Search results for: dynamic aesthetics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4006

Search results for: dynamic aesthetics

3826 Dynamic Analysis of Viscoelastic Plates with Variable Thickness

Authors: Gülçin Tekin, Fethi Kadıoğlu

Abstract:

In this study, the dynamic analysis of viscoelastic plates with variable thickness is examined. The solutions of dynamic response of viscoelastic thin plates with variable thickness have been obtained by using the functional analysis method in the conjunction with the Gâteaux differential. The four-node serendipity element with four degrees of freedom such as deflection, bending, and twisting moments at each node is used. Additionally, boundary condition terms are included in the functional by using a systematic way. In viscoelastic modeling, Three-parameter Kelvin solid model is employed. The solutions obtained in the Laplace-Carson domain are transformed to the real time domain by using MDOP, Dubner & Abate, and Durbin inverse transform techniques. To test the performance of the proposed mixed finite element formulation, numerical examples are treated.

Keywords: dynamic analysis, inverse laplace transform techniques, mixed finite element formulation, viscoelastic plate with variable thickness

Procedia PDF Downloads 301
3825 The Value of Dynamic Magnetic Resonance Defecography in Assessing the Severity of Defecation Disorders

Authors: Ge Sun, Monika Trzpis, Robbert J. de Haas, Paul M. A. Broens

Abstract:

Introduction: Dynamic magnetic resonance defecography is frequently used to assess defecation disorders. We aimed to investigate the usefulness of dynamic magnetic resonance defecography for assessing the severity of defecation disorder. Methods: We included patients retrospectively from our tertiary referral hospital who had undergone dynamic magnetic resonance defecography, anorectal manometry, and anal electrical sensitivity tests to assess defecation disorders between 2014 and 2020. The primary outcome was the association between the dynamic magnetic resonance defecography variables and the severity of defecation disorders. We assessed the severity of fecal incontinence and constipation with the Wexner incontinence and Agachan constipation scores. Results: Out of the 32 patients included, 24 completed the defecation questionnaire. During defecation, the M line length at magnetic resonance correlated with the Agachan score (r = 0.45, p = 0.03) and was associated with anal sphincter pressure (r=0.39, p=0.03) just before defecation. During rest and squeezing, the H line length at imaging correlated with the Wexner incontinence score (r=0.49, p=0.01 and r=0.69, p< 0.001, respectively). H line length also correlated positively with the anal electrical sensation threshold during squeezing (r=0.50, p=0.004) and during rest (r= 0.42, p=0.02). Conclusions: The M and H line lengths at dynamic magnetic resonance defecography can be used to assess the severity of constipation and fecal incontinence respectively and reflect anatomic changes of the pelvic floor. However, as these anatomic changes are generally late-stage and irreversible, anal manometry seems a better diagnostic approach to assess early and potentially reversible changes in patients with defecation disorders.

Keywords: defecation disorders, dynamic magnetic resonance defecography, anorectal manometry, anal electrical sensitivity tests, H line, M line

Procedia PDF Downloads 70
3824 Shape-Changing Structure: A Prototype for the Study of a Dynamic and Modular Structure

Authors: Annarita Zarrillo

Abstract:

This research is part of adaptive architecture, reflecting the evolution that the world of architectural design is going through. Today's architecture is no longer seen as a static system but, conversely, as a dynamic system that changes in response to the environment and the needs of users. One of the major forms of adaptivity is represented by kinetic structures. This study aims to underline the importance of experimentation on physical scale models for the study of dynamic structures and to present the case study of a modular kinetic structure designed through the use of parametric design software and created as a prototype in the laboratories of the Royal Danish Academy in Copenhagen.

Keywords: adaptive architecture, architectural application, kinetic structures, modular prototype

Procedia PDF Downloads 104
3823 Dynamic Analysis of Composite Doubly Curved Panels with Variable Thickness

Authors: I. Algul, G. Akgun, H. Kurtaran

Abstract:

Dynamic analysis of composite doubly curved panels with variable thickness subjected to different pulse types using Generalized Differential Quadrature method (GDQ) is presented in this study. Panels with variable thickness are used in the construction of aerospace and marine industry. Giving variable thickness to panels can allow the designer to get optimum structural efficiency. For this reason, estimating the response of variable thickness panels is very important to design more reliable structures under dynamic loads. Dynamic equations for composite panels with variable thickness are obtained using virtual work principle. Partial derivatives in the equation of motion are expressed with GDQ and Newmark average acceleration scheme is used for temporal discretization. Several examples are used to highlight the effectiveness of the proposed method. Results are compared with finite element method. Effects of taper ratios, boundary conditions and loading type on the response of composite panel are investigated.

