping beam. Then, those line loads are the input data of Staad-Pro 3D-model. Those models tailored to allow the capping beam and the secant piles interacting as one matrix, i.e. a unit. It is believed that the suggested strategy presents close to real structural simulation. The above is the paper thought and methodology. Three sand densities, one pile rigidity and one excavation depth, “h = 4.0-m,” are completely sufficient to achieve the paper’s objective.

Keywords: secant piles, capping beam, analysis, design, plaxis 2D, staad pro 3D

Procedia PDF Downloads 68
311 Model Solutions for Performance-Based Seismic Analysis of an Anchored Sheet Pile Quay Wall

Authors: C. J. W. Habets, D. J. Peters, J. G. de Gijt, A. V. Metrikine, S. N. Jonkman

Abstract:

Conventional seismic designs of quay walls in ports are mostly based on pseudo-static analysis. A more advanced alternative is the Performance-Based Design (PBD) method, which evaluates permanent deformations and amounts of (repairable) damage under seismic loading. The aim of this study is to investigate the suitability of this method for anchored sheet pile quay walls that were not purposely designed for seismic loads. A research methodology is developed in which pseudo-static, permanent-displacement and finite element analysis are employed, calibrated with an experimental reference case that considers a typical anchored sheet pile wall. A reduction factor that accounts for deformation behaviour is determined for pseudo-static analysis. A model to apply traditional permanent displacement analysis on anchored sheet pile walls is proposed. Dynamic analysis is successfully carried out. From the research it is concluded that PBD evaluation can effectively be used for seismic analysis and design of this type of structure.

Keywords: anchored sheet pile quay wall, simplified dynamic analysis, performance-based design, pseudo-static analysis

Procedia PDF Downloads 355
310 Study of Bored Pile Retaining Wall Using Physical Modeling

Authors: Amin Eslami, Jafar Bolouri Bazaz

Abstract:

Excavation and retaining walls are of challenging issues in civil engineering. In this study, the behavior of one the important type of supporting systems called Contiguous Bored Pile (CBP) retaining wall is investigated using a physical model. Besides, a comparison is made between two modes of free end piles(soft bed) and fixed end piles (stiff bed). Also a back calculation of effective length (the real free length of pile) is done by measuring lateral deflection of piles in different stages of excavation in both a forementioned cases. Based on observed results, for the fixed end mode, the effective length to free length ratio (Leff/L0) is equal to unity in initial stages of excavation and less than 1 in its final stages in a decreasing manner. While this ratio for free end mode, remains constant during all stages of excavation and is always less than unity.

Keywords: contiguous bored pile wall, effective length, fixed end, free end, free length

Procedia PDF Downloads 368
309 Stability Analysis of Slopes during Pile Driving

Authors: Yeganeh Attari, Gudmund Reidar Eiksund, Hans Peter Jostad

Abstract:

In Geotechnical practice, there is no standard method recognized by the industry to account for the reduction of safety factor of a slope as an effect of soil displacement and pore pressure build-up during pile installation. Pile driving disturbs causes large strains and generates excess pore pressures in a zone that can extend many diameters from the installed pile, resulting in a decrease of the shear strength of the surrounding soil. This phenomenon may cause slope failure. Moreover, dissipation of excess pore pressure set-up may cause weakening of areas outside the volume of soil remoulded during installation. Because of complex interactions between changes in mean stress and shearing, it is challenging to predict installation induced pore pressure response. Furthermore, it is a complex task to follow the rate and path of pore pressure dissipation in order to analyze slope stability. In cohesive soils it is necessary to implement soil models that account for strain softening in the analysis. In the literature, several cases of slope failure due to pile driving activities have been reported, for instance, a landslide in Gothenburg that resulted in a slope failure destroying more than thirty houses and Rigaud landslide in Quebec which resulted in loss of life. Up to now, several methods have been suggested to predict the effect of pile driving on total and effective stress, pore pressure changes and their effect on soil strength. However, this is still not well understood or agreed upon. In Norway, general approaches applied by geotechnical engineers for this problem are based on old empirical methods with little accurate theoretical background. While the limitations of such methods are discussed, this paper attempts to capture the reduction in the factor of safety of a slope during pile driving, using coupled Finite Element analysis and cavity expansion method. This is demonstrated by analyzing a case of slope failure due to pile driving in Norway.

