Search results for: fiber technology
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8545

Search results for: fiber technology

8425 Fire Resistance Capacity of Reinforced Concrete Member Strengthened by Fiber Reinforced Polymer

Authors: Soo-Yeon Seo, Jong-Wook Lim, Se-Ki Song

Abstract:

Currently, FRP (Fiber Reinforced Polymer) materials have been widely used for reinforcement of building structural members. However, since the FRP and the epoxy material for attaching it have very low resistance to heat, there is a problem in application where high temperature is an issue. In this paper, the resistance performance of FRP member made of carbon fiber at high temperature was investigated through experiment under temperature change. As a result, epoxy encapsulating FRP is damaged at not high temperatures, and the fibers are degraded. Therefore, when reinforcing a structure using FRP, a separate refractory heat treatment is necessary. The use of a 30 mm thick calcium silicate board as a fireproofing method can protect FRP up to 600ᵒC outside temperature.

Keywords: FRP (Fiber Reinforced Polymer), high temperature, experiment under temperature change, calcium silicate board

Procedia PDF Downloads 365
8424 Preparation and Removal Properties of Hollow Fiber Membranes for Drinking Water

Authors: Seung Moon Woo, Youn Suk Chung, Sang Yong Nam

Abstract:

In the present time, we need advanced water treatment technology for separation of virus and bacteria in effluent which occur epidemic and waterborne diseases. Water purification system is mainly divided into two categorizations like reverse osmosis (RO) and ultrafiltration (UF). Membrane used in these systems requires higher durability because of operating in harsh condition. Of these, the membrane using in UF system has many advantages like higher efficiency and lower energy consume for water treatment compared with RO system. In many kinds of membrane, hollow fiber type membrane is possible to make easily and to get optimized property by control of various spinning conditions such as temperature of coagulation bath, concentration of polymer, addition of additive, air gap and internal coagulation. In this study, polysulfone hollow fiber membrane was successfully prepared by phase inversion method for separation of virus and bacteria. When we prepare the hollow fiber membrane, we controlled various factors such as the polymer concentration, air gap and internal coagulation to investigate effect to membrane property. Morphology of surface and cross section of membrane were measured by field emission scanning electron microscope (FE-SEM). Water flux of membrane was measured using test modules. Mean pore diameter of membrane was calculated using rejection of polystyrene (PS) latex beads for separation of virus and bacteria. Flux and mean flow pore diameter of prepared membrane show 1.5 LPM, 0.03 μm at 1.0 kgf/cm2. The bacteria and virus removal performance of prepared UF membranes were over 6 logs.

Keywords: hollow fiber membrane, drinking water, ultrafiltration, bacteria

Procedia PDF Downloads 217
8423 Preparation and Analysis of Enhanced Glass Fiber Reinforced Plastics with Al Base Alloy

Authors: M. R. Ashok, S. Srivatsan, S. Vignesh

Abstract:

Common replacement for glass in composites is the Glass Fiber Reinforced Plastics (GFRP). The GFRP has its own advantages for being a good alternative. The purpose of this research is to find a suitable enhancement for the commonly used composite Glass Fiber Reinforced Plastics (GFRP). The goal is to enhance the material properties of the composite by providing a suitable matrix with Al base. The various mechanical tests are performed to analyze and compare the improvement in the mechanical properties of the composite. As a result, this material can be used as an alternative for the commonly used GFRP in various fields with increased effectiveness in its functioning.

Keywords: alloy based composites, composite materials, glass fiber reinforced plastics, sSuper composites

Procedia PDF Downloads 307
8422 Distributed Optical Fiber Vibration Sensing Using Phase Generated Carrier Demodulation Algorithm

Authors: Zhihua Yu, Qi Zhang, Mingyu Zhang, Haolong Dai

Abstract:

Distributed fiber-optic vibration sensors are gaining extensive attention, for the advantages of high sensitivity, accurate location, light weight, large-scale monitoring, good concealment, and etc. In this paper, a novel optical fiber distributed vibration sensing system is proposed, which is based on self-interference of Rayleigh backscattering with phase generated carrier (PGC) demodulation algorithm. Pulsed lights are sent into the sensing fiber and the Rayleigh backscattering light from a certain position along the sensing fiber would interfere through an unbalanced Michelson Interferometry (MI) to generate the interference light. An improved PGC demodulation algorithm is carried out to recover the phase information of the interference signal, which carries the sensing information. Three vibration events were applied simultaneously to different positions over 2000m sensing fiber and demodulated correctly. Experiments show that the spatial resolution of is 10 m, and the noise level of the Φ-OTDR system is about 10-3 rad/√Hz, and the signal to noise ratio (SNR) is about 30.34dB. This vibration measurement scheme can be applied at surface, seabed or downhole for vibration measurements or distributed acoustic sensing (DAS).