Keywords: differential quadrature method, doubly curved panels, laminated composite materials, small displacement

Procedia PDF Downloads 331
3822 Design of Reinforced Concrete (RC) Walls Considering Shear Amplification by Nonlinear Dynamic Behavior

Authors: Sunghyun Kim, Hong-Gun Park

Abstract:

In the performance-based design (PBD), by using the nonlinear dynamic analysis (NDA), the actual performance of the structure is evaluated. Unlike frame structures, in the wall structures, base shear force which is resulted from the NDA, is greatly amplified than that from the elastic analysis. This shear amplifying effect causes repeated designs which make designer difficult to apply the PBD. Therefore, in this paper, factors which affect shear amplification were studied. For the 20-story wall model, the NDA was performed. From the analysis results, the base shear amplification factor was proposed.

Keywords: performance based design, shear amplification factor, nonlinear dynamic analysis, RC shear wall

Procedia PDF Downloads 359
3821 Optimal Dynamic Economic Load Dispatch Using Artificial Immune System

Authors: I. A. Farhat

Abstract:

The dynamic economic dispatch (DED) problem is one of the complex, constrained optimization problems that have nonlinear, con-convex and non-smooth objective functions. The purpose of the DED is to determine the optimal economic operation of the committed units while meeting the load demand. Associated to this constrained problem there exist highly nonlinear and non-convex practical constraints to be satisfied. Therefore, classical and derivative-based methods are likely not to converge to an optimal or near optimal solution to such a dynamic and large-scale problem. In this paper, an Artificial Immune System technique (AIS) is implemented and applied to solve the DED problem considering the transmission power losses and the valve-point effects in addition to the other operational constraints. To demonstrate the effectiveness of the proposed technique, two case studies are considered. The results obtained using the AIS are compared to those obtained by other methods reported in the literature and found better.

Keywords: artificial immune system, dynamic economic dispatch, optimal economic operation, large-scale problem

Procedia PDF Downloads 210
3820 Reinforced Concrete Slab under Static and Dynamic Loading

Authors: Aaron Aboshio, Jianqiao Ye

Abstract:

In this study, static and dynamic responses of a typical reinforced concrete flat slab, designed to British Standard (BS 8110, 1997) and under self and live loadings for dance halls are reported. Linear perturbation analysis using finite element method was employed for modal, impulse loading and frequency response analyses of the slab under the aforementioned loading condition. Results from the static and dynamic analyses, comprising of the slab fundamental frequencies and mode shapes, dynamic amplification factor, maximum deflection, stress distributions among other valuable outcomes are presented and discussed. These were gauged with the limiting provisions in the design code with a view to optimise the structure and ensure both adequate strength and economical section for large clear span slabs. This is necessary owing to the continued increase in cost of erecting building structures and the squeeze on public finance globally.

Keywords: economical design, finite element method, modal dynamics, reinforced concrete, slab

Procedia PDF Downloads 287
3819 Dynamic Analysis of Turbo Machinery Foundation for Different Rotating Speed

Authors: Sungyani Tripathy, Atul Desai

Abstract:

Turbo machinery Frame Foundation is very important for power generation, gas, steam, hydro, geothermal and nuclear power plants. The Turbo machinery Foundation system was simulated in SAP: 2000 software and dynamic response of foundation was analysed. In this paper, the detailed study of turbo machinery foundation with different running speed has considered. The different revolution per minute considered in this study is 4000 rpm, 6000 rpm, 8000 rpm, 1000 rpm and 12000 rpm. The above analysis has been carried out considering Winkler spring soil model, solid finite element modelling and dynamic analysis of Turbo machinery foundations. The comparison of frequency and time periods at various mode shapes are addressed in this study. Current work investigates the effect of damping on the response spectra curve at the foundation top deck, considering the dynamic machine load. It has been found that turbo generator foundation with haunches remains more elastic during seismic action for different running speeds.

