Search results for: drug adsorption
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2852

Search results for: drug adsorption

2492 Removal of Cr (VI) from Water through Adsorption Process Using GO/PVA as Nanosorbent

Authors: Syed Hadi Hasan, Devendra Kumar Singh, Viyaj Kumar

Abstract:

Cr (VI) is a known toxic heavy metal and has been considered as a priority pollutant in water. The effluent of various industries including electroplating, anodizing baths, leather tanning, steel industries and chromium based catalyst are the major source of Cr (VI) contamination in the aquatic environment. Cr (VI) show high mobility in the environment and can easily penetrate cell membrane of the living tissues to exert noxious effects. The Cr (VI) contamination in drinking water causes various hazardous health effects to the human health such as cancer, skin and stomach irritation or ulceration, dermatitis, damage to liver, kidney circulation and nerve tissue damage. Herein, an attempt has been done to develop an efficient adsorbent for the removal of Cr (VI) from water. For this purpose nanosorbent composed of polyvinyl alcohol functionalized graphene oxide (GO/PVA) was prepared. Thus, obtained GO/PVA was characterized through FTIR, XRD, SEM, and Raman Spectroscopy. As prepared nanosorbent of GO/PVA was utilized for the removal Cr (VI) in batch mode experiment. The process variables such as contact time, initial Cr (VI) concentration, pH, and temperature were optimized. The maximum 99.8 % removal of Cr (VI) was achieved at initial Cr (VI) concentration 60 mg/L, pH 2, temperature 35 °C and equilibrium was achieved within 50 min. The two widely used isotherm models viz. Langmuir and Freundlich were analyzed using linear correlation coefficient (R2) and it was found that Langmuir model gives best fit with high value of R2 for the data of present adsorption system which indicate the monolayer adsorption of Cr (VI) on the GO/PVA. Kinetic studies were also conducted using pseudo-first order and pseudo-second order models and it was observed that chemosorptive pseudo-second order model described the kinetics of current adsorption system in better way with high value of correlation coefficient. Thermodynamic studies were also conducted and results showed that the adsorption was spontaneous and endothermic in nature.

Keywords: adsorption, GO/PVA, isotherm, kinetics, nanosorbent, thermodynamics

Procedia PDF Downloads 369
2491 Development of Drug Delivery Systems for Endoplasmic Reticulum Amino Peptidases Modulators Using Electrospinning

Authors: Filipa Vasconcelos

Abstract:

The administration of endoplasmic reticulum amino peptidases (ERAP1 or ERAP2) inhibitors can be used for therapeutic approaches against cancer and auto-immune diseases. However, one of the main shortcomings of drug delivery systems (DDS) is associated with the drug off-target distribution, which can lead to an increase in its side effects on the patient’s body. To overcome such limitations, the encapsulation of four representative compounds of ERAP inhibitors into Polycaprolactone (PCL), Polyvinyl-alcohol (PVA), crosslinked PVA, and PVA with nanoparticles (liposomes) electrospun fibrous meshes is proposed as a safe and controlled drug release system. The use of electrospun fibrous meshes as a DDS allows efficient solvent evaporation giving limited time to the encapsulated drug to recrystallize, continuous delivery of the drug while the fibers degrade, prevention of initial burst release (sustained release), tunable dosages, and the encapsulation of other agents. This is possible due to the fibers' small diameters and resemblance to the extracellular matrix (confirmed by scanning electron microscopy results), high specific surface area, and good mechanical strength/stability. Furthermore, release studies conducted on PCL, PVA, crosslinked PVA, and PVA with nanoparticles (liposomes) electrospun fibrous meshes with each of the ERAP compounds encapsulated demonstrated that they were capable of releasing >60%, 50%, 40%, and 45% of the total ERAP concentration, respectively. Fibrous meshes with ERAP_E compound encapsulated achieved higher released concentrations (75.65%, 62.41%, 56.05%, and 65.39%, respectively). Toxicity studies of fibrous meshes with encapsulated compounds are currently being accessed in vitro, as well as pharmacokinetics and dynamics studies. The last step includes the implantation of the drug-loaded fibrous meshes in vivo.

Keywords: drug delivery, electrospinning, ERAP inhibitors, liposomes

Procedia PDF Downloads 79
2490 The Removal of Common Used Pesticides from Wastewater Using Golden Activated Charcoal

Authors: Saad Mohamed Elsaid Onaizah

Abstract:

One of the reasons for the intensive use of pesticides is to protect agricultural crops and orchards from pests or agricultural worms. The period of time that pesticides stay inside the soil is estimated at about (2) to (12) weeks. Perhaps the most important reason that led to groundwater pollution is the easy leakage of these harmful pesticides from the soil into the aquifers. This research aims to find the best ways to use trated activated charcoal with gold nitrate solution; For the purpose of removing the deadly pesticides from the aqueous solution by adsorption phenomenon. The most used pesticides in Egypt were selected, such as Malathion, Methomyl Abamectin and, Thiamethoxam. Activated charcoal doped with gold ions was prepared by applying chemical and thermal treatments to activated charcoal using gold nitrate solution. Adsorption of studied pesticide onto activated carbon /Au was mainly by chemical adsorption forming complex with the gold metal immobilised on activated carbon surfaces. Also, gold atom was considered as a catalyst to cracking the pesticide molecule. Gold activated charcoal is a low cost material due to the use of very low concentrations of gold nitrate solution. its notice the great ability of activated charcoal in removing selected pesticides due to the presence of the positive charge of the gold ion, in addition to other active groups such as functional oxygen and lignin cellulose. The presence of pores of different sizes on the surface of activated charcoal is the driving force for the good adsorption efficiency for the removal of the pesticides under study The surface area of the prepared char as well as the active groups were determined using infrared spectroscopy and scanning electron microscopy. Some factors affecting the ability of activated charcoal were applied in order to reach the highest adsorption capacity of activated charcoal, such as the weight of the charcoal, the concentration of the pesticide solution, the time of the experiment, and the pH. Experiments showed that the maximum limit revealed by the batch adsorption study for the adsorption of selected insecticides was in contact time (80) minutes at pH (7.70). These promising results were confirmed, and by establishing the practical application of the developed system, the effect of various operating factors with equilibrium, kinetic and thermodynamic studies is evident, using the Langmuir application on the effectiveness of the absorbent material with absorption capacities higher than most other adsorbents.

