Search results for: distillers’ dried grain with soluble (DDGS)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1797

Search results for: distillers’ dried grain with soluble (DDGS)

507 Effect of Taper Pin Ratio on Microstructure and Mechanical Property of Friction Stir Welded AZ31 Magnesium Alloy

Authors: N. H. Othman, N. Udin, M. Ishak, L. H. Shah

Abstract:

This study focuses on the effect of pin taper tool ratio on friction stir welding of magnesium alloy AZ31. Two pieces of AZ31 alloy with thickness of 6 mm were friction stir welded by using the conventional milling machine. The shoulder diameter used in this experiment is fixed at 18 mm. The taper pin ratio used are varied at 6:6, 6:5, 6:4, 6:3, 6:2 and 6:1. The rotational speeds that were used in this study were 500 rpm, 1000 rpm and 1500 rpm, respectively. The welding speeds used are 150 mm/min, 200 mm/min and 250 mm/min. Microstructure observation of welded area was studied by using optical microscope. Equiaxed grains were observed at the TMAZ and stir zone indicating fully plastic deformation. Tool pin diameter ratio 6/1 causes low heat input to the material because of small contact surface between tool surface and stirred materials compared to other tool pin diameter ratio. The grain size of stir zone increased with increasing of ratio of rotational speed to transverse speed due to higher heat input. It is observed that worm hole is produced when excessive heat input is applied. To evaluate the mechanical properties of this specimen, tensile test was used in this study. Welded specimens using taper pin ratio 6:1 shows higher tensile strength compared to other taper pin ratio up to 204 MPa. Moreover, specimens using taper pin ratio 6:1 showed better tensile strength with 500 rpm of rotational speed and 150mm/min welding speed.

Keywords: friction stir welding, magnesium AZ31, cylindrical taper tool, taper pin ratio

Procedia PDF Downloads 257
506 Influence of Sr(BO2)2 Doping on Superconducting Properties of (Bi,Pb)-2223 Phase

Authors: N. G. Margiani, I. G. Kvartskhava, G. A. Mumladze, Z. A. Adamia

Abstract:

Chemical doping with different elements and compounds at various amounts represents the most suitable approach to improve the superconducting properties of bismuth-based superconductors for technological applications. In this paper, the influence of partial substitution of Sr(BO2)2 for SrO on the phase formation kinetics and transport properties of (Bi,Pb)-2223 HTS has been studied for the first time. Samples with nominal composition Bi1.7Pb0.3Sr2-xCa2Cu3Oy[Sr(BO2)2]x, x=0, 0.0375, 0.075, 0.15, 0.25, were prepared by the standard solid state processing. The appropriate mixtures were calcined at 845 oC for 40 h. The resulting materials were pressed into pellets and annealed at 837 oC for 30 h in air. Superconducting properties of undoped (reference) and Sr(BO2)2-doped (Bi,Pb)-2223 compounds were investigated through X-ray diffraction (XRD), resistivity (ρ) and transport critical current density (Jc) measurements. The surface morphology changes in the prepared samples were examined by scanning electron microscope (SEM). XRD and Jc studies have shown that the low level Sr(BO2)2 doping (x=0.0375-0.075) to the Sr-site promotes the formation of high-Tc phase and leads to the enhancement of current carrying capacity in (Bi,Pb)-2223 HTS. The doped sample with x=0.0375 has the best performance compared to other prepared samples. The estimated volume fraction of (Bi,Pb)-2223 phase increases from ~25 % for reference specimen to ~70 % for x=0.0375. Moreover, strong increase in the self-field Jc value was observed for this dopant amount (Jc=340 A/cm2), compared to an undoped sample (Jc=110 A/cm2). Pronounced enhancement of superconducting properties of (Bi,Pb)-2223 superconductor can be attributed to the acceleration of high-Tc phase formation as well as the improvement of inter-grain connectivity by small amounts of Sr(BO2)2 dopant.