Keywords: fiber optics sensors, Michelson interferometry, MI, phase-sensitive optical time domain reflectometry, Φ-OTDR, phase generated carrier, PGC

Procedia PDF Downloads 160
8421 Micromechanical Analysis of Interface Properties Effects on Transverse Tensile Response of Fiber-Reinforced Composites

Authors: M. Naderi, N. Iyyer, K. Goel, N. Phan

Abstract:

A micromechanical analysis of the influence of fiber-matrix interface fracture properties on the transverse tensile response of fiber-reinforced composite is investigated. Augmented finite element method (AFEM) is used to provide high-fidelity damage initiation and propagation along the micromechanical analysis. Effects of fiber volume fraction and fiber shapes are also studies in representative volume elements (RVE) to capture the stochastic behavior of the composite under loading. In addition, defects and voids influence on the composite response are investigated in micromechanical analysis. The results reveal that the response of RVE with constant interface properties overestimates the composite transverse strength. It is also seen that the damage initiation and propagation locations are controlled by the distributions of fracture properties, fibers’ shapes, and defects.

Keywords: cohesive model, fracture, computational mechanics, micromechanics

Procedia PDF Downloads 268
8420 Experimental and Comparative Study of Composite Thin Cylinder Subjected to Internal Pressure

Authors: Hakim S. Sultan Aljibori

Abstract:

An experimental procedure is developed to study the performance of composite thin wall cylinders subjected to internal pressure loading for investigations of stress distribution through the composite cylinders wall. Three types of fibers were used in this study are; woven roving glass fiber/epoxy, hybrid fiber/epoxy, and Kevlar fiber/epoxy composite specimens were fabricated and tested. All of these specimens subjected to uniformed pressure load using the hydraulic pump. Axial stress is identified, and values were found after collecting all the results. Comparison between the deferent types of specimens was done. Thus, the present investigation concludes the efficient and effective composite cylinder experimentally and provides a considerable advantage for using woven roving fibers in pressure vessels applications.

Keywords: stress distribution, composite material, internal pressure, glass fiber, hybrid fiber

Procedia PDF Downloads 123
8419 Processing and Evaluation of Jute Fiber Reinforced Hybrid Composites

Authors: Mohammad W. Dewan, Jahangir Alam, Khurshida Sharmin

Abstract:

Synthetic fibers (carbon, glass, aramid, etc.) are generally utilized to make composite materials for better mechanical and thermal properties. However, they are expensive and non-biodegradable. In the perspective of Bangladesh, jute fibers are available, inexpensive, and comprising good mechanical properties. The improved properties (i.e., low cost, low density, eco-friendly) of natural fibers have made them a promising reinforcement in hybrid composites without sacrificing mechanical properties. In this study, jute and e-glass fiber reinforced hybrid composite materials are fabricated utilizing hand lay-up followed by a compression molding technique. Room temperature cured two-part epoxy resin is used as a matrix. Approximate 6-7 mm thick composite panels are fabricated utilizing 17 layers of woven glass and jute fibers with different fiber layering sequences- only jute, only glass, glass, and jute alternatively (g/j/g/j---) and 4 glass - 9 jute – 4 glass (4g-9j-4g). The fabricated composite panels are analyzed through fiber volume calculation, tensile test, bending test, and water absorption test. The hybridization of jute and glass fiber results in better tensile, bending, and water absorption properties than only jute fiber-reinforced composites, but inferior properties as compared to only glass fiber reinforced composites. Among different fiber layering sequences, 4g-9j-4g fibers layering sequence resulted in better tensile, bending, and water absorption properties. The effect of chemical treatment on the woven jute fiber and chopped glass microfiber infusion are also investigated in this study. Chemically treated jute fiber and 2 wt. % chopped glass microfiber infused hybrid composite shows about 12% improvements in flexural strength as compared to untreated and no micro-fiber infused hybrid composite panel. However, fiber chemical treatment and micro-filler do not have a significant effect on tensile strength.

Keywords: compression molding, chemical treatment, hybrid composites, mechanical properties

Procedia PDF Downloads 122
8418 Chemical and Mechanical Characterization of Composites Reinforced with Coconut Fiber in the Polymeric Matrix of Recycled PVC

Authors: Luiz C. G. Pennafort Jr., Alexandre de S. Rios, Enio P. de Deus

Abstract:

In the search for materials that replace conventional polymers in order to preserve natural resources, combined with the need to minimize the problems arising from environmental pollution generated by plastic waste, comes the recycled materials biodegradable, especially the composites reinforced with natural fibers. However, such materials exhibit properties little known, requiring studies of manufacturing methods and characterization of these composites. This article shows informations about preparation and characterization of a composite produced by extrusion, which consists of recycled PVC derived from the recycling of materials discarded, added of the micronized coconut fiber. The recycled PVC with 5% of micronized fiber were characterized by X-ray diffraction, thermogravimetric, differential scanning calorimetry, mechanical analysis and optical microscopy. The use of fiber in the composite caused a decrease in its specific weight, due to the lower specific weight of fibers and the appearance of porosity, in addition to the decrease of mechanical properties.