Keywords: turbo machinery, SAP: 2000, response spectra, running speeds

Procedia PDF Downloads 228
3818 Application of the Piloting Law Based on Adaptive Differentiators via Second Order Sliding Mode for a Fixed Wing Aircraft

Authors: Zaouche Mohammed, Amini Mohammed, Foughali Khaled, Hamissi Aicha, Aktouf Mohand Arezki, Boureghda Ilyes

Abstract:

In this paper, we present a piloting law based on the adaptive differentiators via high order sliding mode controller, by using an aircraft in virtual simulated environment. To deal with the design of an autopilot controller, we propose a framework based on Software in the Loop (SIL) methodology and we use MicrosoftTM Flight Simulator (FS-2004) as the environment for plane simulation. The aircraft dynamic model is nonlinear, Multi-Input Multi-Output (MIMO) and tightly coupled. The nonlinearity resides in the dynamic equations and also in the aerodynamic coefficients' variability. In our case, two (02) aircrafts are used in the flight tests, the Zlin-142 and MQ-1 Predator. For both aircrafts and in a very low altitude flight, we send the piloting control inputs to the aircraft which has stalled due to a command disconnection. Then, we present the aircraft’s dynamic behavior analysis while reestablishing the command transmission. Finally, a comparative study between the two aircraft’s dynamic behaviors is presented.

Keywords: adaptive differentiators, second order sliding modes, dynamic adaptation of the gains, microsoft flight simulator, Zlin-142, MQ-1 predator

Procedia PDF Downloads 394
3817 Dynamic Measurement System Modeling with Machine Learning Algorithms

Authors: Changqiao Wu, Guoqing Ding, Xin Chen

Abstract:

In this paper, ways of modeling dynamic measurement systems are discussed. Specially, for linear system with single-input single-output, it could be modeled with shallow neural network. Then, gradient based optimization algorithms are used for searching the proper coefficients. Besides, method with normal equation and second order gradient descent are proposed to accelerate the modeling process, and ways of better gradient estimation are discussed. It shows that the mathematical essence of the learning objective is maximum likelihood with noises under Gaussian distribution. For conventional gradient descent, the mini-batch learning and gradient with momentum contribute to faster convergence and enhance model ability. Lastly, experimental results proved the effectiveness of second order gradient descent algorithm, and indicated that optimization with normal equation was the most suitable for linear dynamic models.

Keywords: dynamic system modeling, neural network, normal equation, second order gradient descent

Procedia PDF Downloads 96
3816 Khiaban (the Street) as an Ancient Percept of the Iranian Urban Landscape: An Aesthetic Reading of Lalehzar Street, the First Modern Khiaban in Iran

Authors: Mohammad Atashinbar

Abstract:

Lalehzar was one of the main streets in central Tehran in late Qajar and 1st Pahlavi (1880-1940) and a center of attention for the government. It was a natural walk during the last decade of the reign of Nasser al-Din Shah (1880-1895). However, this street lost its prosperity status under the 2nd Pahlavi and evolved from a modern cultural street to a commercial corridor. Lalehzar's decline was the result of the immigration of the upper class from the inner city to the northern part and the consequent transfer of amenities and luxury goods with them. It seems that during Lalehzar's six decades of prosperity, this khiâbân has received an aesthetic look, which has made it enjoyable and appreciated by Tehran’s people. Various post-revolutionary urban management measures have been taken to revive Lalehzar and improve the quality of its urban life. Since the beginning of the Safavid era, the khiâbân was accompanied by the concept of urban space, and its characteristics are explained by referring to the main axis of the Persian Garden with rows of trees, streams, and a line of flowers on both sides. The construction of a street inside the city as an urban space benefits from a mental concept as a spiritual and exciting space, especially in common forms in the Persian Garden. Before that, the khiâbân was a religious and mythical concept, and we can even say that the mastery of this concept led to its appearance in the garden. In Tehran, Lalehzar Street is a gateway to modernity. The aesthetic changes in Lalehzar Street, inspired by Nasser al-Din Shah's journey to Europe around 1870, coinciding with the changes in architectural and urban landscape movements around the world between 1880 and 1940. The Shah is impressed by the modernist urbanism and, in particular, the Champs-Élysées in Paris. A tree-lined promenade with the hallmarks of the Persian Garden is familiar to Nasser al-Din Shah's mental image of beauty. In its state of mind, the main axis of the Persian Garden has the characteristics of a promenade. Therefore, the origins of the aesthetic of Lalehzar Street come from the aesthetics of the khiâbân. Admitting that the Champs-Élysées served as a model for Lalehzar, it seems that the Shah wanted to associate the Champs-Élysées with Lalehzar and highlight its landscape aspects by building this street. Depending on whether the percepts have their own aesthetic, this proposal seeks to analyze the aesthetic evolutions of the khiâbân as a percept towards the street as a component of the urban landscape in Lalehzar. The research attempts to review the aesthetic aspects of Lalehzar between 1880-1940 by using iconographic analysis, based on the available historical data, to find the leading aesthetics principles of this street. The aesthetic view to Lalehzar as an artwork is one of the main achievements of this study.

