Search results for: gold catalysts
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1013

Search results for: gold catalysts

173 Phytoremediation-A Plant Based Cleansing Method to Obtain Quality Medicinal Plants and Natural Products

Authors: Hannah S. Elizabeth, D. Gnanasekaran, M. R. Manju Gowda, Antony George

Abstract:

Phytoremediation a new technology of remediating the contaminated soil, water and air using plants and serves as a green technology with environmental friendly approach. The main aim of this technique is cleansing and detoxifying of organic compounds, organo-phosphorous pesticides, heavy metals like arsenic, iron, cadmium, gold, radioactive elements which cause teratogenic and life threatening diseases to mankind and animal kingdom when consume the food crops, vegetables, fruits, cerals, and millets obtained from the contaminated soil. Also, directly they may damage the genetic materials thereby alters the biosynthetic pathways of secondary metabolites and other phytoconstituents which may have different pharmacological activities which lead to lost their efficacy and potency as well. It would reflect in mutagenicity, drug resistance and affect other antagonistic properties of normal metabolism. Is the technology for real clean-up of contaminated soils and the contaminants which are potentially toxic. It reduces the risks produced by a contaminated soil by decreasing contaminants using plants as a source. The advantages are cost-effectiveness and less ecosystem disruption. Plants may also help to stabilize contaminants by accumulating and precipitating toxic trace elements in the roots. Organic pollutants can potentially be chemically degraded and ultimately mineralized into harmless biological compounds. Hence, the use of plants to revitalize contaminated sites is gaining more attention and preferred for its cost-effective when compared to other chemical methods. The introduction of harmful substances into the environment has been shown to have many adverse effects on human health, agricultural productivity, and natural ecosystems. Because the costs of growing a crop are minimal compared to those of soil removal and replacement, the use of plants to remediate hazardous soils is seen as having great promise.

Keywords: cost effective, eco-friendly, phytoremediation, secondary metabolites

Procedia PDF Downloads 249
172 Comparison of Regional and Local Indwelling Catheter Techniques to Prolong Analgesia in Total Knee Arthroplasty Procedures: Continuous Peripheral Nerve Block and Continuous Periarticular Infiltration

Authors: Jared Cheves, Amanda DeChent, Joyce Pan

Abstract:

Total knee replacements (TKAs) are one of the most common but painful surgical procedures performed in the United States. Currently, the gold standard for postoperative pain management is the utilization of opioids. However, in the wake of the opioid epidemic, the healthcare system is attempting to reduce opioid consumption by trialing innovative opioid sparing analgesic techniques such as continuous peripheral nerve blocks (CPNB) and continuous periarticular infiltration (CPAI). The alleviation of pain, particularly during the first 72 hours postoperatively, is of utmost importance due to its association with delayed recovery, impaired rehabilitation, immunosuppression, the development of chronic pain, the development of rebound pain, and decreased patient satisfaction. While both CPNB and CPAI are being used today, there is limited evidence comparing the two to the current standard of care or to each other. An extensive literature review was performed to explore the safety profiles and effectiveness of CPNB and CPAI in reducing reported pain scores and decreasing opioid consumption. The literature revealed the usage of CPNB contributed to lower pain scores and decreased opioid use when compared to opioid-only control groups. Additionally, CPAI did not improve pain scores or decrease opioid consumption when combined with a multimodal analgesic (MMA) regimen. When comparing CPNB and CPAI to each other, neither unanimously lowered pain scores to a greater degree, but the literature indicates that CPNB decreased opioid consumption more than CPAI. More research is needed to further cement the efficacy of CPNB and CPAI as standard components of MMA in TKA procedures. In addition, future research can also focus on novel catheter-free applications to reduce the complications of continuous catheter analgesics.

Keywords: total knee arthroplasty, continuous peripheral nerve blocks, continuous periarticular infiltration, opioid, multimodal analgesia

Procedia PDF Downloads 64
171 Domain Specificity and Language Change: Evidence South Central (Kuki-Chin) Tibeto-Burman

Authors: Mohammed Zahid Akter

Abstract:

In the studies of language change, mental factors including analogy, reanalysis, and frequency have received considerable attention as possible catalysts for language change. In comparison, relatively little is known regarding which functional domains or construction types are more amenable to these mental factors than others. In this regard, this paper will show with data from South Central (Kuki-Chin) Tibeto-Burman languages how language change interacts with certain functional domains or construction types. These construction types include transitivity, person marking, and polarity distinctions. Thus, it will be shown that transitive clauses are more prone to change than intransitive and ditransitive clauses, clauses with 1st person argument marking are more prone to change than clauses with 2nd and 3rd person argument marking, non-copular clauses are more prone to change than copular clauses, affirmative clauses are more prone to change than negative clauses, and standard negatives are more prone to change than negative imperatives. The following schematic structure can summarize these findings: transitive>intransitive, ditransitive; 1st person>2nd person, 3rd person; non-copular>copular; and affirmative>negative; and standard negative>negative imperatives. In the interest of space, here only one of these findings is illustrated: affirmative>negative. In Hyow (South Central, Bangladesh), the innovative and preverbal 1st person subject k(V)- occurs in an affirmative construction, and the archaic and postverbal 1st person subject -ŋ occurs in a negative construction. Similarly, in Purum (South Central, Northeast India), the innovative and preverbal 1st person subject k(V)- occurs in an affirmative construction, and the archaic and postverbal 1st person subject *-ŋ occurs in a negative construction. Like 1st person subject, we also see that in Anal (South Central, Northeast India), the innovative and preverbal 2nd person subject V- occurs in an affirmative construction, and the archaic and postverbal 2nd person subject -t(V) in a negative construction. To conclude, data from South Central Tibeto-Burman languages suggest that language change interacts with functional domains as some construction types are more susceptible to change than others.

Keywords: functional domains, Kuki-Chin, language change, south-central, Tibeto-Burman

Procedia PDF Downloads 45
170 Characterization of a Newfound Manganese Tungstate Mineral of Hübnerite in Turquoise Gemstone from Miduk Mine, Kerman, Iran

Authors: Zahra Soleimani Rad, Fariborz Masoudi, Shirin Tondkar

Abstract:

Turquoise is one of the most well-known gemstones in Iran. The mineralogy, crystallography, and gemology of Shahr-e-Babak turquoise in Kerman were investigated and the results are presented in this research. The Miduk porphyry copper deposit is positioned in the Shahr-Babak area in Kerman province, Iran. This deposit is located 85 km NW of the Sar-Cheshmeh porphyry copper deposit. Preliminary mineral exploration was carried out from 1967 to 1970. So far, more than fifty diamond drill holes, each reaching a maximum depth of 1013 meters, have provided evidence supporting the presence of significant and promising porphyry copper mineralization at the Miduk deposit. The mineral deposit harbors a quantity of 170 million metric tons of ore, characterized by a mean composition of 0.86% copper (Cu), 0.007% molybdenum (Mo), 82 parts-per-billion gold (Au), and 1.8 parts-per-million silver (Ag). The Supergene enrichment layer, which constitutes the predominant source of copper ore, exhibits an approximate thickness of 50 meters. Petrography shows that the texture is homogeneous. In terms of a gemstone, greasy luster and blue color are seen, and samples are similar to what is commonly known as turquoise. The geometric minerals were detected in XRD analysis by analyzing the data using the x-pert software. From the mineralogical point of view; the turquoise gemstones of Miduk of Kerman consist of turquoise, quartz, mica, and hübnerite. In this article, to our best knowledge, we are stating the hübnerite mineral identified and seen in the Persian turquoise. Based on the obtained spectra, the main mineral of the Miduk samples from the six members of the turquoise family is the turquoise type with identical peaks that can be used as a reference for identification of the Miduk turquoise. This mineral is structurally composed of phosphate units, units of Al, Cu, water, and hydroxyl units, and does not include a Fe unit. In terms of gemology, the quality of a gemstone depends on the quantity of the turquoise phase and the amount of Cu in it according to SEM and XRD analysis.