Keywords: recycled PVC, coconut fiber, characterization, composites

Procedia PDF Downloads 431
8417 Thixomixing as Novel Method for Fabrication Aluminum Composite with Carbon and Alumina Fibers

Authors: Ebrahim Akbarzadeh, Josep A. Picas Barrachina, Maite Baile Puig

Abstract:

This study focuses on a novel method for dispersion and distribution of reinforcement under high intensive shear stress to produce metal composites. The polyacrylonitrile (PAN)-based short carbon fiber (Csf) and Nextel 610 alumina fiber were dispersed under high intensive shearing at mushy zone in semi-solid of A356 by a novel method. The bundles and clusters were embedded by infiltration of slurry into the clusters, thus leading to a uniform microstructure. The fibers were embedded homogenously into the aluminum around 576-580°C with around 46% of solid fraction. Other experiments at 615°C and 568°C which are contained 0% and 90% solid respectively were not successful for dispersion and infiltration of aluminum into bundles of Csf. The alumina fiber has been cracked by high shearing load. The morphologies and crystalline phase were evaluated by SEM and XRD. The adopted thixo-process effectively improved the adherence and distribution of Csf into Al that can be developed to produce various composites by thixomixing.

Keywords: aluminum, carbon fiber, alumina fiber, thixomixing, adhesion

Procedia PDF Downloads 514
8416 Rapid Method for the Determination of Acid Dyes by Capillary Electrophoresis

Authors: Can Hu, Huixia Shi, Hongcheng Mei, Jun Zhu, Hongling Guo

Abstract:

Textile fibers are important trace evidence and frequently encountered in criminal investigations. A significant aspect of fiber evidence examination is the determination of fiber dyes. Although several instrumental methods have been developed for dyes detection, the analysis speed is not fast enough yet. A rapid dye analysis method is still needed to further improve the efficiency of case handling. Capillary electrophoresis has the advantages of high separation speed and high separation efficiency and is an ideal method for the rapid analysis of fiber dyes. In this paper, acid dyes used for protein fiber dyeing were determined by a developed short-end injection capillary electrophoresis technique. Five acid red dyes with similar structures were successfully baseline separated within 5 min. The separation reproducibility is fairly good for the relative standard deviation of retention time is 0.51%. The established method is rapid and accurate which has great potential to be applied in forensic setting.

Keywords: acid dyes, capillary electrophoresis, fiber evidence, rapid determination

Procedia PDF Downloads 120
8415 Hybridization of Steel and Polypropylene Fibers in Concrete: A Comprehensive Study with Various Mix Ratios

Authors: Qaiser uz Zaman Khan

Abstract:

This research article provides a comprehensive study of combining steel fiber and polypropylene fibers in concrete at different mix ratios. This blending of various fibers has led to the development of hybrid fiber-reinforced concrete (HFRC), which offers notable improvements in mechanical properties and increased resistance to cracking. Steel fibers are known for their high tensile strength and excellent crack control abilities, while polypropylene fibers offer increased toughness and impact resistance. The synergistic use of these two fiber types in concrete has yielded promising outcomes, effectively enhancing its overall performance. This article explores the key aspects of hybridization, including fiber types, proportions, mixing methods, and the resulting properties of the concrete. Additionally, challenges, potential applications, and future research directions in the field are discussed.

Keywords: FRC, fiber-reinforced concrete, split tensile testing, HFRC, mechanical properties, steel fibers, reinforced concrete, polypropylene fibers

Procedia PDF Downloads 52
8414 Preparation of Melt Electrospun Polylactic Acid Nanofibers with Optimum Conditions

Authors: Amir Doustgani

Abstract:

Melt electrospinning is a safe and simple technique for the production of micro and nanofibers which can be an alternative to conventional solvent electrospinning. The effects of various melt-electrospinning parameters, including molecular weight, electric field strength, flow rate and temperature on the morphology and fiber diameter of polylactic acid were studied. It was shown that molecular weight was the predominant factor in determining the obtainable fiber diameter of the collected fibers. An orthogonal design was used to examine process parameters. Results showed that molecular weight is the most effective parameter on the average fiber diameter of melt electrospun PLA nanofibers and the flow rate has the less important impact. Mean fiber diameter increased by increasing MW and flow rate, but decreased by increasing electric field strength and temperature. MFD of optimized fibers was below 100 nm and the result of software was in good agreement with the experimental condition.