Keywords: Lalehzar, aesthetics, percept, Tehran, street

Procedia PDF Downloads 121
3815 Dynamic Software Product Lines for Customer Centric Context Aware Business Process Management

Authors: Bochra Khiari, Lamia Labed

Abstract:

In the new digital marketplace, organizations are striving for a proactive position by leveraging the great potential of disruptive technologies to seize the full opportunity of the digital revolution in order to reshape their customer value propositions. New technologies such as big data analytics, which provide prediction of future events based on real-time information, are being integrated into BPM which urges the need for additional core values like capabilities for dynamic adaptation, autonomic behavior, runtime reconfiguration and post-deployment activities to manage unforeseen scenarios at runtime in a situated and changeable context. Dynamic Software Product Lines (DSPL) is an emerging paradigm that supports these runtime variability mechanisms. However, few works exploiting DSPLs principles and techniques in the BPM domain have been proposed so far. In this paper, we propose a conceptual approach DynPL4CBPM, which integrates DSPLs concepts along with the entire related dynamic properties, to the whole BPM lifecycle in order to dynamically adapt business processes according to different context conditions in an individual environment.

Keywords: adaptive processes, context aware business process management, customer centric business process management, dynamic software product lines

Procedia PDF Downloads 138
3814 Dynamic Properties of Recycled Concrete Aggregate from Resonant Column Tests

Authors: Wojciech Sas, Emil Soból, Katarzyna Gabryś, Andrzej Głuchowski, Alojzy Szymański

Abstract:

Depleting of natural resources is forcing the man to look for alternative construction materials. One of them is recycled concrete aggregates (RCA). RCA from the demolition of buildings and crushed to proper gradation can be a very good replacement for natural unbound granular aggregates, gravels or sands. Physical and the mechanical properties of RCA are well known in the field of basic civil engineering applications, but to proper roads and railways design dynamic characteristic is need as well. To know maximum shear modulus (GMAX) and the minimum damping ratio (DMIN) of the RCA dynamic loads in resonant column apparatus need to be performed. The paper will contain literature revive about alternative construction materials and dynamic laboratory research technique. The article will focus on dynamic properties of RCA, but early studies conducted by the authors on physical and mechanical properties of this material also will be presented. The authors will show maximum shear modulus and minimum damping ratio. Shear modulus and damping ratio degradation curves will be shown as well. From exhibited results conclusion will be drawn at the end of the article.

Keywords: recycled concrete aggregate, shear modulus, damping ratio, resonant column

Procedia PDF Downloads 369
3813 Dynamic Marketing Capabilities; From Marketing to Product Development and Technological Change: An Exploratory Study of Independent Companies of the Swiss Luxury Watchmaking Industry

Authors: Maria Bashutkina

Abstract:

In seeking to identify marketing factors that influence company’s performance, product management as well as new technology configuration, this study adopts resource based theory and applies it to the Swiss watchmaking companies. This paper presents results of qualitative research based on semi-structured interviews with CEO and marketing managers among watchmaking companies. This paper provides empirical evidences illustrating the link between the use of dynamic marketing capabilities and competitive advantage. We also present a set of propositions that outline how dynamic marketing capabilities could benefit product management and technological change in the Swiss independent watchmaking company, revealing competitive advantage in the highly competitive and turbulent market.

Keywords: dynamic marketing capabilities, luxury marketing, resource based theory, product management, Swiss watchmaking

Procedia PDF Downloads 185
3812 Virtual Life: Fashion, Expression, and Identity in the Digital World

Authors: Elizabeth Bourgeois

Abstract:

During social distancing, fashion and self-expression have been pushed further into virtual environments. In VR spaces, identities can be curated easily, untethered from the necessities of life and work. Personal styles reach a wider audience and follow new rules. Digital platforms leave some, but not all, 'real world' clothing constraints behind. Virtual aesthetics are set by the user and the software. Gen Z is a native user, applying face filters on Instagram and Snapchat and styling outfits and skins in apps like Gacha Life, Roblox, and Fortnite. These games cultivate space for community and personal style. Loosely tied to human forms, each app has physical aesthetics, with clear vernacular dress defining it. There are ecosystems of makers, consumers, and critics. Designer-modelers create original assets, brands, and luxury items. Fashion and beauty are ephemeral but always reflect the idealization of form and self. Online communities have already established new beauty ideals that impact live fashion trends. Fashion houses develop AR filters, gaming hairstyles challenge real-world colorists, and musicians perform virtual concerts in their avatar forms. In these times, social media and gaming communities promote the expression of public identity. The online dress is no longer tied to 'real' bodies or cloth. In virtual worlds, there are still tribes, status symbols, gender identities, and roles, but free of fabric, form, and static social structure, there is room for fantastic invention.