Keywords: turquoise, hübnerite, XRD analysis, Miduk, Kerman, Iran

Procedia PDF Downloads 41
169 Performance Study of Neodymium Extraction by Carbon Nanotubes Assisted Emulsion Liquid Membrane Using Response Surface Methodology

Authors: Payman Davoodi-Nasab, Ahmad Rahbar-Kelishami, Jaber Safdari, Hossein Abolghasemi

Abstract:

The high purity rare earth elements (REEs) have been vastly used in the field of chemical engineering, metallurgy, nuclear energy, optical, magnetic, luminescence and laser materials, superconductors, ceramics, alloys, catalysts, and etc. Neodymium is one of the most abundant rare earths. By development of a neodymium–iron–boron (Nd–Fe–B) permanent magnet, the importance of neodymium has dramatically increased. Solvent extraction processes have many operational limitations such as large inventory of extractants, loss of solvent due to the organic solubility in aqueous solutions, volatilization of diluents, etc. One of the promising methods of liquid membrane processes is emulsion liquid membrane (ELM) which offers an alternative method to the solvent extraction processes. In this work, a study on Nd extraction through multi-walled carbon nanotubes (MWCNTs) assisted ELM using response surface methodology (RSM) has been performed. The ELM composed of diisooctylphosphinic acid (CYANEX 272) as carrier, MWCNTs as nanoparticles, Span-85 (sorbitan triooleate) as surfactant, kerosene as organic diluent and nitric acid as internal phase. The effects of important operating variables namely, surfactant concentration, MWCNTs concentration, and treatment ratio were investigated. Results were optimized using a central composite design (CCD) and a regression model for extraction percentage was developed. The 3D response surfaces of Nd(III) extraction efficiency were achieved and significance of three important variables and their interactions on the Nd extraction efficiency were found out. Results indicated that introducing the MWCNTs to the ELM process led to increasing the Nd extraction due to higher stability of membrane and mass transfer enhancement. MWCNTs concentration of 407 ppm, Span-85 concentration of 2.1 (%v/v) and treatment ratio of 10 were achieved as the optimum conditions. At the optimum condition, the extraction of Nd(III) reached the maximum of 99.03%.

Keywords: emulsion liquid membrane, extraction of neodymium, multi-walled carbon nanotubes, response surface method

Procedia PDF Downloads 232
168 Urban Meetings: Graphic Analysis of the Public Space in a Cultural Building from São Paulo

Authors: Thalita Carvalho Martins de Castro, Núbia Bernardi

Abstract:

Currently, studies evidence that our cities are portraits of social relations. In the midst of so many segregations, cultural buildings emerge as a place to assemble collective activities and expressions. Through theater, exhibitions, educational workshops, libraries, the architecture approaches human relations and seeks to propose meeting places. The purpose of this research is to deepen the discussions about the contributions of cultural buildings in the use of the spaces of the contemporary city, based on the data and measure collected in the master's research in progress. The graphic analysis of the insertion of contemporary cultural buildings seeks to highlight the social use of space. The urban insertions of contemporary cultural buildings in the city of São Paulo (Brazil) will be analyzed to understand the relations between the architectural form and its audience. The collected data describe a dynamic of flows and the permanence in the use of these spaces, indicating the contribution of the cultural buildings, associated with artistic production, in the dynamics of urban spaces and the social modifications of their milieu. Among the case studies, the research in development is based on the registration and graphic analysis of the Praça das Artes (2012) building located in the historical central region of the city, which after a long period of great degradation undergoes a current redevelopment. The choice of this building was based on four parameters, both on the architectural scale and on the urban scale: urban insertion, local impact, cultural production and a mix of uses. For the analysis will be applied two methodologies of graphic analysis, one with diagrams accompanied by texts and another with the active analysis for open space projects using complementary graphic methodologies, with maps, plants, info-graphics, perspectives, time-lapse videos and analytical tables. This research aims to reinforce the debates between the methodologies of form-use spaces and visual synthesis applied in cultural buildings, in order that new projects can structure public spaces as catalysts for social use, generating improvements in the daily life of its users and in the cities where they are inserted.

Keywords: cultural buildings, design methodologies, graphic analysis, public spaces

Procedia PDF Downloads 281
167 Morphology Analysis of Apple-Carrot Juice Treated by Manothermosonication (MTS) and High Temperature Short Time (HTST) Processes

Authors: Ozan Kahraman, Hao Feng

Abstract:

Manothermosonication (MTS), which consists of the simultaneous application of heat and ultrasound under moderate pressure (100-700 kPa), is one of the technologies which destroy microorganisms and inactivates enzymes. Transmission electron microscopy (TEM) is a microscopy technique in which a beam of electrons is transmitted through an ultra-thin specimen, interacting with the specimen as it passes through it. The environmental scanning electron microscope or ESEM is a scanning electron microscope (SEM) that allows for the option of collecting electron micrographs of specimens that are "wet," uncoated. These microscopy techniques allow us to observe the processing effects on the samples. This study was conducted to investigate the effects of MTS and HTST treatments on the morphology of apple-carrot juices by using TEM and ESEM microscopy. Apple-carrot juices treated with HTST (72 0C, 15 s), MTS 50 °C (60 s, 200 kPa), and MTS 60 °C (30 s, 200 kPa) were observed in both ESEM and TEM microscopy. For TEM analysis, a drop of the solution dispersed in fixative solution was put onto a Parafilm ® sheet. The copper coated side of the TEM sample holder grid was gently laid on top of the droplet and incubated for 15 min. A drop of a 7% uranyl acetate solution was added and held for 2 min. The grid was then removed from the droplet and allowed to dry at room temperature and presented into the TEM. For ESEM analysis, a critical point drying of the filters was performed using a critical point dryer (CPD) (Samdri PVT- 3D, Tousimis Research Corp., Rockville, MD, USA). After the CPD, each filter was mounted onto a stub and coated with gold/palladium with a sputter coater (Desk II TSC Denton Vacuum, Moorestown, NJ, USA). E.Coli O157:H7 cells on the filters were observed with an ESEM (Philips XL30 ESEM-FEG, FEI Co., Eindhoven, The Netherland). ESEM (Environmental Scanning Electron Microscopy) and TEM (Transmission Electron Microscopy) images showed extensive damage for the samples treated with MTS at 50 and 60 °C such as ruptured cells and breakage on cell membranes. The damage was increasing with increasing exposure time.

Keywords: MTS, HTST, ESEM, TEM, E.COLI O157:H7

Procedia PDF Downloads 251
166 Catamenial Pneumothorax: Report of Two Cases and Review of the Local Literature

Authors: Angeli Marie P. Lagman, Nephtali M. Gorgonio

Abstract:

Catamenial pneumothorax is defined as a recurrent accumulation of air in the pleural cavity, which occurs in the period of 72 hours before or after menses. In a menstruating woman presenting with the difficulty of breathing and chest pain with concomitant radiographic evidence of pneumothorax, a diagnosis of catamenial pneumothorax should be entertained. Two cases of catamenial pneumothorax were reported in our local literature. This report added two more cases. The first case is 45 years old G1P1, while the second case is 46 years old G2P2. These two patients had a history of pelvic endometriosis in the past. All other signs and symptoms were similar to the previously reported cases. All patients presented with difficulty of breathing associated with chest pain. Imaging studies showed right-sided pneumothorax in all patients. Intraoperatively, subpleural bleb, diaphragmatic fenestrations, and endometriotic implants were found. Three patients underwent video-assisted thoracosurgery (VATS), while one patient underwent open thoracotomy with pleurodesis. Histopathology revealed endometriosis in only two patients. All patients received postoperative hormonal therapy, and there were no recurrences noted in all patients. Endometriosis-related catamenial pneumothorax is a rare condition that needs early recognition of the symptoms. Several theories may be involved to explain the pathogenesis of catamenial pneumothorax. Two cases show a strong significant association between a history of pelvic endometriosis and the development of catamenial pneumothorax, while one case can be explained by the hormonal theory. The difficulty of breathing and chest pain in relation to menses may prompt early diagnosis. One case has shown that pneumothorax may occur even after menstruation. A biopsy of the endometrial implants may not always show endometrial glands and stroma, nor will immunostaining, which will not always show estrogen and progesterone receptors. Video-assisted thoracoscopic surgery is the gold standard in the diagnosis and treatment of catamenial pneumothorax. Postoperative hormonal suppression will further reduce the disease recurrence and facilitate the effectiveness of the surgical treatment.