Keywords: waste water, pesticides pollution, adsorption, activated carbon

Procedia PDF Downloads 43
2489 Using Pyrolitic Carbon Black Obtained from Scrap Tires as an Adsorbent for Chromium (III) Removal from Water

Authors: Mercedeh Malekzadeh

Abstract:

Scrap tires are the source of wastes that cause the environmental problems. The major components of these tires are rubber and carbon black. These components can be used again for different applications by utilizing physical and chemical processes. Pyrolysis is a way that converts rubber portion of scrap tires to oil and gas and the carbon black recovers to pyrolytic carbon black. This pyrolytic carbon black can be used to reinforce rubber and metal, coating preparation, electronic thermal manager and so on. The porous structure of this carbon black also makes it as a suitable choice for heavy metals removal from water. In this work, the application of base treated pyrolytic carbon black was studied as an adsorbent for chromium (III) removal from water in a batch process. Pyrolytic carbon blacks in two natural and base treated forms were characterized by scanning electron microscopy and energy dispersive analysis x-ray. The effects of adsorbent dosage, contact time, initial concentration of chromium (III) and pH were considered on the adsorption process. The adsorption capacity was 19.76 mg/g. Maximum adsorption was seen after 120 min at pH=3. The equilibrium data were considered and better fitted to Langmuir model. The adsorption kinetic was evaluated and confirmed with the pseudo second order kinetic. Results have shown that the base treated pyrolytic carbon black obtained from scrap tires can be used as a cheap adsorbent for removal of chromium (III) from the water.

Keywords: chromium (III), pyrolytic carbon, scrap tire, water

Procedia PDF Downloads 172
2488 Iontophoretic Drug Transport of Some Anti-Diabetic Agents

Authors: Ashish Jain, Satish Nayak

Abstract:

Transdermal iontophoretic drug delivery system is viable drug delivery platform technology and has a strong market worldwide. Transdermal drug delivery system is particularly desirable for therapeutic agents that need prolonged administration at controlled plasma level. This makes appropriateness to antihypertensive and anti-diabetic agents for their transdermal development. Controlled zero order absorption, easily termination of drug delivery and easy to administration also support for popularity of transdermal delivery. In this current research iontophoretic delivery of various anti diabetic agents like glipizide, glibenclamide and glimepiride were carried out. The experiments were carried out at different drug concentrations and different current densities using cathodal iontophoresis. Diffusion cell for iontophoretic permeation study was modified according to Glikfield Design. Pig skin was used for in vitro permeation study and for the in-vivo study New Zealand rabbits were used. At all concentration level iontophoresis showed enhanced permeation rate compared to passive controls. Iontophoretic transports of selected drugs were found to be increased with the current densities. Results showed that target permeation rate for selected drugs could be achieved with the aid of iontophoresis by increasing the area in an appreciable range.

Keywords: transdermal, iontophoresis, pig skin, rabbits, glipizide, glibeclamide

Procedia PDF Downloads 360
2487 Current Practices of Permitted Daily Exposure (PDE) Calculation and Selection

Authors: Annie Ramanbhai Mecwan

Abstract:

Cleaning validation in a pharmaceutical manufacturing facility is documented evidence that a cleaning process has effectively removed contaminants, residues from previous drug products and cleaning agents below a pre-defined threshold from the reusable tools and parts of equipment. In shared manufacturing facilities more than one drug product is prepared. After cleaning of reusable tools and parts of equipment after one drug product manufacturing, there are chances that some residues of drug substance from previously manufactured drug products may be retained on the equipment and can carried forward to the next drug product and thus cause cross-contamination. Health-based limits through the derivation of a safe threshold value called permitted daily exposure (PDE) for the residues of drug substances should be employed to identify the risks posed at these manufacturing facilities. The PDE represents a substance-specific dose that is unlikely to cause an adverse effect if an individual is exposed to or below this dose every day for a lifetime. There are different practices to calculate PDE. Data for all APIs in the public domain are considered to calculate PDE value though, company to company may vary the final PDE value based on different toxicologist’s perspective or their subjective evaluation. Hence, Regulatory agencies should take responsibility for publishing PDE values for all APIs as it is done for elemental PDEs. This will harmonize the PDE values all over the world and prevent the unnecessary load on manufacturers for cleaning validation

Keywords: active pharmaceutical ingredient, good manufacturing practice, NOAEL, no observed adverse effect level, permitted daily exposure

Procedia PDF Downloads 51
2486 Drug Abuse among Immigrant Youth in Canada

Authors: Qin Wei

Abstract:

There has been an increased number of immigrants arriving in Canada and a concurrent rise in the number of immigrant youth suffering from drug abuse. Immigrant youths’ drug abuse has become a significant social and public health concern for researchers. This literature review explores the nature of immigrant youths’ drug abuse by examining the factors influencing the onset of substance misuse, the barriers that discourage youth to seek out treatment, and how to resolve addictions amidst immigrant youth. Findings from the literature demonstrate that diminished parental supervision, acculturation challenges, peer conformity, discrimination, and ethnic marginalization are all significant factors influencing youth to use drugs as an outlet for their pain, while culturally competent care and fear of family and culture-based addiction stigma act as barriers discouraging youth from seeking out addiction support. To resolve addiction challenges amidst immigrant youth, future research should focus on promoting and implementing culturally sensitive practices and psychoeducational initiatives into immigrant communities and within public health policies.

Keywords: approaches, barriers, drug abuse, Canada, immigrant youth, reasons

Procedia PDF Downloads 195
2485 Sustainable Development of Adsorption Solar Cooling Machine

Authors: N. Allouache, W. Elgahri, A. Gahfif, M. Belmedani

Abstract:

Solar radiation is by far the largest and the most world’s abundant, clean and permanent energy source. The amount of solar radiation intercepted by the Earth is much higher than annual global energy use. The energy available from the sun is greater than about 5200 times the global world’s need in 2006. In recent years, many promising technologies have been developed to harness the sun's energy. These technologies help in environmental protection, economizing energy, and sustainable development, which are the major issues of the world in the 21st century. One of these important technologies is the solar cooling systems that make use of either absorption or adsorption technologies. The solar adsorption cooling systems are a good alternative since they operate with environmentally benign refrigerants that are natural, free from CFCs, and therefore they have a zero ozone depleting potential (ODP). A numerical analysis of thermal and solar performances of an adsorption solar refrigerating system using different adsorbent/adsorbate pairs, such as activated carbon AC35 and activated carbon BPL/Ammoniac; is undertaken in this study. The modeling of the adsorption cooling machine requires the resolution of the equation describing the energy and mass transfer in the tubular adsorber, that is the most important component of the machine. The Wilson and Dubinin- Astakhov models of the solid-adsorbat equilibrium are used to calculate the adsorbed quantity. The porous medium is contained in the annular space, and the adsorber is heated by solar energy. Effect of key parameters on the adsorbed quantity and on the thermal and solar performances are analysed and discussed. The performances of the system that depends on the incident global irradiance during a whole day depends on the weather conditions: the condenser temperature and the evaporator temperature. The AC35/methanol pair is the best pair comparing to the BPL/Ammoniac in terms of system performances.