Keywords: cavity expansion method, excess pore pressure, pile driving, slope failure

Procedia PDF Downloads 124
308 A Frictional-Collisional Closure Model for the Saturated Granular Flow: Experimental Evidence and Two Phase Modelling

Authors: Yunhui Sun, Qingquan Liu, Xiaoliang Wang

Abstract:

Dense granular flows widely exist in geological flows such as debris flow, landslide, or sheet flow, where both the interparticle and solid-liquid interactions are important to modify the flow. So, a two-phase approach with both phases correctly modelled is important for a better investigation of the saturated granular flows. However, a proper closure model covering a wide range of flowing states for the solid phase is still lacking. This study first employs a chute flow experiment based on the refractive index matching method, which makes it possible to obtain internal flow information such as velocity, shear rate, granular fluctuation, and volume fraction. The granular stress is obtained based on a steady assumption. The kinetic theory is found to describe the stress dependence on the flow state well. More importantly, the granular rheology is found to be frictionally dominated under weak shear and collisionally dominated under strong shear. The results presented thus provide direct experimental evidence on a possible frictional-collisional closure model for the granular phase. The data indicates that both frictional stresses exist over a wide range of the volume fraction, though traditional theory believes it vanishes below a critical volume fraction. Based on the findings, a two-phase model is used to simulate the chute flow. Both phases are modelled as continuum media, and the inter-phase interactions, such as drag force and pressure gradient force, are considered. The frictional-collisional model is used for the closure of the solid phase stress. The profiles of the kinematic properties agree well with the experiments. This model is further used to simulate immersed granular collapse, which is unsteady in nature, to study the applicability of this model, which is derived from steady flow.

Keywords: closure model, collision, friction, granular flow, two-phase model

Procedia PDF Downloads 33
307 Numerical Study Pile Installation Disturbance Zone Effects on Excess Pore Pressure Dissipation

Authors: Kang Liu, Meng Liu, Menglong Wu, Dachang Yue, Hongyi Pan

Abstract:

The soil setup is an important factor affecting pile bearing capacity, there are many factors that influence it, all of which are closely related to pile construction disturbances. During pile installation in soil, a significant amount of excess pore pressure is generated, creating disturbance zones around the pile. The dissipation rate of excess pore pressure is an important factor influencing the pile setup. The paper aims to examine how alterations in parameters within disturbance zones affect the dissipation of excess pore pressure. An axisymmetric FE model is used to simulate pile installation in clay, subsequently consolidation using Plaxis 3D. The influence of disturbed zone on setup is verified, by comparing the parametric studies in uniform field and non-uniform field. Three types of consolidation are employed: consolidation in three directions, vertical consolidation, horizontal consolidation. The results of the parametric study show that the permeability coefficient decrease, soil stiffness decrease and reference pressure increase in the disturbance zone, resulting in an increase in the dissipation time of excess pore pressure, and exhibiting a noticeable threshold phenomenon, which has been commonly overlooked in previous literature. The research in this paper suggests that significant thresholds occur when the coefficient of permeability decreases to half of the original site's value for three-directional and horizontal consolidation within the disturbed zone. Similarly, the threshold for vertical consolidation is observed when the coefficient of permeability decreases to one-fourth of the original site's value. Especially in pile setup research, consolidation is assumed to be horizontal, the study findings suggest that horizontal consolidation has experienced notable alterations as a result of the presence of disturbed zones. Furthermore, the selection of pile installation methods proves to be critical. A nonlinearity excess pore pressure formula is proposed, based on cavity expansion theory, which includes the distribution of soil profile modulus with depth.