Keywords: catamenial pneumothorax, endometriosis, menstruation, video assisted thoracosurgery

Procedia PDF Downloads 79
165 Diagnosis of Choledocholithiasis with Endosonography

Authors: A. Kachmazova, A. Shadiev, Y. Teterin, P. Yartcev

Abstract:

Introduction: Biliary calculi disease (LCS) still occupies the leading position among urgent diseases of the abdominal cavity, manifesting itself from asymptomatic course to life-threatening states. Nowadays arsenal of diagnostic methods for choledocholithiasis is quite wide: ultrasound, hepatobiliscintigraphy (HBSG), magnetic resonance imaging (MRI), endoscopic retrograde cholangiography (ERCP). Among them, transabdominal ultrasound (TA ultrasound) is the most accessible and routine diagnostic method. Nowadays ERCG is the "gold" standard in diagnosis and one-stage treatment of biliary tract obstruction. However, transpapillary techniques are accompanied by serious postoperative complications (postmanipulative pancreatitis (3-5%), endoscopic papillosphincterotomy bleeding (2%), cholangitis (1%)), the lethality being 0.4%. GBSG and MRI are also quite informative methods in the diagnosis of choledocholithiasis. Small size of concrements, their localization in intrapancreatic and retroduodenal part of common bile duct significantly reduces informativity of all diagnostic methods described above, that demands additional studying of this problem. Materials and Methods: 890 patients with the diagnosis of cholelithiasis (calculous cholecystitis) were admitted to the Sklifosovsky Scientific Research Institute of Hospital Medicine in the period from August, 2020 to June, 2021. Of them 115 people with mechanical jaundice caused by concrements in bile ducts. Results: Final EUS diagnosis was made in all patients (100,0%). In all patients in whom choledocholithiasis diagnosis was revealed or confirmed after EUS, ERCP was performed urgently (within two days from the moment of its detection) as the X-ray operation room was provided; it confirmed the presence of concrements. All stones were removed by lithoextraction using Dormia basket. The postoperative period in these patients had no complications. Conclusions: EUS is the most informative and safe diagnostic method, which allows to detect choledocholithiasis in patients with discrepancies between clinical-laboratory and instrumental methods of diagnosis in shortest time, that in its turn will help to decide promptly on the further tactics of patient treatment. We consider it reasonable to include EUS in the diagnostic algorithm for choledocholithiasis. Disclosure: Nothing to disclose.

Keywords: endoscopic ultrasonography, choledocholithiasis, common bile duct, concrement, ERCP

Procedia PDF Downloads 63
164 Flotation of Rare Earth Oxides from Iron-Oxide Silicate Rich Tailings Using Fatty Acids

Authors: George B. Abaka-Wood, Massimiliano Zanin, Jonas Addai-Mensah, William Skinner

Abstract:

The versatility of froth flotation has made it vital in the beneficiation of rare earth elements minerals from either high or low-grade ores. There has been a significant increase in the quantity of iron oxide silicate-rich tailings generated from the extraction of primary commodities such as copper and gold in Australia, which have been identified to contain very low-grade rare earth oxides (≤ 1%). There is a vast knowledge gap in the beneficiation of rare earth oxides from such tailings. The aim of this research is to investigate the feasibility of using fatty acids as collectors for the flotation recovery and upgrade of rare earth oxides from selected iron-oxide silicate-rich tailings. Two forms of fatty acid collectors (oleic acid and sodium oleate) were tested in this investigation. Flotation tests were carried out using a 1.2 L Denver D-12 cell. The effects of pulp pH, fatty acid dosage, particle size distribution (-150 +75 µm, -75 +38 µm and -38 µm) and conventional depressants (sodium silicate and starch) dosage on flotation recovery of rare earth oxides were investigated. A comparison of the flotation results indicated that sodium oleate was the more efficient fatty acid for rare earth oxides flotation at all the pulp pH investigated. The flotation performance was found to be particle size-dependent. Both sodium silicate and starch were unselective in decreasing the recovery of iron oxides and silicate minerals, respectively with the corresponding decrease in rare earth oxides recovery. Generally, iron oxides and silicate minerals formed the substantial fraction of the flotation concentrates obtained, both in the absence and presence of depressants, resulting in a generally low rare earth oxides upgrade, even though rare earth oxides recoveries were high. The flotation tests carried out on the tailings sample suggest the feasibility of rare earth oxides recovery using fatty acids, although particle size distribution and minerals liberation are key limiting factors in achieving selective rare earth oxides upgrade.

Keywords: depressants, flotation, oleic acid, sodium oleate

Procedia PDF Downloads 164
163 Risk Management in Islamic Micro Finance Credit System for Poverty Alleviation from Qualitative Perspective

Authors: Liyu Adhi Kasari Sulung

Abstract:

Poverty has been a major problem in Indonesia. Islamic micro finance (IMF) named Baitul Maal Wat Tamwil (Bmt) plays a prominent role to eradicate this. Indonesia as the biggest muslim country has many successful applied products such as worldwide adopt group-based lending approach, flexible financing for farmers, and gold pawning. The Problems related to these models are operation risk management and internal control system (ICS). A proper ICS will help an organization in preventing the occurrence of bad financing through detecting error and irregularities in its operation. This study aims to seek a proper risk management scheme of credit system in Bmt and internal control system’s rank for every stage. Risk management variables are obtained at the first In-Depth Interview (IDI) and Focus Group Discussion (FGD) with Shariah supervisory boards, boards of directors, and operational managers. Survey was conducted covering nationwide data; West Java, South Sulawesi, and West Nusa Tenggara. Moreover, Content analysis is employed to build the relationship among these variables. Research Findings shows that risk management Characteristics in Indonesia involves ex ante, credit process, and ex post strategies to deal with risk in credit system. Ex-ante control consists of Shariah compliance, survey, group leader reference, and islamic forming orientation. Then, credit process involves saving, collateral, joint liability, loan repayment, and credit installment controlling. Finally, ex-post control includes shariah evaluation, credit evaluation, grace period and low installment provisions. In addition, internal control order sort three stages by its priority; Credit process as first rank, then ex-post control as second, and ex ante control as the last rank.

Keywords: internal control system, islamic micro finance, poverty, risk management

Procedia PDF Downloads 382
162 Using Multiomic Plasma Profiling From Liquid Biopsies to Identify Potential Signatures for Disease Diagnostics in Late-Stage Non-small Cell Lung Cancer (NSCLC) in Trinidad and Tobago

Authors: Nicole Ramlachan, Samuel Mark West

Abstract:

Lung cancer is the leading cause of cancer-associated deaths in North America, with the vast majority being non-small cell lung cancer (NSCLC), with a five-year survival rate of only 24%. Non-invasive discovery of biomarkers associated with early-diagnosis of NSCLC can enable precision oncology efforts using liquid biopsy-based multiomics profiling of plasma. Although tissue biopsies are currently the gold standard for tumor profiling, this method presents many limitations since these are invasive, risky, and sometimes hard to obtain as well as only giving a limited tumor profile. Blood-based tests provides a less-invasive, more robust approach to interrogate both tumor- and non-tumor-derived signals. We intend to examine 30 stage III-IV NSCLC patients pre-surgery and collect plasma samples.Cell-free DNA (cfDNA) will be extracted from plasma, and next-generation sequencing (NGS) performed. Through the analysis of tumor-specific alterations, including single nucleotide variants (SNVs), insertions, deletions, copy number variations (CNVs), and methylation alterations, we intend to identify tumor-derived DNA—ctDNA among the total pool of cfDNA. This would generate data to be used as an accurate form of cancer genotyping for diagnostic purposes. Using liquid biopsies offer opportunities to improve the surveillance of cancer patients during treatment and would supplement current diagnosis and tumor profiling strategies previously not readily available in Trinidad and Tobago. It would be useful and advantageous to use this in diagnosis and tumour profiling as well as to monitor cancer patients, providing early information regarding disease evolution and treatment efficacy, and reorient treatment strategies in, timethereby improving clinical oncology outcomes.