Keywords: activated carbon-methanol pair, activated carbon-ammoniac pair, adsorption, performance coefficients, numerical analysis, solar cooling system

Procedia PDF Downloads 53
2484 Corrosion Inhibition of Brass in Phosphoric Acid Solution by 2-(5-Methyl-2-Nitro-1H-Imidazol-1-Yl) Ethyl Benzoate

Authors: R. Khrifou, M. Galai, R. Touir, M. Ebn Touhami, Y. Ramli

Abstract:

A 2-(5-methyl-2-Nitro-1H-imidazol-1-yl)ethyl benzoate (IMDZ-B) was synthesized and characterized using elemental analyses, NMR, and Fourier transform infrared (FTIR) techniques. Its effect on brass corrosion in 1.0 M H₃PO₄ solution was investigated by using electrochemical measurements coupled with X-ray diffraction analysis (XRD), Scanning electron microscopy (SEM) and Energy-dispersive X-ray spectroscopy (EDX). The polarization measurements showed that the IMDZ-B acts as a mixed-type inhibitor. Indeed, it is found that the IMDZ-B compound is a very good inhibitor, and its inhibition efficiency increases with concentration to reach a maximum of 99.5 % at 10-³ M. In addition, the obtained electrochemical parameters from impedance indicated that the IMDZ-B molecules act by adsorption on metallic surfaces. This adsorption was found to obey Langmuir’s adsorption isotherm. However, the temperature effect on the performance of IMDZ-B was also studied. It is found that the IMDZ-B takes its performance at high temperatures. In addition, the obtained kinetic and thermodynamic parameters showed that the IMDZ-B molecules act via two adsorption modes, physisorption and chemisorptions, and its process is endothermic and spontaneous. Finally, the XRD and SEM/EDX analyses confirmed the electrochemical obtained results.

Keywords: low concentration, anti-corrosion brass, IMDZ-B product, phosphoric acid solution, electrochemical, SEM\EDAX analysis

Procedia PDF Downloads 31
2483 Iontophoretic Drug Transport: An Non-Invasive Transdermal Approach

Authors: Ashish Jain, Shivam Tayal

Abstract:

There has been great interest in the field of Iontophoresis since few years due to its great applications in the field of controlled transdermal drug delivery system. It is an technique which is used to enhance the transdermal permeation of ionized high molecular weight molecules across the skin membrane especially Peptides & Proteins by the application of direct current of 1-4 mA for 20-40 minutes whereas chemical must be placed on electrodes with same charge. Iontophoresis enhanced the delivery of drug into the skin via pores like hair follicles, sweat gland ducts etc. rather than through stratum corneum. It has wide applications in the field of experimental, Therapeutic, Diagnostic, Dentistry etc. Medical science is using it to treat Hyperhidrosis (Excessive sweating) in hands and feet and to treat other ailments like hypertension, Migraine etc. Nowadays commercial transdermal iontophoretic patches are available in the market to treat different ailments. Researchers are keen to research in this field due to its vast applications and advantages.

Keywords: iontophoresis, novel drug delivery, transdermal, permeation enhancer

Procedia PDF Downloads 225
2482 Potential Application of Modified Diglycolamide Resin for Rare Earth Element Extraction

Authors: Junnile Romero, Ilhwan Park, Vannie Joy Resabal, Carlito Tabelin, Richard Alorro, Leaniel Silva, Joshua Zoleta, Takunda Mandu, Kosei Aikawa, Mayumi Ito, Naoki Hiroyoshi

Abstract:

Rare earth elements (REE) play a vital role in technological advancement due to their unique physical and chemical properties essential for various renewable energy applications. However, this increasing demand represents a challenging task for sustainability that corresponds to various research interests relating to the development of various extraction techniques, particularly on the extractant being used. In this study, TK221 (a modified polymer resin containing diglycolamide, carbamoyl methyl phosphine oxide (CMPO), and diglycolamide (DGA-N)) has been investigated as a conjugate extractant. FTIR and SEM analysis results confirmed the presence of CMPO and DGA-N being coated onto the PS-DVB support of TK221. Moreover, the kinetic rate law and adsorption isotherm batch test was investigated to understand the corresponding adsorption mechanism. The results show that REEs’ (Nd, Y, Ce, and Er) obtained pseudo-second-order kinetics and Langmuir isotherm, suggesting that the adsorption mechanism undergoes a single monolayer adsorption site via a chemisorption process. The Qmax values of Nd, Ce, Er, Y, and Fe were 45.249 mg/g, 43.103 mg/g, 35.088 mg/g, 15.552 mg/g, and 12.315 mg/g, respectively. This research further suggests that TK221 polymer resin can be used as an alternative absorbent material for an effective REE extraction.

Keywords: rare earth element, diglycolamide, characterization, extraction resin

Procedia PDF Downloads 83
2481 Amino Acid Derivatives as Green Corrosion Inhibitors for Mild Steel in 1M HCl: Electrochemical, Surface and Density Functional Theory Studies

Authors: Jiyaul Haque, Vandana Srivastava, M. A. Quraishi

Abstract:

The amino acids based corrosion inhibitors 2-(3-(carboxymethyl)-1H-imidazol-3-ium-1-yl) acetate (Z-1),2-(3-(1-carboxyethyl)-1H-imidazol-3-ium-1-yl) propanoate (Z-2) and 2-(3-(1-carboxy-2-phenylethyl)-1H-imidazol-3-ium-1-yl)-3- phenylpropanoate (Z-3) were synthesized by the reaction of amino acids, glyoxal and formaldehyde, and characterized by the FTIR and NMR spectroscopy. The corrosion inhibition performance of synthesized inhibitors was studied by electrochemical (EIS and PDP), surface and DFT methods. The results show, the studied Z-1, Z-2 and Z-3 are effective inhibitors, showed the maximum inhibition efficiency of 88.52 %, 89.48 and 96.08% at concentration 200ppm, respectively. The results of potentiodynamic polarization (PDP) study showed that Z-1 act as a cathodic inhibitor, while Z-2 and Z-3 act as mixed type inhibitors. The results of electrochemical impedance spectroscopy (EIS) studies showed that zwitterions inhibit the corrosion through adsorption mechanism. The adsorption of synthesized zwitterions on the mild steel surface was followed the Langmuir adsorption isotherm. The formation of zwitterions film on mild steel surface was confirmed by the scanning electron microscope (SEM) and energy-dispersive X-ray spectroscopy (EDX). The quantum chemical parameters were used to study the reactivity of inhibitors and supported the experimental results. An inhibitor adsorption model is proposed.