Keywords: pile setup, threshold value effect, installation effects, uniform field, non-uniform field

Procedia PDF Downloads 6
306 Effect of Boundary Condition on Granular Pressure of Gas-Solid Flow in a Rotating Drum

Authors: Rezwana Rahman

Abstract:

Various simulations have been conducted to understand the particle's macroscopic behavior in the solid-gas multiphase flow in rotating drums in the past. In these studies, the particle-wall no-slip boundary condition was usually adopted. However, the non-slip boundary condition is rarely encountered in real systems. A little effort has been made to investigate the particle behavior at slip boundary conditions. The paper represents a study of the gas-solid flow in a horizontal rotating drum at a slip boundary wall condition. Two different sizes of particles with the same density have been considered. The Eulerian–Eulerian multiphase model with the kinetic theory of granular flow was used in the simulations. The granular pressure at the rolling flow regime with specularity coefficient 1 was examined and compared with that obtained based on the no-slip boundary condition. The results reveal that the profiles of granular pressure distribution on the transverse plane of the drum are similar for both boundary conditions. But, overall, compared with those for the no-slip boundary condition, the values of granular pressure for specularity coefficient 1 are larger for the larger particle and smaller for the smaller particle.

Keywords: boundary condition, eulerian–eulerian, multiphase, specularity coefficient, transverse plane

Procedia PDF Downloads 190
305 Settlement Performance of Soft Clay Reinforced with Granular Columns

Authors: Muneerah Jeludin, V. Sivakumar

Abstract:

Numerous laboratory-based research studies on the behavior of ground improved with granular columns with respect to bearing capacity have been well-documented. However, information on its settlement performance is still scarce. Laboratory model study on the settlement behavior of soft clay reinforced with granular columns was conducted and results are presented. The investigation uses a soft kaolin clay sample of 300 mm in diameter and 400 mm in length. The clay samples were reinforced with single and multiple granular columns of various lengths using the displacement and replacement installation method. The results indicated that that no settlement reduction was achieved for a short single floating column. The settlement reduction factors reported for L/d ratios of 5.0, 7.5 and 10.0 are in the range of 1 to 2. The findings obtained in this research showed that the reduction factors are considerably less and that load-sharing mechanism between columns and surrounding clay is complex, particularly for column groups and is affected by other factors such as negative skin friction.

Keywords: ground improvement, model test, reinforced soil, settlement

Procedia PDF Downloads 439
304 Evaluation of Soil Modulus Variation by IS 2911 and Broms Method

Authors: Mandeep Kamboj, Anand R. Katti

Abstract:

The pile of 2.4 m diameter is subjected to lateral loads and moments. These lateral loads are caused due to wind/wave forces when used in foundations of various structures such as bridge piers and high rise towers exhibiting deflections with depth. The research scientist and developer has studied and developed various procedures to evaluate the coefficient of soil modulus variation (nh), using various methods. These are verified for slender piles in sand with various diameters up to 2.4 m. The subject explains about simplified approach of the theoretical values using IS procedure and Broms method and compared with actual field soil pressure/displacement distributions measured in mono-pile along its length and across the diameter.

Keywords: bridge pier, lateral loads, mono-pile, slender piles

Procedia PDF Downloads 164
303 The Effect of the Parameters of the Grinding on the Characteristics of the Deposit Phosphate Ore of Kef Es Sennoun, Djebel Onk-Tebessa, Algeria

Authors: N. Benabdeslam, N. Bouzidi, F. Atmani, R. Boucif, A. Sakhri

Abstract:

The objective of this study was to provide answers for a better understanding of the mechanisms involved during grinding. To obtain a phosphate powder, we carry out sieving - grinding circuits for each parameter influencing the process. The analysis of the average particle size of the different tests carried out served in the first place as a basis for the determination of the granulometric curve area, the characteristics and the granular coefficients, then the exploitation of the different results for the calculation of the energies consumed for the fragmentation of different ore types, the energy coefficients as well as the ability to grind. Indeed, a time of 5 to 10 minutes can be chosen as the optimal grinding time in a disc mill for a % in weight of the highest pass. However, grinding time can influence the granular characteristics of ore.