Keywords: genomics, multiomics, clinical genetics, genotyping, oncology, diagnostics

Procedia PDF Downloads 122
161 Preparation and Characterization of CO-Tolerant Electrocatalyst for PEM Fuel Cell

Authors: Ádám Vass, István Bakos, Irina Borbáth, Zoltán Pászti, István Sajó, András Tompos

Abstract:

Important requirements for the anode side electrocatalysts of polymer electrolyte membrane (PEM) fuel cells are CO-tolerance, stability and corrosion resistance. Carbon is still the most common material for electrocatalyst supports due to its low cost, high electrical conductivity and high surface area, which can ensure good dispersion of the Pt. However, carbon becomes degraded at higher potentials and it causes problem during application. Therefore it is important to explore alternative materials with improved stability. Molybdenum-oxide can improve the CO-tolerance of the Pt/C catalysts, but it is prone to leach in acidic electrolyte. The Mo was stabilized by isovalent substitution of molybdenum into the rutile phase titanium-dioxide lattice, achieved by a modified multistep sol-gel synthesis method optimized for preparation of Ti0.7Mo.3O2-C composite. High degree of Mo incorporation into the rutile lattice was developed. The conductivity and corrosion resistance across the anticipated potential/pH window was ensured by mixed oxide – activated carbon composite. Platinum loading was carried out using NaBH4 and ethylene glycol; platinum content was 40 wt%. The electrocatalyst was characterized by both material investigating methods (i.e. XRD, TEM, EDS, XPS techniques) and electrochemical methods (cyclic-voltammetry, COads stripping voltammetry, hydrogen oxidation reaction on rotating disc electrode). The electrochemical activity of the sample was compared to commercial 40 wt% Pt/C (Quintech) and PtRu/C (Quintech, Pt= 20 wt%, Ru= 10 wt%) references. Enhanced CO tolerance of the electrocatalyst prepared using the Ti0.7Mo.3O2-C composite material was evidenced by the appearance of a CO-oxidation related 'pre-peak' and by the pronounced shift of the maximum of the main CO oxidation peak towards less positive potential compared to Pt/C. Fuel cell polarization measurements were also carried out using Bio-Logic and Paxitech FCT-150S test device. All details on the design, preparation, characterization and testing by both electrochemical measurements and fuel cell test device of electrocatalyst supported on Ti0.7Mo.3O2-C composite material will be presented and discussed.

Keywords: anode electrocatalyst, composite material, CO-tolerance, TiMoOx

Procedia PDF Downloads 263
160 A Comparative Study between Digital Mammography, B Mode Ultrasound, Shear-Wave and Strain Elastography to Distinguish Benign and Malignant Breast Masses

Authors: Arjun Prakash, Samanvitha H.

Abstract:

BACKGROUND: Breast cancer is the commonest malignancy among women globally, with an estimated incidence of 2.3 million new cases as of 2020, representing 11.7% of all malignancies. As per Globocan data 2020, it accounted for 13.5% of all cancers and 10.6% of all cancer deaths in India. Early diagnosis and treatment can improve the overall morbidity and mortality, which necessitates the importance of differentiating benign from malignant breast masses. OBJECTIVE: The objective of the present study was to evaluate and compare the role of Digital Mammography (DM), B mode Ultrasound (USG), Shear Wave Elastography (SWE) and Strain Elastography (SE) in differentiating benign and malignant breast masses (ACR BI-RADS 3 - 5). Histo-Pathological Examination (HPE) was considered the Gold standard. MATERIALS & METHODS: We conducted a cross-sectional study on 53 patients with 64 breast masses over a period of 10 months. All patients underwent DM, USG, SWE and SE. These modalities were individually assessed to know their accuracy in differentiating benign and malignant masses. All Digital Mammograms were done using the Fujifilm AMULET Innovality Digital Mammography system and all Ultrasound examinations were performed on SAMSUNG RS 80 EVO Ultrasound system equipped with 2 to 9 MHz and 3 – 16 MHz linear transducers. All masses were subjected to HPE. Independent t-test and Chi-square or Fisher’s exact test were used to assess continuous and categorical variables, respectively. ROC analysis was done to assess the accuracy of diagnostic tests. RESULTS: Of 64 lesions, 51 (79.68%) were malignant and 13 (20.31%) (p < 0.0001) were benign. SE was the most specific (100%) (p < 0.0001) and USG (98%) (p < 0.0001) was the most sensitive of all the modalities. E max, E mean, E max ratio, E mean ratio and Strain Ratio of the malignant masses significantly differed from those of the benign masses. Maximum SWE value showed the highest sensitivity (88.2%) (p < 0.0001) among the elastography parameters. A combination of USG, SE and SWE had good sensitivity (86%) (p < 0.0001). CONCLUSION: A combination of USG, SE and SWE improves overall diagnostic yield in differentiating benign and malignant breast masses. Early diagnosis and treatment of breast carcinoma will reduce patient mortality and morbidity.

Keywords: digital mammography, breast cancer, ultrasound, elastography

Procedia PDF Downloads 80
159 Developing Environmental Engineering Alternatives for Deep Desulphurization of Transportation Fuels

Authors: Nalinee B. Suryawanshi, Vinay M. Bhandari, Laxmi Gayatri Sorokhaibam, Vivek V. Ranade

Abstract:

Deep desulphurization of transportation fuels is a major environmental concern all over the world and recently prescribed norms for the sulphur content require below 10 ppm sulphur concentrations in fuels such as diesel and gasoline. The existing technologies largely based on catalytic processes such as hydrodesulphurization, oxidation require newer catalysts and demand high cost of deep desulphurization whereas adsorption based processes have limitations due to lower capacity of sulphur removal. The present work is an attempt to provide alternatives for the existing methodologies using a newer non-catalytic process based on hydrodynamic cavitation. The developed process requires appropriate combining of organic and aqueous phases under ambient conditions and passing through a cavitating device such as orifice, venturi or vortex diode. The implosion of vapour cavities formed in the cavitating device generates (in-situ) oxidizing species which react with the sulphur moiety resulting in the removal of sulphur from the organic phase. In this work, orifice was used as a cavitating device and deep desulphurization was demonstrated for removal of thiophene as a model sulphur compound from synthetic fuel of n-octane, toluene and n-octanol. The effect of concentration of sulphur (up to 300 ppm), nature of organic phase and effect of pressure drop (0.5 to 10 bar) was discussed. A very high removal of sulphur content of more than 90% was demonstrated. The process is easy to operate, essentially works at ambient conditions and the ratio of aqueous to organic phase can be easily adjusted to maximise sulphur removal. Experimental studies were also carried out using commercial diesel as a solvent and the results substantiate similar high sulphur removal. A comparison of the two cavitating devices- one with a linear flow and one using vortex flow for effecting pressure drop and cavitation indicates similar trends in terms of sulphur removal behaviour. The developed process is expected to provide an attractive environmental engineering alternative for deep desulphurization of transportation fuels.