Keywords: bismuth-based superconductor, critical current density, phase formation, Sr(BO₂)₂ doping

Procedia PDF Downloads 213
505 In vitro Antioxidant and Antisickling Effects of Aerva javanica, and Ficus palmata Extracts on Sickle Cell Anemia

Authors: E. A. Alaswad, H. M. Choudhry, F. Z. Filimban

Abstract:

Sickle Cell Anemia (SCA) is one type of blood diseases related to autosomal disorder. The sickle shaped red blood cells are the main cause of many problems in the blood vessels and capillaries. Aerva Javanica (J) and Ficus Palmata (P) are medicinal plants that have many popular uses and have been proved their efficacy. The aim of this study was to assess the antioxidants activity and the antisickling effect of J and P extractions. The period of this study, air-dried leaves of J, and P plants were ground and the active components were extracted by maceration in water (W) and methanol (M) as solvents. The antioxidants activity of JW, PW, JM, and PM were assessed by way of the radical scavenging method using 2,2-diphenyl-1-picrylhydrazyl (DPPH). To determine the antisickling effect of J and P extracts. 20 samples were collected from sickle cell anemia patients. Different concentrations of J and P extracts (200 and 110 μg/mL) were added on the sample and incubated. A drop of each sample was examined with light microscope. Normal and sickled RBCs were calculated and expressed as the percent of sickling. The stabilization effect of the extracts was measured by the osmotic fragility test for erythrocytes. The finding suggests as estimated by DPPH method, all the extracts showed an antioxidant activity with a significant inhibition of the DPPH radicals. PM has the least IC50% with 71.49 μg/ml while JM was the most with 408.49 μg/ml. Sickle cells treated with extracts at different concentrations significantly reduced the percentage of sickling compering to control samples. However, JM 200 μg/mL give the highest anti-sickling affect with 17.4% of sickling compared to control 67.5 of sickling while PM at 200 μg/mL showed the highest membrane cell stability. In a conclusion, the results showed that J and P extracts have antisickling effects. Therefore, the Aerva javanica and Ficus palmata may have a role in SCA management and a good impact on the patient's lives.

Keywords: Aerva javanica, antioxidant, antisickling, Ficus palmata, sickle cell anemia

Procedia PDF Downloads 134
504 Biodiesel Production from Yellow Oleander Seed Oil

Authors: S. Rashmi, Devashish Das, N. Spoorthi, H. V. Manasa

Abstract:

Energy is essential and plays an important role for overall development of a nation. The global economy literally runs on energy. The use of fossil fuels as energy is now widely accepted as unsustainable due to depleting resources and also due to the accumulation of greenhouse gases in the environment, renewable and carbon neutral biodiesel are necessary for environment and economic sustainability. Unfortunately biodiesel produced from oil crop, waste cooking oil and animal fats are not able to replace fossil fuel. Fossil fuels remain the dominant source of primary energy, accounting for 84% of the overall increase in demand. Today biodiesel has come to mean a very specific chemical modification of natural oils. Objectives: To produce biodiesel from yellow oleander seed oil, to test the yield of biodiesel using different types of catalyst (KOH & NaOH). Methodology: Oil is extracted from dried yellow oleander seeds using Soxhlet extractor and oil expeller (bulk). The FFA content of the oil is checked and depending on the FFA value either two steps or single step process is followed to produce biodiesel. Two step processes includes esterfication and transesterification, single step includes only transesterification. The properties of biodiesel are checked. Engine test is done for biodiesel produced. Result: It is concluded that biodiesel quality parameters such as yield(85% & 90%), flash point(1710C & 1760C),fire point(1950C & 1980C), viscosity(4.9991 and 5.21 mm2/s) for the biodiesel from seed oil of Thevetiaperuviana produced by using KOH & NaOH respectively. Thus the seed oil of Thevetiaperuviana is a viable feedstock for good quality fuel.The outcomes of our project are a substitute for conventional fuel, to reduce petro diesel requirement,improved performance in terms of emissions. Future prospects: Optimization of biodiesel production using response surface method.