Keywords: fiber formation, processing, spinning, melt blowing

Procedia PDF Downloads 414
8413 Demulsification of Oil from Produced water Using Fibrous Coalescer

Authors: Nutcha Thianbut

Abstract:

In the petroleum drilling industry, besides oil and gas, water is also produced from petroleum production. which will have oil droplets dispersed in the water as an emulsion. Commonly referred to as produced water, most industrial water-based produced water methods use the method of pumping water back into wells or catchment areas. because it cannot be utilized further, but in the compression of water each time, the cost is quite high. And the survey found that the amount of water from the petroleum production process has increased every year. In this research, we would like to study the removal of oil in produced water by the Coalescer device using fibers from agricultural waste as an intermediary. As an alternative to reduce the cost of water management in the petroleum drilling industry. The objectives of this research are 1. To study the fiber pretreatment by chemical process for the efficiency of oil-water separation 2. To study and design the fiber-packed coalescer device to destroy the emulsion of crude oil in water. 3. To study the working conditions of coalescer devices in emulsion destruction. using a fiber medium. In this research, the experiment was divided into two parts. The first part will study the absorbency of fibers. It compares untreated fibers with chemically treated alkaline fibers that change over time as well as adjusting the amount of fiber on the absorbency of the fiber and the second part will study the separation of oil from produced water by Coalescer equipment using fiber as medium to study the optimum condition of coalescer equipment for further development and industrial application.

Keywords: produced water, fiber, surface modification, coalescer

Procedia PDF Downloads 132
8412 Influence of Fiber Loading and Surface Treatments on Mechanical Properties of Pineapple Leaf Fiber Reinforced Polymer Composites

Authors: Jain Jyoti, Jain Shorab, Sinha Shishir

Abstract:

In the current scenario, development of new biodegradable composites with the reinforcement of some plant derived natural fibers are in major research concern. Abundant quantity of these natural plant derived fibers including sisal, ramp, jute, wheat straw, pine, pineapple, bagasse, etc. can be used exclusively or in combination with other natural or synthetic fibers to augment their specific properties like chemical, mechanical or thermal properties. Among all natural fibers, wheat straw, bagasse, kenaf, pineapple leaf, banana, coir, ramie, flax, etc. pineapple leaf fibers have very good mechanical properties. Being hydrophilic in nature, pineapple leaf fibers have very less affinity towards all types of polymer matrixes. Not much work has been carried out in this area. Surface treatments like alkaline treatment in different concentrations were conducted to improve its compatibility towards hydrophobic polymer matrix. Pineapple leaf fiber epoxy composites have been prepared using hand layup method. Effect of variation in fiber loading up to 20% in epoxy composites has been studied for mechanical properties like tensile strength and flexural strength. Analysis of fiber morphology has also been studied using FTIR, XRD. SEM micrographs have also been studied for fracture surface.

Keywords: composite, mechanical, natural fiber, pineapple leaf fiber

Procedia PDF Downloads 211
8411 Flexural Analysis of Palm Fiber Reinforced Hybrid Polymer Matrix Composite

Authors: G.Venkatachalam, Gautham Shankar, Dasarath Raghav, Krishna Kuar, Santhosh Kiran, Bhargav Mahesh

Abstract:

Uncertainty in the availability of fossil fuels in the future and global warming increased the need for more environment-friendly materials. In this work, an attempt is made to fabricate a hybrid polymer matrix composite. The blend is a mixture of General Purpose Resin and Cashew Nut Shell Liquid, a natural resin extracted from cashew plant. Palm fiber, which has high strength, is used as a reinforcement material. The fiber is treated with alkali (NaOH) solution to increase its strength and adhesiveness. Parametric study of flexure strength is carried out by varying alkali concentration, duration of alkali treatment and fiber volume. Taguchi L9 Orthogonal array is followed in the design of experiments procedure for simplification. With the help of ANOVA technique, regression equations are obtained which gives the level of influence of each parameter on the flexure strength of the composite.

Keywords: Adhesion, CNSL, Flexural Analysis, Hybrid Matrix Composite, Palm Fiber

Procedia PDF Downloads 372
8410 Evaluation of Drilling-Induced Delamination of Flax/Epoxy Composites by Non-Destructive Testing Methods

Authors: Hadi Rezghimaleki, Masatoshi Kubouchi, Yoshihiko Arao

Abstract:

The use of natural fiber composites (NFCs) is growing at a fast rate regarding industrial applications and principle researches due to their eco-friendly, renewable nature, and low density/costs. Drilling is one of the most important machining operations that are carried out on natural fiber composites. Delamination is a major concern in the drilling process of NFCs that affects the structural integrity and long-term reliability of the machined components. Flax fiber reinforced epoxy composite laminates were prepared by hot press technique. In this research, we evaluated drilling-induced delamination of flax/epoxy composites by X-ray computed tomography (CT), ultrasonic testing (UT), and optical methods and compared the results.