Keywords: cavitation, petroleum, separation, sulphur removal

Procedia PDF Downloads 347
158 Glycerol-Based Bio-Solvents for Organic Synthesis

Authors: Dorith Tavor, Adi Wolfson

Abstract:

In the past two decades a variety of green solvents have been proposed, including water, ionic liquids, fluorous solvents, and supercritical fluids. However, their implementation in industrial processes is still limited due to their tedious and non-sustainable synthesis, lack of experimental data and familiarity, as well as operational restrictions and high cost. Several years ago we presented, for the first time, the use of glycerol-based solvents as alternative sustainable reaction mediums in both catalytic and non-catalytic organic synthesis. Glycerol is the main by-product from the conversion of oils and fats in oleochemical production. Moreover, in the past decade, its price has substantially decreased due to an increase in supply from the production and use of fatty acid derivatives in the food, cosmetics, and drugs industries and in biofuel synthesis, i.e., biodiesel. The renewable origin, beneficial physicochemical properties and reusability of glycerol-based solvents, enabled improved product yield and selectivity as well as easy product separation and catalyst recycling. Furthermore, their high boiling point and polarity make them perfect candidates for non-conventional heating and mixing techniques such as ultrasound- and microwave-assisted reactions. Finally, in some reactions, such as catalytic transfer-hydrogenation or transesterification, they can also be used simultaneously as both solvent and reactant. In our ongoing efforts to design a viable protocol that will facilitate the acceptance of glycerol and its derivatives as sustainable solvents, pure glycerol and glycerol triacetate (triacetin) as well as various glycerol-triacetin mixtures were tested as sustainable solvents in several representative organic reactions, such as nucleophilic substitution of benzyl chloride to benzyl acetate, Suzuki-Miyaura cross-coupling of iodobenzene and phenylboronic acid, baker’s yeast reduction of ketones, and transfer hydrogenation of olefins. It was found that reaction performance was affected by the glycerol to triacetin ratio, as the solubility of the substrates in the solvent determined product yield. Thereby, employing optimal glycerol to triacetin ratio resulted in maximum product yield. In addition, using glycerol-based solvents enabled easy and successful separation of the products and recycling of the catalysts.

Keywords: glycerol, green chemistry, sustainability, catalysis

Procedia PDF Downloads 600
157 Detecting the Palaeochannels Based on Optical Data and High-Resolution Radar Data for Periyarriver Basin

Authors: S. Jayalakshmi, Gayathri S., Subiksa V., Nithyasri P., Agasthiya

Abstract:

Paleochannels are the buried part of an active river system which was separated from the active river channel by the process of cutoff or abandonment during the dynamic evolution of the active river. Over time, they are filled by young unconsolidated or semi-consolidated sediments. Additionally, it is impacted by geo morphological influences, lineament alterations, and other factors. The primary goal of this study is to identify the paleochannels in Periyar river basin for the year 2023. Those channels has a high probability in the presence of natural resources, including gold, platinum,tin,an duranium. Numerous techniques are used to map the paleochannel. Using the optical data, Satellite images were collected from various sources, which comprises multispectral satellite images from which indices such as Normalized Difference Vegetation Index (NDVI),Normalized Difference Water Index (NDWI), Soil Adjusted Vegetative Index (SAVI) and thematic layers such as Lithology, Stream Network, Lineament were prepared. Weights are assigned to each layer based on its importance, and overlay analysis has done, which concluded that the northwest region of the area has shown some paleochannel patterns. The results were cross-verified using the results obtained using microwave data. Using Sentinel data, Synthetic Aperture Radar (SAR) Image was extracted from European Space Agency (ESA) portal, pre-processed it using SNAP 6.0. In addition to that, Polarimetric decomposition technique has incorporated to detect the paleochannels based on its scattering property. Further, Principal component analysis has done for enhanced output imagery. Results obtained from optical and microwave radar data were compared and the location of paleochannels were detected. It resulted six paleochannels in the study area out of which three paleochannels were validated with the existing data published by Department of Geology and Environmental Science, Kerala. The other three paleochannels were newly detected with the help of SAR image.

Keywords: paleochannels, optical data, SAR image, SNAP

Procedia PDF Downloads 58
156 Effectiveness of High-Intensity Interval Training in Overweight Individuals between 25-45 Years of Age Registered in Sports Medicine Clinic, General Hospital Kalutara

Authors: Dimuthu Manage

Abstract:

Introduction: The prevalence of obesity and obesity-related non-communicable diseases are becoming a massive health concern in the whole world. Physical activity is recognized as an effective solution for this matter. The published data on the effectiveness of High-Intensity Interval Training (HIIT) in improving health parameters in overweight and obese individuals in Sri Lanka is sparse. Hence this study is conducted. Methodology: This is a quasi-experimental study that was conducted at the Sports medicine clinic, General Hospital, Kalutara. Participants have engaged in a programme of HIIT three times per week for six weeks. Data collection was based on precise measurements by using structured and validated methods. Ethical clearance was obtained. Results: Registered number for the study was 48, and only 52% have completed the study. The mean age was 32 (SD=6.397) years, with 64% males. All the anthropometric measurements which were assessed (i.e. waist circumference(P<0.001), weight(P<0.001) and BMI(P<0.001)), body fat percentage(P<0.001), VO2 max(P<0.001), and lipid profile (ie. HDL(P=0.016), LDL(P<0.001), cholesterol(P<0.001), triglycerides(P<0.010) and LDL: HDL(P<0.001)) had shown statistically significant improvement after the intervention with the HIIT programme. Conclusions: This study confirms HIIT as a time-saving and effective exercise method, which helps in preventing obesity as well as non-communicable diseases. HIIT ameliorates body anthropometry, fat percentage, cardiopulmonary status, and lipid profile in overweight and obese individuals markedly. As with the majority of studies, the design of the current study is subject to some limitations. The first is the study focused on a correlational study. If it is a comparative study, comparing it with other methods of training programs would have given more validity. Although the validated tools used to measure variables and the same tools used in pre and post-exercise occasions with the available facilities, it would have been better to measure some of them using gold-standard methods. However, this evidence should be further assessed in larger-scale trials using comparative groups to generalize the efficacy of the HIIT exercise program.

Keywords: HIIT, lipid profile, BMI, VO2 max

Procedia PDF Downloads 37
155 Development and Validation of a Liquid Chromatographic Method for the Quantification of Related Substance in Gentamicin Drug Substances

Authors: Sofiqul Islam, V. Murugan, Prema Kumari, Hari

Abstract:

Gentamicin is a broad spectrum water-soluble aminoglycoside antibiotics produced by the fermentation process of microorganism known as Micromonospora purpurea. It is widely used for the treatment of infection caused by both gram positive and gram negative bacteria. Gentamicin consists of a mixture of aminoglycoside components like C1, C1a, C2a, and C2. The molecular structure of Gentamicin and its related substances showed that it has lack of presence of chromophore group in the molecule due to which the detection of such components were quite critical and challenging. In this study, a simple Reversed Phase-High Performance Liquid Chromatographic (RP-HPLC) method using ultraviolet (UV) detector was developed and validated for quantification of the related substances present in Gentamicin drug substances. The method was achieved by using Thermo Scientific Hypersil Gold analytical column (150 x 4.6 mm, 5 µm particle size) with isocratic elution composed of methanol: water: glacial acetic acid: sodium hexane sulfonate in the ratio 70:25:5:3 % v/v/v/w as a mobile phase at a flow rate of 0.5 mL/min, column temperature was maintained at 30 °C and detection wavelength of 330 nm. The four components of Gentamicin namely Gentamicin C1, C1a, C2a, and C2 were well separated along with the related substance present in Gentamicin. The Limit of Quantification (LOQ) values were found to be at 0.0075 mg/mL. The accuracy of the method was quite satisfactory in which the % recovery was resulted between 95-105% for the related substances. The correlation coefficient (≥ 0.995) shows the linearity response against concentration over the range of Limit of Quantification (LOQ). Precision studies showed the % Relative Standard Deviation (RSD) values less than 5% for its related substance. The method was validated in accordance with the International Conference of Harmonization (ICH) guideline with various parameters like system suitability, specificity, precision, linearity, accuracy, limit of quantification, and robustness. This proposed method was easy and suitable for use for the quantification of related substances in routine analysis of Gentamicin formulations.