Keywords: electrochemical impedance spectroscopy, green corrosion inhibitors, mild steel, SEM, quantum chemical calculation, zwitterions

Procedia PDF Downloads 153
2480 Development and in vitro Characterization of Loteprednol Etabonate-Loaded Polymeric Nanoparticles for Ocular Delivery

Authors: Abhishek Kumar Sah, Preeti K. Suresh

Abstract:

Effective drug delivery to the eye is a massive challenge, due to complicated physiological ocular barriers, rapid washout by tear and nasolachrymal drainage. Thus, most of the conventional ophthalmic formulations face the problem of low ocular bioavailability. Ophthalmic drug therapy can be improved by enhancing the precorneal drug retention along with improved drug penetration. The aim of the present investigation was to develop and evaluate a biodegradable polymer poly (D, L-lactide-co-glycolide) (PLGA) coated nanoparticulate carrier of loteprednol etabonate. PLGA nanoparticles were prepared by modified emulsification/solvent diffusion method using high-speed homogenizer followed by sonication. The nanoparticles were characterized for various parameters such as particle size, zeta potential, polydispersity index, X-ray powder diffraction (XRD), Transmission electron microscopy (TEM), in vitro drug release profile and stability. The prepared nanocarriers displayed mean particle size in the range of 271.7 to 424.4 nm, with zeta potential less than –10 mV. In vitro release in simulated tear fluid (STF) nanocarrier showed an extended release profile of loteprednol etabonate. TEM confirmed the spherical morphology and smooth surface of the particles. All the prepared formulations were found to be stable at varying temperatures.

Keywords: drug delivery, ocular delivery, polymeric nanoparticles, loteprednol etabonate

Procedia PDF Downloads 520
2479 Development of Lipid Architectonics for Improving Efficacy and Ameliorating the Oral Bioavailability of Elvitegravir

Authors: Bushra Nabi, Saleha Rehman, Sanjula Baboota, Javed Ali

Abstract:

Aim: The objective of research undertaken is analytical method validation (HPLC method) of an anti-HIV drug Elvitegravir (EVG). Additionally carrying out the forced degradation studies of the drug under different stress conditions to determine its stability. It is envisaged in order to determine the suitable technique for drug estimation, which would be employed in further research. Furthermore, comparative pharmacokinetic profile of the drug from lipid architectonics and drug suspension would be obtained post oral administration. Method: Lipid Architectonics (LA) of EVR was formulated using probe sonication technique and optimized using QbD (Box-Behnken design). For the estimation of drug during further analysis HPLC method has been validation on the parameters (Linearity, Precision, Accuracy, Robustness) and Limit of Detection (LOD) and Limit of Quantification (LOQ) has been determined. Furthermore, HPLC quantification of forced degradation studies was carried out under different stress conditions (acid induced, base induced, oxidative, photolytic and thermal). For pharmacokinetic (PK) study, Albino Wistar rats were used weighing between 200-250g. Different formulations were given per oral route, and blood was collected at designated time intervals. A plasma concentration profile over time was plotted from which the following parameters were determined:

Keywords: AIDS, Elvitegravir, HPLC, nanostructured lipid carriers, pharmacokinetics

Procedia PDF Downloads 117
2478 Studies on Modified Zinc Oxide Nanoparticles as Potential Drug Carrier

Authors: Jolanta Pulit-Prociak, Olga Dlugosz, Marcin Banach

Abstract:

The toxicity of bare zinc oxide nanoparticles used as drug carriers may be the result of releasing zinc ions. Thus, zinc oxide nanoparticles modified with galactose were obtained. The process of their formation was conducted in the microwave field. The physicochemical properties of the obtained products were studied. The size and electrokinetic potential were defined by using dynamic light scattering technique. The crystalline properties were assessed by X-ray diffractometry. In order to confirm the formation of the desired products, Fourier-transform infrared spectroscopy was used. The releasing of zinc ions from the prepared products when comparing to the bare oxide was analyzed. It was found out that modification of zinc oxide nanoparticles with galactose limits the releasing of zinc ions which are responsible for the toxic effect of the whole carrier-drug conjugate.

Keywords: nanomaterials, zinc oxide, drug delivery system, toxicity

Procedia PDF Downloads 166
2477 Treatment of Drug-Induced Oral Ulceration with Hyaluronic Acid Gel: A Case Report

Authors: Meltem Koray, Arda Ozgon, Duygu Ofluoglu, Mehmet Yaltirik

Abstract:

Oral ulcerations can be seen as a side effect of different drugs. These ulcers usually appear within a few weeks following drug treatment. In most of cases, these ulcers resist to conventional treatments, such as anesthetics, antiseptics, anti-inflammatory agents, cauterization, topical tetracycline and corticosteroid treatment. The diagnosis is usually difficult, especially in patients receiving multiple drug therapies. Hyaluronan or hyaluronic acid (HA) is a biomaterial that has been introduced as an alternative approach to enhance wound healing and also used for oral ulcer treatment. The aim of this report is to present the treatment of drug-induced oral ulceration on maxillary mucosa with HA gel. 60-year-old male patient was referred to Department of Oral and Maxillofacial Surgery complaining of oral ulcerations during few weeks. He had received chemotherapy and radiotherapy in 2014 with the diagnosis of nasopharyngeal carcinoma, and he has accompanying systemic diseases such as; cardiological, neurological diseases and gout. He is medicated with Escitalopram (Cipralex® 20mg), Quetiapine (Seroquel® 100mg), Mirtazapine (Zestat® 15mg), Acetylsalicylic acid (Coraspin® 100mg), Ramipril-hydrochlorothiazide (Delix® 2.5mg), Theophylline anhydrous (Teokap Sr® 200mg), Colchicine (Colchicum Dispert® 0.5mg), Spironolactone (Aldactone® 100mg), Levothyroxine sodium (Levotiron® 50mg). He had painful oral ulceration on the right side of maxillary mucosa. The diagnosis was 'drug-induced oral ulceration' and HA oral gel (Aftamed® Oral gel) was prescribed 3 times a day for 2 weeks. Complete healing was achieved within 3 weeks without any side effect and discomfort. We suggest that HA oral gel is a potentially useful local drug which can be an alternative for management of drug-induced oral ulcerations.