Keywords: natural fiber composites, flax/epoxy, X-ray CT, ultrasonic testing

Procedia PDF Downloads 268
8409 Mechanical Analysis of Pineapple Leaf Fiber Reinforced Polymer Composites

Authors: Jain Jyoti, Jain Shorab, Sinha Shishir

Abstract:

In the field of material engineering, composites are in great concern for their nonbiodegradability and their cost. In order to reduce its cost and weight, plant derived fibers witnessed miraculous triumph. Plant fibers can be of different types like seed fibers, blast fibers, leaf fibers, etc. Composites can be reinforced with exclusively one type of natural fiber or also can be combined with two or more different types of natural or synthetic fibers to boost up their specific properties. Among all natural fibers, wheat straw, bagasse, kenaf, pineapple leaf, banana, coir, ramie, flax, etc. pineapple leaf fibers have very good mechanical properties. Being hydrophilic in nature, pineapple leaf fibers have very less affinity towards all types of polymer matrixes like HDPE, LDPE, PET, epoxy, etc. Surface treatments like alkaline treatment in different concentrations were conducted to improve its adhesion and compatibility towards hydrophobic polymer matrix i.e. epoxy resin. Pineapple leaf fiber epoxy composites have been prepared using hand layup method. Effect of fiber loading and surface treatments have been studied for different mechanical properties i.e. tensile strength, flexural strength and impact properties of pineapple leaf fiber composites. Analysis of fiber morphology has also been studied using FTIR, XRD. Scanning electron microscopy has also been used to study and compare the morphology of untreated and treated fibers. Also, the fracture surface has been reviewed comparing the reported literature of other eminent researchers of this field.

Keywords: composite, mechanical, natural fiber, pineapple leaf fiber

Procedia PDF Downloads 230
8408 Polyethylene Terephthalate (PET) Fabrics Decoloring for PET Textile Recycle

Authors: Chung-Yang Chuang, Hui-Min Wang, Min-Yan Dong, Chang-Jung Chang

Abstract:

PET fiber is the most widely used fiber worldwide. This man-made fiber is prepared from petroleum chemicals, which may cause environmental pollution and resource exhausting issues, such as the use of non-renewable sources, greenhouse gas emission and discharge of wastewater. Therefore, the textile made by recycle-PET is the trend in the future. Recycle-PET fiber, compared with petroleum-made PET, shows lower carbon emissions and resource exhaustion. However, “fabric decoloring” is the key barrier to textile recycling. The dyes existing in the fabrics may cause PET chain degradation and appearance drawbacks during the textile recycling process. In this research, the water-based decoloring agent was used to remove the dispersed dye in the PET fabrics in order to obtain the colorless PET fabrics after the decoloring process. The decoloring rate of PET fabrics after the decoloring process was up to 99.0%. This research provides a better solution to resolve the issues of appearance and physical properties degradation of fabrics-recycle PET materials due to the residual dye. It may be possible to convert waste PET textiles into new high-quality PET fiber and build up the loop of PET textile recycling.

Keywords: PET, decoloring, disperse dye, textile recycle

Procedia PDF Downloads 99
8407 Analysis of Process for Solution of Fiber-Ends after Biopolishing on the Surface of Cotton Knit Fabric

Authors: P. Altay, G. Kartal, B. Kizilkaya, S. Kahraman, N. C. Gursoy

Abstract:

Biopolishing is applied to remove the fuzz or pills on the fiber or fabric surface which will reduce its tendency to pill or fuzz after repetitive launderings. After biopolishing process, the fuzzes ripped by cellulase enzymes cannot be thoroughly removed from fabric surface, they remain on the fabric or fiber surface; accordingly disturb the user and lead to decrease in productivity of drying process. The main objective of this study is to develop a method for removing weakened fuzz fibers and surface pills from biofinished fabric surface before drying process. Fuzzes in the lattice structure of fabric were completely removed from the internal structure of the fabric by air blowing. The presence of fuzzes leads to problems with formation of pilling and faded appearance; the removal of fuzzes from the fabric results in reduced tendency to pill formation, cleaner, smoother and softer surface, improved handling properties of fabric with maintaining original color.