Keywords: virtual reality, fashion, Gen Z, social media, gaming

Procedia PDF Downloads 107
3811 Reduction of Dynamic Influences in Composite Rubber-Concrete Block Designed to Walls Construction

Authors: Maciej Major, Izabela Major

Abstract:

The aim of this paper is a numerical analysis of three-layered block design to walls construction subjected to the dynamic load. The block consists of the layers: concrete with rubber pads in shape of crosses, space filled with air and concrete with I-shape rubber pads. The main purpose of rubber inserts embedded during the production process is additional protection against the transversal dynamic load. For the analysis, as rubber, the Zahorski hyperelastic incompressible material model was assumed. A concentrated force as dynamic load applied to the external block surface was investigated. The results for the considered block observed as the stress distribution plot were compared to the results obtained for the solid concrete block. In order to estimate the percentage damping of proposed composite, rubber-concrete block in relation to the solid block the numerical analysis with the use of finite element method based on ADINA software was performed.

Keywords: dynamics, composite, rubber, Zahorski

Procedia PDF Downloads 218
3810 Research on Static and Dynamic Behavior of New Combination of Aluminum Honeycomb Panel and Rod Single-Layer Latticed Shell

Authors: Xu Chen, Zhao Caiqi

Abstract:

In addition to the advantages of light weight, resistant corrosion and ease of processing, aluminum is also applied to the long-span spatial structures. However, the elastic modulus of aluminum is lower than that of the steel. This paper combines the high performance aluminum honeycomb panel with the aluminum latticed shell, forming a new panel-and-rod composite shell structure. Through comparative analysis between the static and dynamic performance, the conclusion that the structure of composite shell is noticeably superior to the structure combined before.

Keywords: combination of aluminum honeycomb panel, rod latticed shell, dynamic performence, response spectrum analysis, seismic properties

Procedia PDF Downloads 445
3809 Speed Control of Hybrid Stepper Motor by Using Adaptive Neuro-Fuzzy Controller

Authors: Talha Ali Khan

Abstract:

This paper presents an adaptive neuro-fuzzy interference system (ANFIS), which is applied to a hybrid stepper motor (HSM) to regulate its speed. The dynamic response of the HSM with the ANFIS controller is studied during the starting process and under different load disturbance. The effectiveness of the proposed controller is compared with that of the conventional PI controller. The proposed method solves the problem of nonlinearities and load changes of the HSM drives. The proposed controller ensures fast and precise dynamic response with an excellent steady state performance. Matlab/Simulink program is used for this dynamic simulation study.

Keywords: stepper motor, hybrid, ANFIS, speed control

Procedia PDF Downloads 514
3808 Numerical and Experimental Analysis of Rotor Dynamic Stability

Authors: A. Chellil, A. Nour, S. Lecheb , H. Mechakra, A. Bouderba, H. Kebir

Abstract:

The study of the rotor dynamic in transient system allowed to determine the vibratory responses due to various excitations. This work presents a coupled gyroscopic effect in the defects of a rotor under dynamic loading. Calculations of different energies and virtual work from the various elements of the rotor are developed. To treat real systems a model of finite element was developed. This model of the rotor makes it possible to extract the frequencies and modal deformed, and to calculate the stresses in the critical zone. The study of the rotor in transient system allowed to determine the vibratory responses due to the unbalances, crack and various excitations.

Keywords: rotor, defect, finite element, numerical

Procedia PDF Downloads 435
3807 A New Sign Subband Adaptive Filter Based on Dynamic Selection of Subbands

Authors: Mohammad Shams Esfand Abadi, Mehrdad Zalaghi, Reza ebrahimpour

Abstract:

In this paper, we propose a sign adaptive filter algorithm with the ability of dynamic selection of subband filters which leads to low computational complexity compared with conventional sign subband adaptive filter (SSAF) algorithm. Dynamic selection criterion is based on largest reduction of the mean square deviation at each adaption. We demonstrate that this simple proposed algorithm has the same performance of the conventional SSAF and somewhat faster than it. In the presence of impulsive interferences robustness of the simple proposed algorithm as well as the conventional SSAF and outperform the conventional normalized subband adaptive filter (NSAF) algorithm. Therefore, it is preferred for environments under impulsive interferences. Simulation results are presented to verify these above considerations very well have been achieved.