Keywords: drug-induced, hyaluronic acid, oral ulceration, maxillary mucosa

Procedia PDF Downloads 242
2476 Design, Development and Evaluation of Ketoconazole Loaded Nanosponges in Hydrogel for the Management of Topical Fungal Infections

Authors: Nagasamy Venkatesh Dhandapani

Abstract:

This work aims at investigating the use of β-Cyclodextrin as a cross linker, in an attempt to formulate nanosponges containing ketoconazole. The nanosponges were prepared by cross-linking method. The excipients used in this study did not alter the physicochemical properties of a drug as revealed by FTIR spectroscopy. Studies on various formulation variables revealed that all the variables are inter-related with the formulation. The ideal batch among the formulation was selected based on the higher entrapment efficiency and drug loading. The in vitro release studies of ketoconazole nanosponges in hydrogel exhibited a sustained release over a period of 24 hours. Mathematical analysis of drug release from the formulation followed non-Fickian diffusion obeying first order kinetics. The anti-fungal activity of the formulation exhibited better zone of inhibition when compared to pure drug (ketoconazole) against Tinea corporis.

Keywords: nanosponges, beta-cyclodextrin, ketoconazole, tinea corporis

Procedia PDF Downloads 125
2475 Design and Development of Buccal Delivery System for Atenolol Tablets by Using Different Bioadhesive Polymers

Authors: Venkatalakshmi Ranganathan, Ong Hsin Ju, Tan Yinn Ming, Lim Kien Sin, Wong Man Ting, Venkata Srikanth Meka

Abstract:

The mucoadhesive buccal tablet is an oral drug delivery system which attached to the buccal surface for direct drug absorption into the systemic circulation and the unidirectional drug release is ensured by formulating a hydrophobic backing layer. The objective of present study was to formulate mucoadhesive atenolol bilayer buccal tablets by using sodium alginate, hydroxyethyl cellulose, and xanthan gum as mucoadhesive polymer and the technique applied was direct compression method. Ethyl cellulose was used as backing layer of the tablet. FTIR and DSC analysis were carried out to identify the drug polymer interactions. The prepared tablets were evaluated for physicochemical parameters, ex vivo mucoadhesion time and in-vitro drug release. The formulated tablets showed the average surface pH 6-7 which is favourable for oral mucosa. The formulation containing sodium alginate showed more than 90 % of drug release at the end of the 7 hours in vitro dissolution studies. The formulation containing xanthan gum showed more than 8 hours of mucoadhesion time and all formulation exhibited non fickian release kinetics. The present study indicates enormous potential of erodible mucoadhesive buccal tablet containing atenolol for systemic delivery with an added advantage of circumventing the hepatic first pass metabolism.

Keywords: atenolol, mucoadhesion, in vitro drug release, direct compression, ethyl cellulose

Procedia PDF Downloads 597
2474 Solid Lipid Nanoparticles of Levamisole Hydrochloride

Authors: Surendra Agrawal, Pravina Gurjar, Supriya Bhide, Ram Gaud

Abstract:

Levamisole hydrochloride is a prominent anticancer drug in the treatment of colon cancer but resulted in toxic effects due poor bioavailability and poor cellular uptake by tumor cells. Levamisole is an unstable drug. Incorporation of this molecule in solid lipids may minimize their exposure to the aqueous environment and partly immobilize the drug molecules within the lipid matrix-both of which may protect the encapsulated drugs against degradation. The objectives of the study were to enhance bioavailability by sustaining drug release and to reduce the toxicities associated with the therapy. Solubility of the drug was determined in different lipids to select the components of Solid Lipid Nanoparticles (SLN). Pseudoternary phase diagrams were created using aqueous titration method. Formulations were subjected to particle size and stability evaluation to select the final test formulations which were characterized for average particle size, zeta potential, and in-vitro drug release and percentage transmittance to optimize the final formulation. SLN of Levamisole hydrochloride was prepared by Nanoprecipitation method. Glyceryl behenate (Compritol 888 ATO) was used as core comprising of Tween 80 as surfactant and Lecithin as co-surfactant in (1:1) ratio. Entrapment efficiency (EE) was found to be 45.89%. Particle size was found in the range of 100-600 nm. Zeta potential of the formulation was -17.0 mV revealing the stability of the product. In-vitro release study showed that 66 % drug released in 24 hours in pH 7.2 which represent that formulation can give controlled action at the intestinal environment. In pH 5.0 it showed 64% release indicating that it can even release drug in acidic environment of tumor cells. In conclusion, results revealed SLN to be a promising approach to sustain the drug release so as to increase bioavailability and cellular uptake of the drug with reduction in toxic effects as dose has been reduced with controlled delivery.

Keywords: SLN, nanoparticulate delivery of levamisole, pharmacy, pharmaceutical sciences

Procedia PDF Downloads 407
2473 Effect of a Muscarinic Antagonist Drug on Extracellular Lipase Activityof Pseudomonas aeruginosa

Authors: Zohreh Bayat, Dariush Minai-Tehrani

Abstract:

Pseudomonas aeruginosa is a Gram-negative, rode shape and aerobic bacterium that has shown to be resistance to many antibiotics. This resistance makes the bacterium very harmful in some diseases. It can also generate diseases in any part of the gastrointestinal tract from oropharynx to rectum. P. aeruginosa has become an important cause of infection, especially in patients with compromised host defense mechanisms. One of the most important reasons that make P. aeruginosa an emerging opportunistic pathogen in patients is its ability to use various compounds as carbon sources. Lipase is an enzyme that catalyzes the hydrolysis of lipids. Most lipases act at a specific position on the glycerol backbone of lipid substrate. Some lipases are expressed and secreted by pathogenic organisms during the infection. Muscarinic antagonist used as an antispasmodic and in urinary incontinence. The drug has little effect on glandular secretion or the cardiovascular system. It does have some local anesthetic properties and is used in gastrointestinal, biliary, and urinary tract spasms. Aim: In this study the inhibitory effect of a muscarinic antagonist on lipase of P. aeruginosa was investigated. Methods: P. aeruginosa was cultured in minimal salt medium with 1% olive oil as carbon source. The cells were harvested and the supernatant, which contained lipase, was used for enzyme assay. Results: Our results showed that the drug can inhibit P. aeruginosa lipase by competitive manner. In the presence of different concentrations of the drug, the Vmax (2 mmol/min/mg protein) of enzyme did not change, while the Km raised by increasing the drug concentration. The Ki (inhibition constant) and IC50 (the half maximal inhibitory concentration) value of drug was estimated to be about 30 uM and 60 uM which determined that the drug binds to enzyme with high affinity. Maximum activity of the enzyme was observed at pH 8 in the absence and presence of muscarinic antagonist, respectively. The maximum activity of lipase was observed at 600C and the enzyme became inactive at 900C. Conclusion: The muscarinic antagonist drug could inhibit lipase of P. aeruginosa and changed the kinetic parameters of the enzyme. The drug binded to enzyme with high affinity and did not chang the optimum pH of the enzyme. Temperature did not affect the binding of drug to musmuscarinic antagonist.