Keywords: characteristic granular, grinding, mineralogical composition, phosphate ore, parameters

Procedia PDF Downloads 178
302 Evaluation of Internal Friction Angle in Overconsolidated Granular Soil Deposits Using P- and S-Wave Seismic Velocities

Authors: Ehsan Pegah, Huabei Liu

Abstract:

Determination of the internal friction angle (φ) in natural soil deposits is an important issue in geotechnical engineering. The main objective of this study was to examine the evaluation of this parameter in overconsolidated granular soil deposits by using the P-wave velocity and the anisotropic components of S-wave velocity (i.e., both the vertical component (SV) and the horizontal component (SH) of S-wave). To this end, seventeen pairs of P-wave and S-wave seismic refraction profiles were carried out at three different granular sites in Iran using non-invasive seismic wave methods. The acquired shot gathers were processed, from which the P-wave, SV-wave and SH-wave velocities were derived. The reference values of φ and overconsolidation ratio (OCR) in the soil deposits were measured through laboratory tests. By assuming cross-anisotropy of the soils, the P-wave and S-wave velocities were utilized to develop an equation for calculating the coefficient of lateral earth pressure at-rest (K₀) based on the theory of elasticity for a cross-anisotropic medium. In addition, to develop an equation for OCR estimation in granular geomaterials in terms of SH/SV velocity ratios, a general regression analysis was performed on the resulting information from this research incorporated with the respective data published in the literature. The calculated K₀ values coupled with the estimated OCR values were finally employed in the Mayne and Kulhawy formula to evaluate φ in granular soil deposits. The results showed that reliable values of φ could be estimated based on the seismic wave velocities. The findings of this study may be used as the appropriate approaches for economic and non-invasive determination of in-situ φ in granular soil deposits using the surface seismic surveys.

Keywords: angle of internal friction, overconsolidation ratio, granular soils, P-wave velocity, SV-wave velocity, SH-wave velocity

Procedia PDF Downloads 131
301 Field Evaluation of Pile Behavior in Sandy Soil Underlain by Clay

Authors: R. Bakr, M. Elmeligy, A. Ibrahim

Abstract:

When the building loads are relatively small, challenges are often facing the foundation design especially when inappropriate soil conditions exist. These may be represented in the existence of soft soil in the upper layers of soil while sandy soil or firm cohesive soil exist in the deeper layers. In such cases, the design becomes infeasible if the piles are extended to the deeper layers, especially when there are sandy layers existing at shallower depths underlain by stiff clayey soil. In this research, models of piles terminated in sand underlain by clay soils are numerically simulated by different modelling theories. Finite element software, Plaxis 3-D Foundation was used to evaluate the pile behavior under different loading scenarios. The standard static load test according to ASTM D-1143 was simulated and compared with the real-life loading scenario. The results showed that the pile behavior obtained from the current static load test do not realistically represent that obtained from real-life loading. Attempts were carried out to capture the proper numerical loading scenario that simulates the pile behavior in real-life loading including the long-term effect. A modified method based on this research findings is proposed for the static pile loading tests. Field loading tests were carried out to validate the new method. Results obtained from both numerical and field tests by using the modified method prove that this method is more accurate in predicting the pile behavior in sand soil underlain by clay more than the current standard static load.

Keywords: numerical simulation, static load test, pile behavior, sand underlain with clay, creep

Procedia PDF Downloads 294
300 Structural Behaviour of Concrete Energy Piles in Thermal Loadings

Authors: E. H. N. Gashti, M. Malaska, K. Kujala

Abstract:

The thermo-mechanical behaviour of concrete energy pile foundations with different single and double U-tube shapes incorporated was analysed using the Comsol Multi-physics package. For the analysis, a 3D numerical model in real scale of the concrete pile and surrounding soil was simulated regarding actual operation of ground heat exchangers (GHE) and the surrounding ambient temperature. Based on initial ground temperature profile measured in situ, tube inlet temperature was considered to range from 6°C to 0°C (during the contraction process) over a 30-day period. Extra thermal stresses and deformations were calculated during the simulations and differences arising from the use of two different systems (single-tube and double-tube) were analysed. The results revealed no significant difference for extra thermal stresses at the centre of the pile in either system. However, displacements over the pile length were found to be up to 1.5-fold higher in the double-tube system than the single-tube system.