Keywords: yellow oleander seeds, biodiesel, quality parameters, renewable sources

Procedia PDF Downloads 419
503 Combustion Characteristics of Wet Woody Biomass in a Grate Furnace: Including Measurements within the Bed

Authors: Narges Razmjoo, Hamid Sefidari, Michael Strand

Abstract:

Biomass combustion is a growing technique for heat and power production due to the increasing stringent regulations with CO2 emissions. Grate-fired systems have been regarded as a common and popular combustion technology for burning woody biomass. However, some grate furnaces are not well optimized and may emit significant amount of unwanted compounds such as dust, NOx, CO, and unburned gaseous components. The combustion characteristics inside the fuel bed are of practical interest, as they are directly related to the release of volatiles and affect the stability and the efficiency of the fuel bed combustion. Although numerous studies have been presented on the grate firing of biomass, to the author’s knowledge, none of them have conducted a detailed experimental study within the fuel bed. It is difficult to conduct measurements of temperature and gas species inside the burning bed of the fuel in full-scale boilers. Results from such inside bed measurements can also be applied by the numerical experts for modeling the fuel bed combustion. The current work presents an experimental investigation into the combustion behavior of wet woody biomass (53 %) in a 4 MW reciprocating grate boiler, by focusing on the gas species distribution along the height of the fuel bed. The local concentrations of gases (CO, CO2, CH4, NO, and O2) inside the fuel bed were measured through a glass port situated on the side wall of the furnace. The measurements were carried out at five different heights of the fuel bed, by means of a bent stainless steel probe containing a type-k thermocouple. The sample gas extracted from the fuel bed, through the probe, was filtered and dried and then was analyzed using two infrared spectrometers. Temperatures of about 200-1100 °C were measured close to the grate, indicating that char combustion is occurring at the bottom of the fuel bed and propagates upward. The CO and CO2 concentration varied in the range of 15-35 vol % and 3-16 vol %, respectively, and NO concentration varied between 10-140 ppm. The profile of the gas concentrations distribution along the bed height provided a good overview of the combustion sub-processes in the fuel bed.

Keywords: experimental, fuel bed, grate firing, wood combustion

Procedia PDF Downloads 303
502 Synthesis of Double Dye-Doped Silica Nanoparticles and Its Application in Paper-Based Chromatography

Authors: Ka Ho Yau, Jan Frederick Engels, Kwok Kei Lai, Reinhard Renneberg

Abstract:

Lateral flow test is a prevalent technology in various sectors such as food, pharmacology and biomedical sciences. Colloidal gold (CG) is widely used as the signalling molecule because of the ease of synthesis, bimolecular conjugation and its red colour due to intrinsic SPRE. However, the production of colloidal gold is costly and requires vigorous conditions. The stability of colloidal gold are easily affected by environmental factors such as pH, high salt content etc. Silica nanoparticles are well known for its ease of production and stability over a wide range of solvents. Using reverse micro-emulsion (w/o), silica nanoparticles with different sizes can be produced precisely by controlling the amount of water. By incorporating different water-soluble dyes, a rainbow colour of the silica nanoparticles could be produced. Conjugation with biomolecules such as antibodies can be achieved after surface modification of the silica nanoparticles with organosilane. The optimum amount of the antibodies to be labelled was determined by Bradford Assay. In this work, we have demonstrated the ability of the dye-doped silica nanoparticles as a signalling molecule in lateral flow test, which showed a semi-quantitative measurement of the analyte. The image was further analysed for the LOD=10 ng of the analyte. The working range and the linear range of the test were from 0 to 2.15μg/mL and from 0 to 1.07 μg/mL (R2=0.988) respectively. The performance of the tests was comparable to those using colloidal gold with the advantages of lower cost, enhanced stability and having a wide spectrum of colours. The positives lines can be imaged by naked eye or by using a mobile phone camera for a better quantification. Further research has been carried out in multicolour detection of different biomarkers simultaneously. The preliminary results were promising as there was little cross-reactivity being observed for an optimized system. This approach provides a platform for multicolour detection for a set of biomarkers that enhances the accuracy of diseases diagnostics.