Keywords: Pseudomonas aeruginosa, drug, enzyme, inhibition

Procedia PDF Downloads 411
2472 Formulation of Extended-Release Gliclazide Tablet Using a Mathematical Model for Estimation of Hypromellose

Authors: Farzad Khajavi, Farzaneh Jalilfar, Faranak Jafari, Leila Shokrani

Abstract:

Formulation of gliclazide in the form of extended-release tablet in 30 and 60 mg dosage forms was performed using hypromellose (HPMC K4M) as a retarding agent. Drug-release profiles were investigated in comparison with references Diamicron MR 30 and 60 mg tablets. The effect of size of powder particles, the amount of hypromellose in formulation, hardness of tablets, and also the effect of halving the tablets were investigated on drug release profile. A mathematical model which describes hypromellose behavior in initial times of drug release was proposed for the estimation of hypromellose content in modified-release gliclazide 60 mg tablet. This model is based on erosion of hypromellose in dissolution media. The model is applicable to describe release profiles of insoluble drugs. Therefore, by using dissolved amount of drug in initial times of dissolution and the model, the amount of hypromellose in formulation can be predictable. The model was used to predict the HPMC K4M content in modified-release gliclazide 30 mg and extended-release quetiapine 200 mg tablets.

Keywords: Gliclazide, hypromellose, drug release, modified-release tablet, mathematical model

Procedia PDF Downloads 198
2471 Extraction of Scandium (Sc) from an Ore with Functionalized Nanoporous Silicon Adsorbent

Authors: Arezoo Rahmani, Rinez Thapa, Juha-Matti Aalto, Petri Turhanen, Jouko Vepsalainen, Vesa-PekkaLehto, Joakim Riikonen

Abstract:

Production of Scandium (Sc) is a complicated process because Sc is found only in low concentrations in ores and the concentration of Sc is very low compared with other metals. Therefore, utilization of typical extraction processes such as solvent extraction is problematic in scandium extraction. The Adsorption/desorption method can be used, but it is challenging to prepare materials, which have good selectivity, high adsorption capacity, and high stability. Therefore, efficient and environmentally friendly methods for Sc extraction are needed. In this study, the nanoporous composite material was developed for extracting Sc from an Sc ore. The nanoporous composite material offers several advantageous properties such as large surface area, high chemical and mechanical stability, fast diffusion of the metals in the material and possibility to construct a filter out of the material with good flow-through properties. The nanoporous silicon material was produced by first stabilizing the surfaces with a silicon carbide layer and then functionalizing the surface with bisphosphonates that act as metal chelators. The surface area and porosity of the material were characterized by N₂ adsorption and the morphology was studied by scanning electron microscopy (SEM). The bisphosphonate content of the material was studied by thermogravimetric analysis (TGA). The concentration of metal ions in the adsorption/desorption experiments was measured with inductively coupled plasma mass spectrometry (ICP-MS). The maximum capacity of the material was 25 µmol/g Sc at pH=1 and 45 µmol/g Sc at pH=3, obtained from adsorption isotherm. The selectivity of the material towards Sc in artificial solutions containing several metal ions was studied at pH one and pH 3. The result shows good selectivity of the nanoporous composite towards adsorption of Sc. Scandium was less efficiently adsorbed from solution leached from the ore of Sc because of excessive amounts of iron (Fe), aluminum (Al) and titanium (Ti) which disturbed the adsorption process. For example, the concentration of Fe was more than 4500 ppm, while the concentration of Sc was only three ppm, approximately 1500 times lower. Precipitation methods were developed to lower the concentration of the metals other than Sc. Optimal pH for precipitation was found to be pH 4. The concentration of Fe, Al and Ti were decreased by 99, 70, 99.6%, respectively, while the concentration of Sc decreased only 22%. Despite the large reduction in the concentration of other metals, more work is needed to further increase the relative concentration of Sc compared with other metals to efficiently extract it using the developed nanoporous composite material. Nevertheless, the developed material may provide an affordable, efficient and environmentally friendly method to extract Sc on a large scale.

Keywords: adsorption, nanoporous silicon, ore solution, scandium

Procedia PDF Downloads 120
2470 Adsorptive Media Selection for Bilirubin Removal: An Adsorption Equilibrium Study

Authors: Vincenzo Piemonte

Abstract:

The liver is a complex, large-scale biochemical reactor which plays a unique role in the human physiology. When liver ceases to perform its physiological activity, a functional replacement is required. Actually, liver transplantation is the only clinically effective method of treating severe liver disease. Anyway, the aforementioned therapeutic approach is hampered by the disparity between organ availability and the number of patients on the waiting list. In order to overcome this critical issue, research activities focused on liver support device systems (LSDs) designed to bridging patients to transplantation or to keep them alive until the recovery of native liver function. In recirculating albumin dialysis devices, such as MARS (Molecular Adsorbed Recirculating System), adsorption is one of the fundamental steps in albumin-dialysate regeneration. Among the albumin-bound toxins that must be removed from blood during liver-failure therapy, bilirubin and tryptophan can be considered as representative of two different toxin classes. The first one, not water soluble at physiological blood pH and strongly bounded to albumin, the second one, loosely albumin bound and partially water soluble at pH 7.4. Fixed bed units are normally used for this task, and the design of such units requires information both on toxin adsorption equilibrium and kinetics. The most common adsorptive media used in LSDs are activated carbon, non-ionic polymeric resins and anionic resins. In this paper, bilirubin adsorption isotherms on different adsorptive media, such as polymeric resin, albumin-coated resin, anionic resin, activated carbon and alginate beads with entrapped albumin are presented. By comparing all the results, it can be stated that the adsorption capacity for bilirubin of the five different media increases in the following order: Alginate beads < Polymeric resin < Albumin-coated resin < Activated carbon < Anionic resin. The main focus of this paper is to provide useful guidelines for the optimization of liver support devices which implement adsorption columns to remove albumin-bound toxins from albumin dialysate solutions.