Keywords: reversed phase-high performance liquid chromatographic (RP-HPLC), high performance liquid chromatography, gentamicin, isocratic, ultraviolet

Procedia PDF Downloads 140
154 Synthesis, Characterization and Photocatalytic Applications of Ag-Doped-SnO₂ Nanoparticles by Sol-Gel Method

Authors: M. S. Abd El-Sadek, M. A. Omar, Gharib M. Taha

Abstract:

In recent years, photocatalytic degradation of various kinds of organic and inorganic pollutants using semiconductor powders as photocatalysts has been extensively studied. Owing to its relatively high photocatalytic activity, biological and chemical stability, low cost, nonpoisonous and long stable life, Tin oxide materials have been widely used as catalysts in chemical reactions, including synthesis of vinyl ketone, oxidation of methanol and so on. Tin oxide (SnO₂), with a rutile-type crystalline structure, is an n-type wide band gap (3.6 eV) semiconductor that presents a proper combination of chemical, electronic and optical properties that make it advantageous in several applications. In the present work, SnO₂ nanoparticles were synthesized at room temperature by the sol-gel process and thermohydrolysis of SnCl₂ in isopropanol by controlling the crystallite size through calculations. The synthesized nanoparticles were identified by using XRD analysis, TEM, FT-IR, and Uv-Visible spectroscopic techniques. The crystalline structure and grain size of the synthesized samples were analyzed by X-Ray diffraction analysis (XRD) and the XRD patterns confirmed the presence of tetragonal phase SnO₂. In this study, Methylene blue degradation was tested by using SnO₂ nanoparticles (at different calculations temperatures) as a photocatalyst under sunlight as a source of irradiation. The results showed that the highest percentage of degradation of Methylene blue dye was obtained by using SnO₂ photocatalyst at calculations temperature 800 ᵒC. The operational parameters were investigated to be optimized to the best conditions which result in complete removal of organic pollutants from aqueous solution. It was found that the degradation of dyes depends on several parameters such as irradiation time, initial dye concentration, the dose of the catalyst and the presence of metals such as silver as a dopant and its concentration. Percent degradation was increased with irradiation time. The degradation efficiency decreased as the initial concentration of the dye increased. The degradation efficiency increased as the dose of the catalyst increased to a certain level and by further increasing the SnO₂ photocatalyst dose, the degradation efficiency is decreased. The best degradation efficiency on which obtained from pure SnO₂ compared with SnO₂ which doped by different percentage of Ag.

Keywords: SnO₂ nanoparticles, a sol-gel method, photocatalytic applications, methylene blue, degradation efficiency

Procedia PDF Downloads 127
153 Development of Wide Bandgap Semiconductor Based Particle Detector

Authors: Rupa Jeena, Pankaj Chetry, Pradeep Sarin

Abstract:

The study of fundamental particles and the forces governing them has always remained an attractive field of theoretical study to pursue. With the advancement and development of new technologies and instruments, it is possible now to perform particle physics experiments on a large scale for the validation of theoretical predictions. These experiments are generally carried out in a highly intense beam environment. This, in turn, requires the development of a detector prototype possessing properties like radiation tolerance, thermal stability, and fast timing response. Semiconductors like Silicon, Germanium, Diamond, and Gallium Nitride (GaN) have been widely used for particle detection applications. Silicon and germanium being narrow bandgap semiconductors, require pre-cooling to suppress the effect of noise by thermally generated intrinsic charge carriers. The application of diamond in large-scale experiments is rare owing to its high cost of fabrication, while GaN is one of the most extensively explored potential candidates. But we are aiming to introduce another wide bandgap semiconductor in this active area of research by considering all the requirements. We have made an attempt by utilizing the wide bandgap of rutile Titanium dioxide (TiO2) and other properties to use it for particle detection purposes. The thermal evaporation-oxidation (in PID furnace) technique is used for the deposition of the film, and the Metal Semiconductor Metal (MSM) electrical contacts are made using Titanium+Gold (Ti+Au) (20/80nm). The characterization comprising X-Ray Diffraction (XRD), Atomic Force Microscopy (AFM), Ultraviolet (UV)-Visible spectroscopy, and Laser Raman Spectroscopy (LRS) has been performed on the film to get detailed information about surface morphology. On the other hand, electrical characterizations like Current Voltage (IV) measurement in dark and light and test with laser are performed to have a better understanding of the working of the detector prototype. All these preliminary tests of the detector will be presented.

Keywords: particle detector, rutile titanium dioxide, thermal evaporation, wide bandgap semiconductors

Procedia PDF Downloads 53
152 CeO₂-Decorated Graphene-coated Nickel Foam with NiCo Layered Double Hydroxide for Efficient Hydrogen Evolution Reaction

Authors: Renzhi Qi, Zhaoping Zhong

Abstract:

Under the dual pressure of the global energy crisis and environmental pollution, avoiding the consumption of non-renewable fossil fuels based on carbon as the energy carrier and developing and utilizing non-carbon energy carriers are the basic requirements for the future new energy economy. Electrocatalyst for water splitting plays an important role in building sustainable and environmentally friendly energy conversion. The oxygen evolution reaction (OER) is essentially limited by the slow kinetics of multi-step proton-electron transfer, which limits the efficiency and cost of water splitting. In this work, CeO₂@NiCo-NRGO/NF hybrid materials were prepared using nickel foam (NF) and nitrogen-doped reduced graphene oxide (NRGO) as conductive substrates by multi-step hydrothermal method and were used as highly efficient catalysts for OER. The well-connected nanosheet array forms a three-dimensional (3D) network on the substrate, providing a large electrochemical surface area with abundant catalytic active sites. The doping of CeO₂ in NiCo-NRGO/NF electrocatalysts promotes the dispersion of substances and its synergistic effect in promoting the activation of reactants, which is crucial for improving its catalytic performance against OER. The results indicate that CeO₂@NiCo-NRGO/NF only requires a lower overpotential of 250 mV to drive the current density of 10 mA cm-2 for an OER reaction of 1 M KOH, and exhibits excellent stability at this current density for more than 10 hours. The double layer capacitance (Cdl) values show that CeO₂@NiCo-NRGO/NF significantly affects the interfacial conductivity and electrochemically active surface area. The hybrid structure could promote the catalytic performance of oxygen evolution reaction, such as low initial potential, high electrical activity, and excellent long-term durability. The strategy for improving the catalytic activity of NiCo-LDH can be used to develop a variety of other electrocatalysts for water splitting.

Keywords: CeO₂, reduced graphene oxide, NiCo-layered double hydroxide, oxygen evolution reaction

Procedia PDF Downloads 44
151 How Childhood Trauma Changes the Recovery Models

Authors: John Michael Weber

Abstract:

The following research results spanned six months and 175 people addicted to some form of substance, from alcohol to heroin. One question was asked, and the answers were amazing and consistent. The following work is the detailed results of this writer’s answer to his own question and the 175 that followed. A constant pattern took shape throughout the bio-psycho-social assessments, these addicts had “first memories,” the memories were vivid and took place between the ages of three to six years old, to a person those first memories were traumatic. This writer’s personal search into his childhood was not to find an excuse for the way he became, but to explain the reason for becoming an addict. To treat addiction, these memories that have caused Post Traumatic Stress Disorder (PTSD), must be recognized as the catalyst that sparked a predisposition. Cognitive Behavioral Therapy (CBT), integrated with treatment specifically focused on PTSD, gives the addict a better chance at recovery sans relapse. This paper seeks to give the findings of first memories of the addicts assessed and provide the best treatment plan for such an addict, considering, the childhood trauma in congruence with treatment of the Substance Use Disorder (SUD). The question posed was concerning what their first life memory wa It is the hope of this author to take the knowledge that trauma is one of the main catalysts for addiction, will allow therapists to provide better treatment and reduce relapse from abstinence from drugs and alcohol. This research led this author to believe that if treatment of childhood trauma is not a priority, the twelve steps of Alcoholics Anonymous, specifically steps 4 and 5, will not be thoroughly addressed and odds for relapse increase. With this knowledge, parents can be educated on childhood trauma and the effect it has on their children. Parents could be mindful of the fact that the things they perceive as traumatic, do not match what a child, in the developmental years, absorbs as traumatic. It is this author’s belief that what has become the status quo in treatment facilities has not been working for a long time. It is for that reason this author believes things need to change. Relapse has been woven into the fabric of standard operating procedure and that, in this authors view, is not necessary. Childhood Trauma is not being addressed early in recovery and that creates an environment of inevitable relapse. This paper will explore how to break away from the status -quo and rethink the current “evidencebased treatments.” To begin breaking away from status-quo, this ends the Abstract, with hopes an interest has been peaked to read on.