Keywords: concrete energy piles, stresses, displacements, thermo-mechanical behaviour, soil-structure interactions

Procedia PDF Downloads 187
299 A Type-2 Fuzzy Model for Link Prediction in Social Network

Authors: Mansoureh Naderipour, Susan Bastani, Mohammad Fazel Zarandi

Abstract:

Predicting links that may occur in the future and missing links in social networks is an attractive problem in social network analysis. Granular computing can help us to model the relationships between human-based system and social sciences in this field. In this paper, we present a model based on granular computing approach and Type-2 fuzzy logic to predict links regarding nodes’ activity and the relationship between two nodes. Our model is tested on collaboration networks. It is found that the accuracy of prediction is significantly higher than the Type-1 fuzzy and crisp approach.

Keywords: social network, link prediction, granular computing, type-2 fuzzy sets

Procedia PDF Downloads 297
298 Influence of Wall Stiffness and Embedment Depth on Excavations Supported by Cantilever Walls

Authors: Muhammad Naseem Baig, Abdul Qudoos Khan, Jamal Ali

Abstract:

Ground deformations in deep excavations are affected by wall stiffness and pile embedment ratio. This paper presents the findings of a parametric study of 64ft deep excavation in mixed stiff soil conditions supported by a cantilever pile wall. A series of finite element analyses have been carried out in Plaxis 2D by varying pile embedment ratio and wall stiffness. It has been observed that maximum wall deflections decrease by increasing the embedment ratio up to 1.50; however, any further increase in pile length does not improve the performance of wall. Similarly, increasing wall stiffness reduces the wall deformations and affects the deflection patterns of wall. The finite element analysis results are compared with field data of 25 case studies of cantilever walls. Analysis results fall within the range of normalized wall deflections of 25 case studies. It has been concluded that deep excavations can be supported by cantilever walls provided the system stiffness is increased significantly.

Keywords: excavations, support systems, wall stiffness, cantilever walls

Procedia PDF Downloads 180
297 Development and Performance of Aerobic Granular Sludge at Elevated Temperature

Authors: Mustafa M. Bob, Siti Izaidah Azmi, Mohd Hakim Ab Halim, Nur Syahida Abdul Jamal, Aznah Nor-Anuar, Zaini Ujang

Abstract:

In this research, the formation and development of aerobic granular sludge (AGS) for domestic wastewater treatment application in hot climate conditions was studied using a sequencing batch reactor (SBR). The performance of the developed AGS in the removal of organic matter and nutrients from wastewater was also investigated. The operation of the reactor was based on the sequencing batch system with a complete cycle time of 3 hours that included feeding, aeration, settling, discharging and idling. The reactor was seeded with sludge collected from the municipal wastewater treatment plant in Madinah city, Saudi Arabia and operated at a temperature of 40ºC using synthetic wastewater as influent. Results showed that granular sludge was developed after an operation period of 30 days. The developed granular sludge had a good settling ability with the average size of the granules ranging from 1.03 to 2.42 mm. The removal efficiency of chemical oxygen demand (COD), ammonia nitrogen (NH3-N) and total phosphorus (TP) were 87.31%, 91.93% and 61.25% respectively. These results show that AGS can be developed at elevated temperatures and it is a promising technique to treat domestic wastewater in hot and low humidity climate conditions such as those encountered in Saudi Arabia.

Keywords: aerobic granular sludge, hot climate, sequencing batch reactor, domestic wastewater treatment

Procedia PDF Downloads 333