Keywords: adsorptive media, adsorption equilibrium, artificial liver devices, bilirubin, mathematical modelling

Procedia PDF Downloads 237
2469 Comparison of Adsorbents for Ammonia Removal from Mining Wastewater

Authors: F. Al-Sheikh, C. Moralejo, M. Pritzker, W. A. Anderson, A. Elkamel

Abstract:

Ammonia in mining wastewater is a significant problem, and treatment can be especially difficult in cold climates where biological treatment is not feasible. An adsorption process is one of the alternative processes that can be used to reduce ammonia concentrations to acceptable limits, and therefore a LEWATIT resin strongly acidic H+ form ion exchange resin and a Bowie Chabazite Na form AZLB-Na zeolite were tested to assess their effectiveness. For these adsorption tests, two packed bed columns (a mini-column constructed from a 32-cm long x 1-cm diameter piece of glass tubing, and a 60-cm long x 2.5-cm diameter Ace Glass chromatography column) were used containing varying quantities of the adsorbents. A mining wastewater with ammonia concentrations of 22.7 mg/L was fed through the columns at controlled flowrates. In the experimental work, maximum capacities of the LEWATIT ion exchange resin were 0.438, 0.448, and 1.472 mg/g for 3, 6, and 9 g respectively in a mini column and 1.739 mg/g for 141.5 g in a larger Ace column while the capacities for the AZLB-Na zeolite were 0.424, and 0.784 mg/g for 3, and 6 g respectively in the mini column and 1.1636 mg/g for 38.5 g in the Ace column. In the theoretical work, Thomas, Adams-Bohart, and Yoon-Nelson models were constructed to describe a breakthrough curve of the adsorption process and find the constants of the above-mentioned models. In the regeneration tests, 5% hydrochloric acid, HCl (v/v) and 10% sodium hydroxide, NaOH (w/v) were used to regenerate the LEWATIT resin and AZLB-Na zeolite with 44 and 63.8% recovery, respectively. In conclusion, continuous flow adsorption using a LEWATIT ion exchange resin and an AZLB-Na zeolite is efficient when using a co-flow technique for removal of the ammonia from wastewater. Thomas, Adams-Bohart, and Yoon-Nelson models satisfactorily fit the data with R2 closer to 1 in all cases.

Keywords: AZLB-Na zeolite, continuous adsorption, Lewatit resin, models, regeneration

Procedia PDF Downloads 349
2468 Investigation of Atomic Adsorption on the Surface of BC3 Nanotubes

Authors: S. V. Boroznin, I. V. Zaporotskova, N. P. Polikarpova

Abstract:

Studing of nanotubes sorption properties is very important for researching. These processes for carbon and boron nanotubes described in the high number of papers. But the sorption properties of boron containing nanotubes, susch as BC3-nanotubes haven’t been studied sufficiently yet. In this paper we present the results of theoretical research into the mechanism of atomic surface adsorption on the two types of boron-carbon nanotubes (BCNTs) within the framework of an ionic-built covalent-cyclic cluster model and an appropriately modified MNDO quantum chemical scheme and DFT method using B3LYP functional with 6-31G basis. These methods are well-known and the results, obtained using them, were in good agreement with the experiment. Also we studied three position of atom location above the nanotube surface. These facts suggest us to use them for our research and quantum-chemical calculations. We studied the mechanism of sorption of Cl, O and F atoms on the external surface of single-walled BC3 arm-chair nanotubes. We defined the optimal geometry of the sorption complexes and obtained the values of the sorption energies. Analysis of the band structure suggests that the band gap is insensitive to adsorption process. The electron density is located near atoms of the surface of the tube. Also we compared our results with others, which have been obtained earlier for pure carbon and boron nanotubes. The most stable adsorption complex has been between boron-carbon nanotube and oxygen atom. So, it suggests us to make a research of oxygen molecule adsorption on the BC3 nanotube surface. We modeled five variants of molecule orientation above the nanotube surface. The most stable sorption complex has been defined between the oxygen molecule and nanotube when the oxygen molecule is located above the nanotube surface perpendicular to the axis of the tube.

Keywords: Boron-carbon nanotubes, nanostructures, nanolayers, quantum-chemical calculations, nanoengineering

Procedia PDF Downloads 282
2467 Heroin Withdrawal, Prison and Multiple Temporalities

Authors: Ian Walmsley

Abstract:

The aim of this paper is to explore the influence of time and temporality on the experience of coming off heroin in prison. The presentation draws on qualitative data collected during a small-scale pilot study of the role of self-care in the process of coming off drugs in prison. Time and temporality emerged as a key theme in the interview transcripts. Drug dependent prisoners experience of time in prison has not been recognized in the research literature. Instead, the literature on prison time typically views prisoners as a homogenous group or tends to focus on the influence of aging and gender on prison time. Furthermore, there is a tendency in the literature on prison drug treatment and recovery to conceptualize drug dependent prisoners as passive recipients of prison healthcare, rather than active agents. In building on these gaps, this paper argues that drug dependent prisoners experience multiple temporalities which involve an interaction between the body-times of the drug dependent prisoner and the economy of time in prison. One consequence of this interaction is the feeling that they are doing, at this point in their prison sentence, double prison time. The second part of the argument is that time and temporality were a means through which they governed their withdrawing bodies. In addition, this paper will comment on the challenges of prison research in England.

Keywords: heroin withdrawal, time and temporality, prison, body

Procedia PDF Downloads 255
2466 Experimental Design and Optimization of Diesel Oil Desulfurization Process by Adsorption Processes

Authors: M. Firoz Kalam, Wilfried Schuetz, Jan Hendrik Bredehoeft

Abstract:

Thiophene sulfur compounds' removal from diesel oil by batch adsorption process using commercial powdered activated carbon was designed and optimized in two-level factorial design method. This design analysis was used to find out the effects of operating parameters directing the adsorption process, such as amount of adsorbent, temperature and stirring time. The desulfurization efficiency was considered the response or output variable. Results showed that the stirring time had the largest effects on sulfur removal efficiency as compared with other operating parameters and their interactions under the experimental ranges studied. A regression model was generated to observe the closeness between predicted and experimental values. The three-dimensional plots and contour plots of main factors were generated according to the regression results to observe the optimal points.