Keywords: acoustic echo cancellation (AEC), normalized subband adaptive filter (NSAF), dynamic selection subband adaptive filter (DS-NSAF), sign subband adaptive filter (SSAF), impulsive noise, robust filtering

Procedia PDF Downloads 566
3806 Dynamic Analysis of Transmission Line Towers

Authors: L. Srikanth, D. Neelima Satyam

Abstract:

The transmission line towers are one of the important life line structures in the distribution of power from the source to the various places for several purposes. The predominant external loads which act on these towers are wind and earthquake loads. In this present study tower is analyzed using Indian Standards IS: 875:1987 (Wind Load), IS: 802:1995 (Structural Steel), IS:1893:2002 (Earthquake) and dynamic analysis of tower has been performed considering ground motion of 2001 Bhuj Earthquake (India). The dynamic analysis was performed considering a tower system consisting two towers spaced 800m apart and 35m height each. This analysis has been performed using numerical time stepping finite difference method which is central difference method were employed by a developed MATLAB program to get the normalized ground motion parameters includes acceleration, frequency, velocity which are important in designing the tower. The tower is analyzed using response spectrum analysis.

Keywords: response spectra, dynamic analysis, central difference method, transmission tower

Procedia PDF Downloads 370
3805 Performance Evaluation of Task Scheduling Algorithm on LCQ Network

Authors: Zaki Ahmad Khan, Jamshed Siddiqui, Abdus Samad

Abstract:

The Scheduling and mapping of tasks on a set of processors is considered as a critical problem in parallel and distributed computing system. This paper deals with the problem of dynamic scheduling on a special type of multiprocessor architecture known as Linear Crossed Cube (LCQ) network. This proposed multiprocessor is a hybrid network which combines the features of both linear type of architectures as well as cube based architectures. Two standard dynamic scheduling schemes namely Minimum Distance Scheduling (MDS) and Two Round Scheduling (TRS) schemes are implemented on the LCQ network. Parallel tasks are mapped and the imbalance of load is evaluated on different set of processors in LCQ network. The simulations results are evaluated and effort is made by means of through analysis of the results to obtain the best solution for the given network in term of load imbalance left and execution time. The other performance matrices like speedup and efficiency are also evaluated with the given dynamic algorithms.

Keywords: dynamic algorithm, load imbalance, mapping, task scheduling

Procedia PDF Downloads 420
3804 Stability Analysis of Three-Lobe Journal Bearing Lubricated with a Micropolar Fluids

Authors: Boualem Chetti

Abstract:

The dynamic characteristics of a three-lobe journal bearing lubricated with micropolar fluids are determined by the linear stability theory. Lubricating oil containing additives and contaminants is modeled as micropolar fluid. The modified Reynolds equation is obtained using the micropolar lubrication theory and the finite difference technique has been used to solve it. The dynamic characteristics in terms of stiffness, damping coefficients, the critical mass and whirl ratio are determined for various values of size of material characteristic length and the coupling number. The computed results show compared with Newtonian fluids, that micropolar fluid exhibits better stability.

Keywords: three-lobe bearings, micropolar fluid, dynamic characteristics, stability analysis

Procedia PDF Downloads 319
3803 Low-Cost IoT System for Monitoring Ground Propagation Waves due to Construction and Traffic Activities to Nearby Construction

Authors: Lan Nguyen, Kien Le Tan, Bao Nguyen Pham Gia

Abstract:

Due to the high cost, specialized dynamic measurement devices for industrial lands are difficult for many colleges to equip for hands-on teaching. This study connects a dynamic measurement sensor and receiver utilizing an inexpensive Raspberry Pi 4 board, some 24-bit ADC circuits, a geophone vibration sensor, and embedded Python open-source programming. Gather and analyze signals for dynamic measuring, ground vibration monitoring, and structure vibration monitoring. The system may wirelessly communicate data to the computer and is set up as a communication node network, enabling real-time monitoring of background vibrations at various locations. The device can be utilized for a variety of dynamic measurement and monitoring tasks, including monitoring earthquake vibrations, ground vibrations from construction operations, traffic, and vibrations of building structures.