Keywords: biopolishing, fuzz fiber, weakened fiber, biofinished cotton fabric

Procedia PDF Downloads 350
8406 Effects of Different Dietary Crude Fiber Levels on the Growth Performance of Finishing Su-Shan Pigs

Authors: Li Bixia, Ren Shouwen, Fu Yanfeng, Tu Feng, Xiaoming Fang, Xueming Wang

Abstract:

The utilization of dietary crude fiber in different breed pigs is not the same. Su-shan pigs are a new breed formed by crossing Taihu pigs and Yorkshire pigs. In order to understand the resistance of Su-shan pigs to dietary crude fiber, 150 Su-shan pigs with 60 kg of average body weight and similar body conditions were allocated to three groups randomly, and there are 50 pigs in each group. The percentages of dietary crude fiber were 8.35%, 9.10%, and 11.39%, respectively. At the end of the experiment, 15 pigs randomly selected from each group were slaughtered. The results showed as follows: average daily gain of the 9.10% group was higher than that of the 8.35% group and the 11.39% group; there was a significant difference between the 9.10% group and the 8.35% group (p < 0.05. Levels of urea nitrogen, total cholesterol and high density lipoprotein in the 9.10% group were significantly higher than those in the 8.35% group and the 11.39% group (p < 0.05). Ratios of meat to fat in the 9.10% group and the 11.39% group were significantly higher than that in the 8.35% group (p < 0.05). Lean percentage of 9.10% group was higher than that of 8.35% group and 11.39% group, but there was no significant difference in three groups (p > 0.05). The weight of small intestine and large intestine in the 11.39% group was higher than that in the 8.35% group, and the 9.10% group and the difference reached a significant level (p < 0.05). In conclusion, increasing dietary crude fiber properly could reduce fat percentage, and improve the ratio of meat to fat of finishing Su-shan pigs. The digestion and metabolism of dietary crude fiber promoted the development of stomach and intestine of finishing Su-shan pig.

Keywords: Su-shan pigs, dietary crude fiber, growth performance, serum biochemical indexes

Procedia PDF Downloads 285
8405 Thermal Fracture Analysis of Fibrous Composites with Variable Fiber Spacing Using Jk-Integral

Authors: Farid Saeidi, Serkan Dag

Abstract:

In this study, fracture analysis of a fibrous composite laminate with variable fiber spacing is carried out using Jk-integral method. The laminate is assumed to be under thermal loading. Jk-integral is formulated by using the constitutive relations of plane orthotropic thermoelasticity. Developed domain independent form of the Jk-integral is then integrated into the general purpose finite element analysis software ANSYS. Numerical results are generated so as to assess the influence of variable fiber spacing on mode I and II stress intensity factors, energy release rate, and T-stress. For verification, some of the results are compared to those obtained using displacement correlation technique (DCT).

Keywords: Jk-integral, Variable Fiber Spacing, Thermoelasticity, T-stress, Finite Element Method, Fibrous Composite.

Procedia PDF Downloads 360
8404 Probabilistic Analysis of Fiber-Reinforced Infinite Slopes

Authors: Assile Abou Diab, Shadi Najjar

Abstract:

Fiber-reinforcement is an effective soil improvement technique for applications involving the prevention of shallow failures on the slope face and the repair of existing slope failures. A typical application is the stabilization of cohesionless infinite slopes. The objective of this paper is to present a probabilistic, reliability-based methodology (based on Monte Carlo simulations) for the design of a practical fiber-reinforced cohesionless infinite slope, taking into consideration the impact of various sources of uncertainty. Recommendations are made regarding the required factors of safety that need to be used to achieve a given target reliability level. These factors of safety could differ from the traditional deterministic factor of safety.

Keywords: factor of safety, fiber reinforcement, infinite slope, reliability-based design, uncertainty

Procedia PDF Downloads 336
8403 Investigating Optical Properties of Unsaturated Polyurethane Matrix and Its Glass Fiber Composite Under Extreme Temperatures

Authors: Saad Ahmed, Sanjeev Khannaa

Abstract:

Glass fiber reinforced polymers are widely used in structural systems as load-bearing elements at both high and low temperatures. This investigation presents the evaluation of glass fiber reinforced unsaturated polyurethane under harsh conditions of changing temperature and moisture content. This study Explores how these parameters affect the optical properties of the polymer matrix and the composite. Using the hand layup method, the polyurethane resin was modified by E-glass fibers (15 vol. %) to manufacture fiber-reinforced composite. This work includes the preparation of glass-like polyurethane resin sheets and estimates all light transmittance properties at high and very low temperatures and wet conditions. All-optical properties were retested to evaluate the level of improvement or failure. The results found that when comprising reinforced composite fiber to the unreinforced specimens, the reinforced composite shows a fair optical property at high temperatures and good performance at low temperatures.