Keywords: childood, trauma, treatment, addiction, change

Procedia PDF Downloads 53
150 Relationships of Functional Status and Subjective Health Status among Stable Chronic Obstructive Pulmonary Disease Patients Residing in the Community

Authors: Hee-Young Song

Abstract:

Background and objectives: In 2011, the Global Initiative for Chronic Obstructive Lung Disease (GOLD) recommendations proposed a multidimensional assessment of patients’ conditions that included both functional parameters and patient-reported outcomes, with the aim to provide a comprehensive assessment of the disease, thus meeting both the needs of the patient and the role of the physician. However, few studies have evaluated patient-reported outcomes as well as objective functional assessments among individuals with chronic obstructive pulmonary disease (COPD) in clinical practice in Korea. This study was undertaken to explore the relationship between functional status assessed by the 6-minute walking distance (MWD) test and subjective health status reported by stable patients with COPD residing in community. Methods: A cross-sectional descriptive study was conducted with 118 stable COPD patients aged 69.4 years old and selected by a convenient sampling from an outpatient department of pulmonology in a tertiaryhospitals. The 6-MWD test was conducted according to standardized instructions. Participants also completed a constructed questionnaire including general characteristics, smoking history, dyspnea by modified medical research council (mMRC) scale, and health status by COPD assessment test (CAT). Anthropometric measurements were performed for body mass index (BMI). Medical records were reviewed to obtain disease-related characteristics including duration of the disease and forced expiratory volume in 1 second (FEV1). Data were analyzed using PASW statistics 20.0. Results: Mean FEV1% of participants was 63.51% and mean 6-MWD and CAT scores were 297.54m and 17.7, respectively. The 6-MWD and CAT showed significant negative correlations (r= -.280, p=.002); FEV1 and CAT did as well correlations (r= -.347, p < .001). Conclusions: Findings suggest that the better functional status an individual with COPD has, the better subjective health status is, and provide the support for using patient-reported outcomes along with functional parameters to facilitate comprehensive assessment of COPD patients in real clinical practices.

Keywords: chronic obstructive pulmonary disease, COPD assessment test, functional status, patient-reported outcomes

Procedia PDF Downloads 339
149 Management of First Trimester Miscarriage

Authors: Madeleine Cox

Abstract:

Objective; analyse patient choices in management of first trimester miscarriage, rates of complications including repeat procedure. Design: all first trimester miscarriages from a tertiary institution on the Gold Coast in a 6 month time frame (July to December 2021) were reviewed, including choice of management, histopathology, any representations or admissions, and potential complications. Results: a total of 224 first trimester miscarriages were identified. Of these, 183 (81%) opted to have surgical management in the first instance. Of the remaining patients, 18 (8%) opted to have medical management, and 28 (12.5%) opted to have expectant management. In total, 33(15%) patients required a repeat treatment for retained products. 1 had medical management for a small volume PROC post suction curette. A significant number of these patients initially opted for medical management but then elected to have shorter follow up than usual and went on to have retained products noted. 5 women who had small volumes of RPOC post medical or surgical management had repeat suction curette, however, had very small volumes of products on scan and on curette and may have had a good result with repeated misoprostol administration. It is important to note that whilst a common procedure, suction curettes are not without risk. 2 women had significant blood loss of 1L and 1.5L. A third women had a uterine perforation, a rare but recognised complication, she went on to require a laparoscopy which identified a small serosal bowel injury which was closed by the colorectal team. Conclusion: Management of first trimester miscarriage should be guided by patient preference. It is important to be able to provide patients with their choice of management, however, it is also important to have a good understanding of the risks of each management choice, chances of repeated procedure, appropriate time frame for follow up. Women who choose to undertake medical or expectant management should be supported through this time, with appropriate time frame between taking misoprostol and repeat scan so that the true effects can be evaluated. Patients returning for scans within 2-3 days are more likely to be booked for further surgery, however, may reflect patients who did not have adequate counselling or simply changed their mind on their preferred management options.

Keywords: miscarriage, gynaecology, obstetrics, first trimester

Procedia PDF Downloads 80
148 Effectiveness of Adrenal Venous Sampling in the Management of Primary Aldosteronism: Single Centered Cohort Study at a Tertiary Care Hospital in Sri Lanka

Authors: Balasooriya B. M. C. M., Sujeeva N., Thowfeek Z., Siddiqa Omo, Liyanagunawardana J. E., Jayawardana Saiu, Manathunga S. S., Katulanda G. W.

Abstract:

Introduction and objectives: Adrenal venous sampling (AVS) is the gold standard to discriminate unilateral primary aldosteronism (UPA) from bilateral disease (BPA). AVS is technically demanding and only performed in a limited number of centers worldwide. To the best of our knowledge, Except for one study conducted in India, no other research studies on this area have been conducted in South Asia. This study aimed to evaluate the effectiveness of AVS in the management of primary aldosteronism. Methods: A total of 32 patients who underwent AVS at the National Hospital of Sri Lanka from April 2021 to April 2023 were enrolled. Demographic, clinical and laboratory data were obtained retrospectively. A procedure was considered successful when adequate cannulation of both adrenal veins was demonstrated. Cortisol gradient across the adrenal vein (AV) and the peripheral vein was used to establish the success of venous cannulation. Lateralization was determined by the aldosterone gradient between the two sides. Continuous and categorical variables were summarized with mean, SD, and proportions, respectively. The mean and standard deviation of the contralateral suppression index (CSI) were estimated with an intercept-only Bayesian inference model. Results: Of the 32 patients, the average age was 52.47 +26.14 and 19 (59.4%) were males. Both AVs were successfully cannulated in 12 (37.5%). Among them, lateralization was demonstrated in 11(91.7%), and one was diagnosed as a bilateral disease. There were no total failures. Right AV cannulation was unsuccessful in 18 (56.25%), of which lateralization was demonstrated in 9 (50%), and others were inconclusive. Left AV cannulation was unsuccessful only in 2 (6.25%); one was lateralized, and the other remained inconclusive. The estimated mean of the CSI was 0.33 (89% credible interval 0.11-0.86). Seven patients underwent unilateral adrenalectomy and demonstrated significant improvement in blood pressure during follow-up. Two patients await surgery. Others were treated medically. Conclusions: Despite failure due to procedural difficulties, AVS remained useful in the management of patients with PA. Moreover, the success of the procedure needs experienced hands and advanced equipment to achieve optimal outcomes in PA.

Keywords: adrenal venous sampling, lateralization, contralateral suppression index, primary aldosteronism

Procedia PDF Downloads 36
147 Reduction of Nitrogen Monoxide with Carbon Monoxide from Gas Streams by 10% wt. Cu-Ce-Fe-Co/Activated Carbon

Authors: K. L. Pan, M. B. Chang

Abstract:

Nitrogen oxides (NOₓ) is regarded as one of the most important air pollutants. It not only causes adverse environmental effects but also harms human lungs and respiratory system. As a post-combustion treatment, selective catalytic reduction (SCR) possess the highest NO removal efficiency ( ≥ 85%), which is considered as the most effective technique for removing NO from gas streams. However, injection of reducing agent such as NH₃ is requested, and it is costly and may cause secondary pollution. Reduction of NO with carbon monoxide (CO) as reducing agent has been previously investigated. In this process, the key step involves the NO adsorption and dissociation. Also, the high performance mainly relies on the amounts of oxygen vacancy on catalyst surface and redox ability of catalyst, because oxygen vacancy can activate the N-O bond to promote its dissociation. Additionally, perfect redox ability can promote the adsorption of NO and oxidation of CO. Typically, noble metals such as iridium (Ir), platinum (Pt), and palladium (Pd) are used as catalyst for the reduction of NO with CO; however, high cost has limited their applications. Recently, transition metal oxides have been investigated for the reduction of NO with CO, especially CuₓOy, CoₓOy, Fe₂O₃, and MnOₓ are considered as effective catalysts. However, deactivation is inevitable as oxygen (O₂) exists in the gas streams because active sites (oxygen vacancies) of catalyst are occupied by O₂. In this study, Cu-Ce-Fe-Co is prepared and supported on activated carbon by impregnation method to form 10% wt. Cu-Ce-Fe-Co/activated carbon catalyst. Generally, addition of activated carbon on catalyst can bring several advantages: (1) NO can be effectively adsorbed by interaction between catalyst and activated carbon, resulting in the improvement of NO removal, (2) direct NO decomposition may be achieved over carbon associated with catalyst, and (3) reduction of NO could be enhanced by a reducing agent over carbon-supported catalyst. Therefore, 10% wt. Cu-Ce-Fe-Co/activated carbon may have better performance for reduction of NO with CO. Experimental results indicate that NO conversion achieved with 10% wt. Cu-Ce-Fe-Co/activated carbon reaches 83% at 150°C with 300 ppm NO and 10,000 ppm CO. As temperature is further increased to 200°C, 100% NO conversion could be achieved, implying that 10% wt. Cu-Ce-Fe-Co/activated carbon prepared has good activity for the reduction of NO with CO. In order to investigate the effect of O₂ on reduction of NO with CO, 1-5% O₂ are introduced into the system. The results indicate that NO conversions still maintain at ≥ 90% with 1-5% O₂ conditions at 200°C. It is worth noting that effect of O₂ on reduction of NO with CO could be significantly improved as carbon is used as support. It is inferred that carbon support can react with O₂ to produce CO₂ as O₂ exists in the gas streams. Overall, 10% wt. Cu-Ce-Fe-Co/activated carbon is demonstrated with good potential for reduction of NO with CO, and possible mechanisms will be elucidated in this paper.

Keywords: nitrogen oxides (NOₓ), carbon monoxide (CO), reduction of NO with CO, carbon material, catalysis

Procedia PDF Downloads 223
146 Hydraulic Characteristics of Mine Tailings by Metaheuristics Approach

Authors: Akhila Vasudev, Himanshu Kaushik, Tadikonda Venkata Bharat

Abstract:

A large number of mine tailings are produced every year as part of the extraction process of phosphates, gold, copper, and other materials. Mine tailings are high in water content and have very slow dewatering behavior. The efficient design of tailings dam and economical disposal of these slurries requires the knowledge of tailings consolidation behavior. The large-strain consolidation theory closely predicts the self-weight consolidation of these slurries as the theory considers the conservation of mass and momentum conservation and considers the hydraulic conductivity as a function of void ratio. Classical laboratory techniques, such as settling column test, seepage consolidation test, etc., are expensive and time-consuming for the estimation of hydraulic conductivity variation with void ratio. Inverse estimation of the constitutive relationships from the measured settlement versus time curves is explored. In this work, inverse analysis based on metaheuristics techniques will be explored for predicting the hydraulic conductivity parameters for mine tailings from the base excess pore water pressure dissipation curve and the initial conditions of the mine tailings. The proposed inverse model uses particle swarm optimization (PSO) algorithm, which is based on the social behavior of animals searching for food sources. The finite-difference numerical solution of the forward analytical model is integrated with the PSO algorithm to solve the inverse problem. The method is tested on synthetic data of base excess pore pressure dissipation curves generated using the finite difference method. The effectiveness of the method is verified using base excess pore pressure dissipation curve obtained from a settling column experiment and further ensured through comparison with available predicted hydraulic conductivity parameters.

Keywords: base excess pore pressure, hydraulic conductivity, large strain consolidation, mine tailings

Procedia PDF Downloads 115
145 Periplasmic Expression of Anti-RoxP Antibody Fragments in Escherichia Coli.

Authors: Caspar S. Carson, Gabriel W. Prather, Nicholas E. Wong, Jeffery R. Anton, William H. McCoy

Abstract:

Cutibacterium acnes is a commensal bacterium found on human skin that has been linked to acne. C. acnes can also be an opportunistic pathogen when it infiltrates the body during surgery. This pathogen can cause dangerous infections of medical implants, such as shoulder replacements, leading to life-threatening blood infections. Compounding this issue, C. acnes resistance to many antibiotics has become an increasing problem worldwide, creating a need for special forms of treatment. C. acnes expresses the protein RoxP, and it requires this protein to colonize human skin. Though this protein is required for C. acnes skin colonization, its function is not yet understood. Inhibition of RoxP function might be an effective treatment for C. acnes infections. To develop such reagents, the McCoy Laboratory generated four unique anti-RoxP antibodies. Preliminary studies in the McCoy Lab have established that each antibody binds a distinct site on RoxP. To assess the potential of these antibodies as therapeutics, it is necessary to specifically characterize these antibody epitopes and evaluate them in assays that assess their ability to inhibit RoxP-dependent C. acnes growth. To provide material for these studies, an antibody expression construct, Fv-clasp(v2), was adapted to encode anti-RoxP antibody sequences. The author hypothesizes that this expression strategy can produce sufficient amounts of >95% pure antibody fragments for further characterization of these antibodies. Four anti-RoxP Fv-clasp(v2) expression constructs (pET vector-based) were transformed into E. coli BL21-Gold(DE3) cells and a small-scale expression and purification trial was performed for each construct to evaluate anti-RoxP Fv-clasp(v2) yield and purity. Successful expression and purification of these antibody constructs will allow for their use in structural studies, such as protein crystallography and cryogenic electron microscopy. Such studies would help to define the antibody binding sites on RoxP, which could then be leveraged in the development of certain methods to treat C. acnes infection through RoxP inhibition.

Keywords: structural biology, protein expression, infectious disease, antibody, therapeutics, E. coli

Procedia PDF Downloads 37
144 Preparation of Indium Tin Oxide Nanoparticle-Modified 3-Aminopropyltrimethoxysilane-Functionalized Indium Tin Oxide Electrode for Electrochemical Sulfide Detection

Authors: Md. Abdul Aziz

Abstract:

Sulfide ion is water soluble, highly corrosive, toxic and harmful to the human beings. As a result, knowing the exact concentration of sulfide in water is very important. However, the existing detection and quantification methods have several shortcomings, such as high cost, low sensitivity, and massive instrumentation. Consequently, the development of novel sulfide sensor is relevant. Nevertheless, electrochemical methods gained enormous popularity due to a vast improvement in the technique and instrumentation, portability, low cost, rapid analysis and simplicity of design. Successful field application of electrochemical devices still requires vast improvement, which depends on the physical, chemical and electrochemical aspects of the working electrode. The working electrode made of bulk gold (Au) and platinum (Pt) are quite common, being very robust and endowed with good electrocatalytic properties. High cost, and electrode poisoning, however, have so far hindered their practical application in many industries. To overcome these obstacles, we developed a sulfide sensor based on an indium tin oxide nanoparticle (ITONP)-modified ITO electrode. To prepare ITONP-modified ITO, various methods were tested. Drop-drying of ITONPs (aq.) on aminopropyltrimethoxysilane-functionalized ITO (APTMS/ITO) was found to be the best method on the basis of voltammetric analysis of the sulfide ion. ITONP-modified APTMS/ITO (ITONP/APTMS/ITO) yielded much better electrocatalytic properties toward sulfide electro-οxidation than did bare or APTMS/ITO electrodes. The ITONPs and ITONP-modified ITO were also characterized using transmission electron microscopy and field emission scanning electron microscopy, respectively. Optimization of the type of inert electrolyte and pH yielded an ITONP/APTMS/ITO detector whose amperometrically and chronocoulοmetrically determined limits of detection for sulfide in aqueous solution were 3.0 µM and 0.90 µM, respectively. ITONP/APTMS/ITO electrodes which displayed reproducible performances were highly stable and were not susceptible to interference by common contaminants. Thus, the developed electrode can be considered as a promising tool for sensing sulfide.

Keywords: amperometry, chronocoulometry, electrocatalytic properties, ITO-nanoparticle-modified ITO, sulfide sensor

Procedia PDF Downloads 106