Keywords: activated carbon, adsorptive desulfurization, factorial design, process optimization

Procedia PDF Downloads 143
2465 Surface Modification of Polyethylene Terephthalate Substrates via Direct Fluorination to Promote the Ag+ Ions Adsorption

Authors: Kohei Yamamoto, Jae-Ho Kim, Susumu Yonezawa

Abstract:

The surface of polyethylene terephthalate (PET) was modified with fluorine gas at 25 ℃ and 100 Torr for one h. Moreover, the effect of ethanol washing on surface modification was investigated in this study. The surface roughness of the fluorinated and washed PET samples was approximately six times larger than that (0.6 nm) of the untreated thing. The results of Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy showed that the bonds such as -C=O and -C-Hx derived from raw PET decreased and were converted into fluorinated bonds such as -CFx after surface fluorination. Even after washing with ethanol, the fluorinated bonds stably existed on the surface. These fluorinated bonds showed higher electronegativity according to the zeta potential results. The negative surface charges were increased by washing the ethanol, and it caused to increase in the number of polar groups such as -CHF- and -C-Fx. The fluorinated and washed surface of PET could promote the adsorption of Ag+ ions in AgNO₃ solution because of the increased surface roughness and the negatively charged surface.

Keywords: Ag+ ions adsorption, polyethylene terephthalate, surface fluorination, zeta potential

Procedia PDF Downloads 97
2464 Malaria Management among Dispensers in Drug Retail Outlets in Buea Community: An Assessment of Knowledge of Malaria and Antimalarial Drug Prescription and Dispensing Practices

Authors: Marcelus U. Ajonina, Deodata B. Ngonga, Kenric B. Ware, Carine K. Nfor

Abstract:

Background: Lack of knowledge of rational use of antimalarial drugs among dispensers is a serious problem, especially in areas of intense transmission, thus increasing the risk of resistance and adverse drug reactions. This study was aimed at assessing the knowledge of malaria as well as perception and dispensing practices of antimalarials among vendors in Buea community. Methods: A community-based cross-sectional survey of a random sample of 140 drug vendors living within the Buea community was conducted between March and June 2017. A questionnaire was designed to obtain information from drug vendors on the general knowledge of malaria as well as dispensing practices. Data were analyzed using SPSS Statistics 20.0 and were considered significant at p ≤ 0.05. Results: Knowledge of malaria symptoms, transmission, and prevention was reasonable among 55.8% (77) of the respondents. Only 33.6% (47) of the respondents could attribute the cause of malaria to protozoan of genus Plasmodium species. Of the 140 vendors, 115 (82.7%) prescribe antimalarial drugs. The knowledge of the national protocol was malaria case management among dispensers was 35.0%. Vendors in hospital/community pharmacies were 2.4 times (OR = 3.14, 95% CI: 4.14 - 8.74, p < 0.001) more knowledgeable about malaria treatment protocol than those of in drugstores. The prevalence of self-prescription of antimalarials was 39.3%. Self-prescription was significantly higher in drugstores than hospital/community pharmacies (p=0.004). In all, 56 (40.6%) of vendors showed good practices regarding antimalarial drug dispensing with the majority (51.7%) from community pharmacies (OR=2.27,95% CI: 1.13-4.56). Conclusion: Findings reveal moderate knowledge of malaria but poor prescription and dispensing practices of antimalarial drugs among vendors, thus indicating a need for routine monitoring and evaluation to prevent the emergence of resistant strains to current efficacious antimalarials.

Keywords: antimalarials, drug retail outlets, dispensing, drug resistance, prescription

Procedia PDF Downloads 105
2463 One Pot Synthesis of Cu–Ni–S/Ni Foam for the Simultaneous Removal and Detection of Norfloxacin

Authors: Xincheng Jiang, Yanyan An, Yaoyao Huang, Wei Ding, Manli Sun, Hong Li, Huaili Zheng

Abstract:

The residual antibiotics in the environment will pose a threat to the environment and human health. Thus, efficient removal and rapid detection of norfloxacin (NOR) in wastewater is very important. The main sources of NOR pollution are the agricultural, pharmaceutical industry and hospital wastewater. The total consumption of NOR in China can reach 5440 tons per year. It is found that neither animals nor humans can totally absorb and metabolize NOR, resulting in the excretion of NOR into the environment. Therefore, residual NOR has been detected in water bodies. The hazards of NOR in wastewater lie in three aspects: (1) the removal capacity of the wastewater treatment plant for NOR is limited (it is reported that the average removal efficiency of NOR in the wastewater treatment plant is only 68%); (2) NOR entering the environment will lead to the emergence of drug-resistant strains; (3) NOR is toxic to many aquatic species. At present, the removal and detection technologies of NOR are applied separately, which leads to a cumbersome operation process. The development of simultaneous adsorption-flocculation removal and FTIR detection of pollutants has three advantages: (1) Adsorption-flocculation technology promotes the detection technology (the enrichment effect on the material surface improves the detection ability); (2) The integration of adsorption-flocculation technology and detection technology reduces the material cost and makes the operation easier; (3) FTIR detection technology endows the water treatment agent with the ability of molecular recognition and semi-quantitative detection for pollutants. Thus, it is of great significance to develop a smart water treatment material with high removal capacity and detection ability for pollutants. This study explored the feasibility of combining NOR removal method with the semi-quantitative detection method. A magnetic Cu-Ni-S/Ni foam was synthesized by in-situ loading Cu-Ni-S nanostructures on the surface of Ni foam. The novelty of this material is the combination of adsorption-flocculation technology and semi-quantitative detection technology. Batch experiments showed that Cu-Ni-S/Ni foam has a high removal rate of NOR (96.92%), wide pH adaptability (pH=4.0-10.0) and strong ion interference resistance (0.1-100 mmol/L). According to the Langmuir fitting model, the removal capacity can reach 417.4 mg/g at 25 °C, which is much higher than that of other water treatment agents reported in most studies. Characterization analysis indicated that the main removal mechanisms are surface complexation, cation bridging, electrostatic attraction, precipitation and flocculation. Transmission FTIR detection experiments showed that NOR on Cu-Ni-S/Ni foam has easily recognizable FTIR fingerprints; the intensity of characteristic peaks roughly reflects the concentration information to some extent. This semi-quantitative detection method has a wide linear range (5-100 mg/L) and a low limit of detection (4.6 mg/L). These results show that Cu-Ni-S/Ni foam has excellent removal performance and semi-quantitative detection ability of NOR molecules. This paper provides a new idea for designing and preparing multi-functional water treatment materials to achieve simultaneous removal and semi-quantitative detection of organic pollutants in water.

Keywords: adsorption-flocculation, antibiotics detection, Cu-Ni-S/Ni foam, norfloxacin

Procedia PDF Downloads 49