Keywords: unsaturated polyurethane, extreme temperatures, light transmittance, haze number

Procedia PDF Downloads 111
8402 Biomass and Biogas Yield of Maize as Affected by Nitrogen Rates with Varying Harvesting under Semi-Arid Condition of Pakistan

Authors: Athar Mahmood, Asad Ali

Abstract:

Management considerations including harvesting time and nitrogen application considerably influence the biomass yield, quality and biogas production. Therefore, a field study was conducted to determine the effect of various harvesting times and nitrogen rates on the biomass yield, quality and biogas yield of maize crop. This experiment was consisted of various harvesting times i.e., harvesting after 45, 55 and 65 days of sowing (DAS) and nitrogen rates i.e., 0, 100, 150 and 200 kg ha-1 respectively. The data indicated that maximum plant height, leaf area, dry matter (DM) yield, protein, acid detergent fiber, neutral detergent fiber, crude fiber contents and biogas yield were recorded 65 days after sowing while lowest was recorded 45 days after sowing. In contrary to that significantly higher chlorophyll contents were observed at 45 DAS. In case of nitrogen rates maximum plant height, leaf area, and DM yield, protein contents, ash contents, acid detergent fiber, neutral detergent fiber, crude fiber contents and chlorophyll contents were determined with nitrogen at the rate of 200 kg ha-1, while minimum was observed when no N was applied. Therefore, harvesting 65 DAS and N application @ 200 kg ha-1 can be suitable for getting the higher biomass and biogas production.

Keywords: chemical composition, fiber contents, biogas, nitrogen, harvesting time

Procedia PDF Downloads 130
8401 A Framework for the Design of Green Giga Passive Optical Fiber Access Network in Kuwait

Authors: Ali A. Hammadi

Abstract:

In this work, a practical study on a commissioned Giga Passive Optical Network (GPON) fiber to the home access network in Kuwait is presented. The work covers the framework of the conceptual design of the deployed Passive Optical Networks (PONs), access network, optical fiber cable network distribution, technologies, and standards. The work also describes methodologies applied by system engineers for design of Optical Network Terminals (ONTs) and Optical Line Terminals (OLTs) transceivers with respect to the distance, operating wavelengths, splitting ratios. The results have demonstrated and justified the limitation of transmission distance of a PON link in Fiber to The Premises (FTTP) to not exceed 20 km. Optical Time Domain Reflector (OTDR) test has been carried for this project to confirm compliance with International Telecommunication Union (ITU) specifications regarding the total length of the deployed optical cable, total loss in dB, and loss per km in dB/km with respect to the operating wavelengths. OTDR test results with traces for segments of implemented fiber network will be provided and discussed.

Keywords: passive optical networks (PONs), fiber to the premises (FTTx), access network, OTDR

Procedia PDF Downloads 254
8400 Effects of Heat Treatment on the Mechanical Properties of Kenaf Fiber

Authors: Paulo Teodoro De Luna Carada, Toru Fujii, Kazuya Okubo

Abstract:

Natural fibers have wide variety of uses (e.g., rope, paper, and building materials). One specific application of it is in the field of composite materials (i.e., green composites). Huge amount of research are being done in this field due to rising concerns in the harmful effects of synthetic materials to the environment. There are several natural fibers used in this field, one of which can be extracted from a plant called kenaf (Hibiscus cannabinus L.). Kenaf fiber is regarded as a good alternative because the plant is easy to grow and the fiber is easy to extract. Additionally, it has good properties. Treatments, which are classified as mechanical or chemical in nature, can be done in order to improve the properties of the fiber. The aim of this study is to assess the effects of heat treatment in kenaf fiber. It specifically aims to observe the effect in the tensile strength and modulus of the fiber. Kenaf fiber bundles with an average diameter of at most 100μm was used for this purpose. Heat treatment was done using a constant temperature oven with the following heating temperatures: (1) 160̊C, (2) 180̊C, and (3) 200̊C for a duration of one hour. As a basis for comparison, tensile test was first done to kenaf fibers without any heat treatment. For every heating temperature, three groups of samples were prepared. Two groups of which were for doing tensile test (one group was tested right after heat treatment while the remaining group was kept inside a closed container with relative humidity of at least 95% for two days). The third group was used to observe how much moisture the treated fiber will absorb when it is enclosed in a high moisture environment for two days. The results showed that kenaf fiber can retain its tensile strength when heated up to a temperature of 160̊C. However, when heated at a temperature of about 180̊C or higher, the tensile strength decreases significantly. The same behavior was observed for the tensile modulus of the fiber. Additionally, the fibers which were stored for two days absorbed nearly the same amount of moisture (about 20% of the dried weight) regardless of the heating temperature. Heat treatment might have damaged the fiber in some way. Additional test was done in order to see if the damage due to heat treatment is attributed to changes in the viscoelastic property of the fiber. The findings showed that kenaf fibers can be heated for at most 160̊C to attain good tensile strength and modulus. Additionally, heating the fiber at high temperature (>180̊C) causes changes in its viscoelastic property. The results of this study is significant for processes which requires heat treatment not only in kenaf fiber but might also be helpful for natural fibers in general.