Keywords: sensors, FFT, signal processing, real-time data monitoring, ground propagation wave, python, raspberry Pi 4

Procedia PDF Downloads 70
3802 Evaluation of Postural Stability in Patients with Flat Feet: A Controlled Trial

Authors: Ghada Mohamed Rashad, Doaa Ayoub Elimy, Mohamed Hussein Elgendy, Ahmed Mohamed Fathi Elshiwi, Mahmoud Ghazy

Abstract:

Background: Flat feet cause changes in foot mobility, foot posture, and load distribution under the foot which influences dynamic balance, that is essential in activities of daily living and for optimal performance in sports activity. Purpose: To investigate the effect of flat feet on dynamic balance including overall stability index (OAI), anteroposterior stability index (APSI) and mediolateral stability index (MLSI). Study Design: The design of the study was an experimental design. Subjects: Forty subjects from both sexes were selected from the Faculty of Physical Therapy, Cairo University, their mean age (23.55 ± 1.74 ) years, divided into two groups, group A (8 males and 12 females) with flat feet, and group B (9 males and 11 females) with normal feet. Methods: The Navicular Drop Test was used to determine if the feet were pronated and Biodex Balance System was used to assess dynamic balance at level 8 and level 4 for both groups. Results: There was no significant difference in dynamic balance including (OSI, APSI and MLSI) of the Biodex at stability level (8) (most stable) (p = 0.56). While there was a significant difference between both groups in all dependent variables at stability level (4) (less stable level) (p = 0.0001). Conclusion: It may be concluded that flat feet have an effect on dynamic balance and there is balance affection in subjects with flat feet.

Keywords: flat feet, dynamic balance, postural stability, types of flat feet, eversion strength

Procedia PDF Downloads 491
3801 Measurement of the Dynamic Modulus of Elasticity of Cylindrical Concrete Specimens Used for the Cyclic Indirect Tensile Test

Authors: Paul G. Bolz, Paul G. Lindner, Frohmut Wellner, Christian Schulze, Joern Huebelt

Abstract:

Concrete, as a result of its use as a construction material, is not only subject to static loads but is also exposed to variables, time-variant, and oscillating stresses. In order to ensure the suitability of construction materials for resisting these cyclic stresses, different test methods are used for the systematic fatiguing of specimens, like the cyclic indirect tensile test. A procedure is presented that allows the estimation of the degradation of cylindrical concrete specimens during the cyclic indirect tensile test by measuring the dynamic modulus of elasticity in different states of the specimens’ fatigue process. Two methods are used in addition to the cyclic indirect tensile test in order to examine the dynamic modulus of elasticity of cylindrical concrete specimens. One of the methods is based on the analysis of eigenfrequencies, whilst the other one uses ultrasonic pulse measurements to estimate the material properties. A comparison between the dynamic moduli obtained using the three methods that operate in different frequency ranges shows good agreement. The concrete specimens’ fatigue process can therefore be monitored effectively and reliably.

Keywords: concrete, cyclic indirect tensile test, degradation, dynamic modulus of elasticity, eigenfrequency, fatigue, natural frequency, ultrasonic, ultrasound, Young’s modulus

Procedia PDF Downloads 141
3800 Numerical Simulation of Aeroelastic Influence Exerted by Kinematic and Geometrical Parameters on Oscillations' Frequencies and Phase Shift Angles in a Simulated Compressor of Gas Transmittal Unit

Authors: Liliia N. Butymova, Vladimir Y. Modorsky, Nikolai A. Shevelev

Abstract:

Prediction of vibration processes in gas transmittal units (GTU) is an urgent problem. Despite numerous scientific publications on the problem of vibrations in general, there are not enough works concerning FSI-modeling interaction processes between several deformable blades in gas-dynamic flow. Since it is very difficult to solve the problem in full scope, with all factors considered, a unidirectional dynamic coupled 1FSI model is suggested for use at the first stage, which would include, from symmetry considerations, two blades, which might be considered as the first stage of solving more general bidirectional problem. ANSYS CFX programmed multi-processor was chosen as a numerical computation tool. The problem was solved on PNRPU high-capacity computer complex. At the first stage of the study, blades were believed oscillating with the same frequency, although oscillation phases could be equal and could be different. At that non-stationary gas-dynamic forces distribution over the blades surfaces is calculated in run of simulation experiment. Oscillations in the “gas — structure” dynamic system are assumed to increase if the resultant of these gas-dynamic forces is in-phase with blade oscillation, and phase shift (φ=0). Provided these oscillation occur with phase shift, then oscillations might increase or decrease, depending on the phase shift value. The most important results are as follows: the angle of phase shift in inter-blade oscillation and the gas-dynamic force depends on the flow velocity, the specific inter-blade gap, and the shaft rotation speed; a phase shift in oscillation of adjacent blades does not always correspond to phase shift of gas-dynamic forces affecting the blades. Thus, it was discovered, that asynchronous oscillation of blades might cause either attenuation or intensification of oscillation. It was revealed that clocking effect might depend not only on the mutual circumferential displacement of blade rows and the gap between the blades, but also on the blade dynamic deformation nature.