Keywords: heat treatment, kenaf fiber, natural fiber, mechanical properties

Procedia PDF Downloads 330
8399 Eye Diagram for a System of Highly Mode Coupled PMD/PDL Fiber

Authors: Suad M. Abuzariba, Liang Chen, Saeed Hadjifaradji

Abstract:

To evaluate the optical eye diagram due to polarization-mode dispersion (PMD), polarization-dependent loss (PDL), and chromatic dispersion (CD) for a system of highly mode coupled fiber with lumped section at any given optical pulse sequence we present an analytical modle. We found that with considering PDL and the polarization direction correlation between PMD and PDL, a system with highly mode coupled fiber with lumped section can have either higher or lower Q-factor than a highly mode coupled system with same root mean square PDL/PMD values. Also we noticed that a system of two highly mode coupled fibers connected together is not equivalent to a system of highly mode coupled fiber when fluctuation is considered

Keywords: polarization mode dispersion, polarization dependent loss, chromatic dispersion, optical eye diagram

Procedia PDF Downloads 834
8398 Development of High Fiber Biscuit with Bamboo Shoot Powder

Authors: Beatrix Inah C. Mercado

Abstract:

Bamboo shoots are the immature and edible culms from bamboos which contains high amount of dietary fibers. However, in spite of these functional properties of bamboo shoots it is still underutilized. Objectives: To develop bamboo shoot powder and incorporate it to biscuits as a source of dietary fiber and antioxidant. Materials and Methods: Bamboo shoot powder (BSP) was freeze-drying and grind and was incorporated to biscuits in 20% concentration. BSP and biscuits with BSP were analyzed for its proximate composition, dietary fiber, phytonutrients and antioxidant capacity. Results: BSP has 13.1 % moisture, 18.8% protein and 8% ash, 2.4g/100g total fat and 57.7% carbohydrate. BSP and biscuits with 20% BSP were good sources of dietary fiber containing 27.8g/100g and 7.1 g/100g, respectively. BSP is high in phytonutrient contents in terms of total polyphenols (1052mg gallic/100 g) and flavonoids (4046mg catechin/100g). Biscuits with BSP contained higher source of phytonutrients and antioxidant capacity as compared to biscuits without BSP. Sensory evaluation revealed that biscuits with BSP were more acceptable than biscuits without BSP. Conclusion: Bamboo shoots may be used as a potential functional ingredient in food products for broader application.

Keywords: bamboo shoots, phytonutrients, fiber, biscuit

Procedia PDF Downloads 424
8397 Optical Fiber Data Throughput in a Quantum Communication System

Authors: Arash Kosari, Ali Araghi

Abstract:

A mathematical model for an optical-fiber communication channel is developed which results in an expression that calculates the throughput and loss of the corresponding link. The data are assumed to be transmitted by using of separate photons with different polarizations. The derived model also shows the dependency of data throughput with length of the channel and depolarization factor. It is observed that absorption of photons affects the throughput in a more intensive way in comparison with that of depolarization. Apart from that, the probability of depolarization and the absorption of radiated photons are obtained.

Keywords: absorption, data throughput, depolarization, optical fiber

Procedia PDF Downloads 264
8396 Polypropylene Fibres Dyeable with Acid Dyes

Authors: H. M. Wang, C. J. Chang

Abstract:

As the threat of global climate change is more seriously, "net zero emissions by 2050" has become a common global goal. In order to reduce the consumption of petrochemical raw materials and reduce carbon emissions, low-carbon fiber materials have become key materials in the future global textile supply chain. This project uses polyolefin raw materials to modify through synthesis and amination to develop low-temperature dyeable polypropylene fibers, endow them with low-temperature dyeability and high color fastness that can be combined with acid dyes, and improve the problem of low coloring strength. The color fastness to washing can reach the requirement of commerce with 3.5 level or more. Therefore, we realize the entry of polypropylene fiber into the clothing textile supply chain, replace existing fiber raw materials, solve the problem of domestic chemical fiber, textile, and clothing industry's plight of no low-carbon alternative new material sources, and provide the textile industry with a solution to achieve the goal of net zero emissions in 2050.

Keywords: acid dyes, dyeing, low-temperature, polypropylene fiber

Procedia PDF Downloads 61