Keywords: aeroelasticity, ANSYS CFX, oscillation, phase shift, clocking effect, vibrations

Procedia PDF Downloads 243
3799 Dynamic Store Procedures in Database

Authors: Muhammet Dursun Kaya, Hasan Asil

Abstract:

In recent years, different methods have been proposed to optimize question processing in database. Although different methods have been proposed to optimize the query, but the problem which exists here is that most of these methods destroy the query execution plan after executing the query. This research attempts to solve the above problem by using a combination of methods of communicating with the database (the present questions in the programming code and using store procedures) and making query processing adaptive in database, and proposing a new approach for optimization of query processing by introducing the idea of dynamic store procedures. This research creates dynamic store procedures in the database according to the proposed algorithm. This method has been tested on applied software and results shows a significant improvement in reducing the query processing time and also reducing the workload of DBMS. Other advantages of this algorithm include: making the programming environment a single environment, eliminating the parametric limitations of the stored procedures in the database, making the stored procedures in the database dynamic, etc.

Keywords: relational database, agent, query processing, adaptable, communication with the database

Procedia PDF Downloads 341
3798 An Improved Dynamic Window Approach with Environment Awareness for Local Obstacle Avoidance of Mobile Robots

Authors: Baoshan Wei, Shuai Han, Xing Zhang

Abstract:

Local obstacle avoidance is critical for mobile robot navigation. It is a challenging task to ensure path optimality and safety in cluttered environments. We proposed an Environment Aware Dynamic Window Approach in this paper to cope with the issue. The method integrates environment characterization into Dynamic Window Approach (DWA). Two strategies are proposed in order to achieve the integration. The local goal strategy guides the robot to move through openings before approaching the final goal, which solves the local minima problem in DWA. The adaptive control strategy endows the robot to adjust its state according to the environment, which addresses path safety compared with DWA. Besides, the evaluation shows that the path generated from the proposed algorithm is safer and smoother compared with state-of-the-art algorithms.

Keywords: adaptive control, dynamic window approach, environment aware, local obstacle avoidance, mobile robots

Procedia PDF Downloads 124
3797 The Impact of Generative AI Illustrations on Aesthetic Symbol Consumption among Consumers: A Case Study of Japanese Anime Style

Authors: Han-Yu Cheng

Abstract:

This study aims to explore the impact of AI-generated illustration works on the aesthetic symbol consumption of consumers in Taiwan. The advancement of artificial intelligence drawing has lowered the barriers to entry, enabling more individuals to easily enter the field of illustration. Using Japanese anime style as an example, with the development of Generative Artificial Intelligence (Generative AI), an increasing number of illustration works are being generated by machines, sparking discussions about aesthetics and art consumption. Through surveys and the analysis of consumer perspectives, this research investigates how this influences consumers' aesthetic experiences and the resulting changes in the traditional art market and among creators. The study reveals that among consumers in Taiwan, particularly those interested in Japanese anime style, there is a pronounced interest and curiosity surrounding the emergence of Generative AI. This curiosity is particularly notable among individuals interested in this style but lacking the technical skills required for creating such artworks. These works, rooted in elements of Japanese anime style, find ready acceptance among enthusiasts of this style due to their stylistic alignment. Consequently, they have garnered a substantial following. Furthermore, with the reduction in entry barriers, more individuals interested in this style but lacking traditional drawing skills have been able to participate in producing such works. Against the backdrop of ongoing debates about artistic value since the advent of artificial intelligence (AI), Generative AI-generated illustration works, while not entirely displacing traditional art, to a certain extent, fulfill the aesthetic demands of this consumer group, providing a similar or analogous aesthetic consumption experience. Additionally, this research underscores the advantages and limitations of Generative AI-generated illustration works within this consumption environment.

Keywords: generative AI, anime aesthetics, Japanese anime illustration, art consumption

Procedia PDF Downloads 46