Keywords: colorimetric detection, immunosensor, paper-based biosensor, silica

Procedia PDF Downloads 349
501 Effect of Processing Parameters on the Physical Properties of Pineapple Pomace Based Aquafeed

Authors: Oluwafemi Babatunde Oduntan, Isaac A. Bamgboye

Abstract:

The solid waste disposal and its management from pineapple juice processing constitute environmental contamination affecting public health. The use of this by-product called pomace has potentials to reduce cost of aquafeed. Pineapple pomace collected after juice extraction was dried and milled. The interactive effects of feeding rate (1.28, 1.44 and 1.60kg/min), screw speed (305, 355 and 405rpm), moisture content (16, 19 and 22%), temperatures (60, 80, 100 and 120°C), cutting speed (1300, 1400 and 1500rpm), pomace inclusion ratio (5, 10, 15, 20%) and open surface die (50, 75 and 100%) on the extrudate physical properties (bulk density, unit density, expansion ratio, durability and floatability) were investigated using optimal custom design (OCD) matrix and response surface methodology. The predicted values were found to be in good agreement with the experimental values for, expansion ratio, durability and floatability (R2 = 0.7970; 0.9264; 0.9098 respectively) with the exceptions of unit density and bulk density (R2 = 0.1639; 0.2768 respectively). All the extrudates showed relatively high floatability, durability. The inclusion of pineapple pomace produced less expanded and more compact textured extrudates. Results indicated that increased in the value of pineapple pomace, screw speed, feeding rate decreased unit density, bulk density, expansion ratio, durability and floatability of the extrudate. However, increasing moisture content of feed mash resulted in increase unit density and bulk density. Addition of extrusion temperature and cutting speed increased the floatability and durability of extrudate. The proportion of pineapple pomace in aquafeed extruded product was observed to have significantly lower effect on the selected responses.

Keywords: aquafeed, extrusion, physical properties, pineapple pomace, waste

Procedia PDF Downloads 243
500 Influence of the Molar Concentration and Substrate Temperature on Fluorine-Doped Zinc Oxide Thin Films Chemically Sprayed

Authors: J. Ramirez, A. Maldonado, M. de la L. Olvera

Abstract:

The effect of both the molar concentration of the starting solution and the substrate temperature on the electrical, morphological, structural and optical properties of chemically sprayed fluorine-doped zinc oxide (ZnO:F) thin films deposited on glass substrates, is analyzed in this work. All the starting solutions employed were aged for ten days before the deposition. The results show that as the molar concentration increases, a decrease in the electrical resistivity values is obtained, reaching the minimum in films deposited from a 0.4 M solution at 500°C. A further increase in the molar concentration leads to a very slight increase in the resistivity. On the other hand, as the substrate temperature is increased, the resistivity decreases and a tendency towards to minimum value is evidenced; taking the molar concentration as parameter, minimum values are reached at 500°C. The attain of ZnO:F thin films, with a resistivity as low as 7.8×10-3 Ώcm (sheet resistance of 130 Ώ/☐ and film thickness of 600 nm) measured in as-deposited films is reported here for the first time. The concurrent effect of the high molar concentration of the starting solution, the substrate temperature values used, and the ageing of the starting solution, which might cause polymerization of the zinc ions with the fluorine species, enhance the electrical properties. The structure of the films is polycrystalline, with a (002) preferential growth. Molar concentration rules the surface morphology as at low concentration an hexagonal and porous structure is developed changing to a uniform compact and small grain size surface in the films deposited with the high molar concentrations.

Keywords: zinc oxide, chemical spray, thin films, TCO

Procedia PDF Downloads 478
499 Performance and Processing Evaluation of Solid Oxide Cells by Co-Sintering of GDC Buffer Layer and LSCF Air Electrode

Authors: Hyun-Jong Choi, Minjun Kwak, Doo-Won Seo, Sang-Kuk Woo, Sun-Dong Kim

Abstract:

Solid Oxide Cell(SOC) systems can contribute to the transition to the hydrogen society by utilized as a power and hydrogen generator by the electrochemical reaction with high efficiency at high operation temperature (>750 ℃). La1-xSrxCo1-yFeyO3, which is an air electrode, is occurred stability degradations due to reaction and delamination with yittria stabilized zirconia(YSZ) electrolyte in a water electrolysis mode. To complement this phenomenon SOCs need gadolinium doped ceria(GDC) buffer layer between electrolyte and air electrode. However, GDC buffer layer requires a high sintering temperature and it causes a reaction with YSZ electrolyte. This study carried out low temperature sintering of GDC layer by applying Cu-oxide as a sintering aid. The effect of a copper additive as a sintering aid to lower the sintering temperature for the construction of solid oxide fuel cells (SOFCs) was investigated. GDC buffer layer with 0.25-10 mol% CuO sintering aid was prepared by reacting GDC power and copper nitrate solution followed by heating at 600 ℃. The sintering of CuO-added GDC powder was optimized by investigating linear shrinkage, microstructure, grain size, ionic conductivity, and activation energy of CuO-GDC electrolytes at temperatures ranging from 1100 to 1400 ℃. The sintering temperature of the CuO-GDC electrolyte decreases from 1400 ℃ to 1100 ℃ by adding the CuO sintering aid. The ionic conductivity of the CuO-GDC electrolyte shows a maximum value at 0.5 mol% of CuO. However, the addition of CuO has no significant effects on the activation energy of GDC electrolyte. GDC-LSCF layers were co-sintering at 1050 and 1100 ℃ and button cell tests were carried out at 750 ℃.

Keywords: Co-Sintering, GDC-LSCF, Sintering Aid, solid Oxide Cells

Procedia PDF Downloads 224
498 Use of Chlorophyll Meters to Assess In-Season Wheat Nitrogen Fertilizer Requirements in the Southern San Joaquin Valley

Authors: Brian Marsh

Abstract:

Nitrogen fertilizer is the most used and often the most mismanaged nutrient input. Nitrogen management has tremendous implications on crop productivity, quality and environmental stewardship. Sufficient nitrogen is needed to optimum yield and quality. Soil and in-season plant tissue testing for nitrogen status are a time consuming and expensive process. Real time sensing of plant nitrogen status can be a useful tool in managing nitrogen inputs. The objectives of this project were to assess the reliability of remotely sensed non-destructive plant nitrogen measurements compared to wet chemistry data from sampled plant tissue, develop in-season nitrogen recommendations based on remotely sensed data for improved nitrogen use efficiency and assess the potential for determining yield and quality from remotely sensed data. Very good correlations were observed between early-season remotely sensed crop nitrogen status and plant nitrogen concentrations and subsequent in-season fertilizer recommendations. The transmittance/absorbance type meters gave the most accurate readings. Early in-season fertilizer recommendation would be to apply 40 kg nitrogen per hectare plus 16 kg nitrogen per hectare for each unit difference measured with the SPAD meter between the crop and reference area or 25 kg plus 13 kg per hectare for each unit difference measured with the CCM 200. Once the crop was sufficiently fertilized meter readings became inconclusive and were of no benefit for determining nitrogen status, silage yield and quality and grain yield and protein.

Keywords: wheat, nitrogen fertilization, chlorophyll meter

Procedia PDF Downloads 367
497 Reactive Oxygen Species-Mediated Photoaging Pathways of Ultrafine Plastic Particles under UV Irradiation

Authors: Jiajun Duan, Yang Li, Jianan Gao, Runzi Cao, Enxiang Shang, Wen Zhang

Abstract:

Reactive oxygen species (ROS) generation is considered as an important photoaging mechanism of microplastics (MPs) and nanoplastics (NPs). To elucidate the ROS-induced MP/NP aging processes in water under UV365 irradiation, we examined the effects of surface coatings, polymer types, and grain sizes on ROS generation and photoaging intermediates. Bare polystyrene (PS) NPs generated hydroxyl radicals (•OH) and singlet oxygen (¹O₂), while coated PS NPs (carboxyl-modified PS (PS-COOH), amino-modified PS (PS-NH₂)) and PS MPs generated fewer ROS due to coating scavenging or size effects. Polypropylene, polyethylene, polyvinyl chloride, polyethylene terephthalate, and polycarbonate MPs only generated •OH. For aromatic polymers, •OH addition preferentially occurred at benzene rings to form monohydroxy polymers. Excess •OH resulted in H abstraction, C-C scission, and phenyl ring opening to generate aliphatic ketones, esters, aldehydes, and aromatic ketones. For coated PS NPs, •OH preferentially attacked the surface coatings to result in decarboxylation and deamination reactions. For aliphatic polymers, •OH attack resulted in the formation of carbonyl groups from peracid, aldehyde, or ketone via H abstraction and C-C scission. Moreover, ¹O₂ might participate in phenyl ring opening for PS NPs and coating degradation for coated PS NPs. This study facilitates understanding the ROS-induced weathering process of NPs/MPs in water under UV irradiation.

Keywords: microplastics, nanoplastics, photoaging, reactive oxygen species, surface coating

Procedia PDF Downloads 134
496 Fexofenadine Hydrochloride Orodispersisble Tablets: Formulation and in vitro/in vivo Evaluation in Healthy Human Volunteers

Authors: Soad Ali Yehia, Mohamed Shafik El-Ridi, Mina Ibrahim Tadros, Nolwa Gamal El-Sherif

Abstract:

Fexofenadine hydrochloride (FXD) is a slightly soluble, bitter-tasting, drug having an oral bioavailability of 35%. The maximum plasma concentration is reached 2.6 hours (Tmax) post-dose. The current work aimed to develop taste-masked FXD orodispersible tablets (ODTs) to increase extent of drug absorption and reduce Tmax. Taste masking was achieved via solid dispersion (SD) with chitosan (CS) or sodium alginate (ALG). FT-IR, DSC and XRD were performed to identify physicochemical interactions and FXD crystallinity. Taste-masked FXD-ODTs were developed via addition of superdisintegrants (crosscarmelose sodium or sodium starch glycolate, 5% and 10%, w/w) or sublimable agents (camphor, menthol or thymol; 10% and 20%, w/w) to FXD-SDs. ODTs were evaluated for weight variation, drug-content, friability, wetting time, disintegration time and drug release. Camphor-based (20%, w/w) FXD-ODT (F12) was optimized (F23) by incorporation of a more hydrophilic lubricant, sodium stearyl fumarate (Pruv®). The topography of the latter formula was examined via scanning electron microscopy (SEM). The in vivo estimation of FXD pharmacokinetics, relative to Allegra® tablets, was evaluated in healthy human volunteers. Based on the gustatory sensation test in healthy volunteers, FXD:CS (1:1) and FXD:ALG (1:0.5) SDs were selected. Taste-masked FXD-ODTs had appropriate physicochemical properties and showed short wetting and disintegration times. Drug release profiles of F23 and phenylalanine-containing Allegra® ODT were similar (f2 = 96) showing a complete release in two minutes. SEM micrographs revealed pores following camphor sublimation. Compared to Allegra® tablets, pharmacokinetic studies in healthy volunteers proved F23 ability to increase extent of FXD absorption (14%) and reduce Tmax to 1.83 h.

Keywords: fexofenadine hydrochloride, taste masking, chitosan, orodispersible

Procedia PDF Downloads 315
495 Identifying and Optimizing the Critical Excipients in Moisture Activated Dry Granulation Process for Two Anti TB Drugs of Different Aqueous Solubilities

Authors: K. Srujana, Vinay U. Rao, M. Sudhakar

Abstract:

Isoniazide (INH) a freely water soluble and pyrazinamide (Z) a practically water insoluble first line anti tubercular (TB) drugs were identified as candidates for optimizing the Moisture Activated Dry Granulation (MADG) process. The work focuses on identifying the effect of binder type and concentration as well as the effect of magnesium stearate level on critical quality attributes of Disintegration time (DT) and in vitro dissolution test when the tablets are processed by the MADG process. Also, the level of the drug concentration, binder concentration and fluid addition during the agglomeration stage of the MADG process was evaluated and optimized. For INH, it was identified that for tablets with HPMC as binder at both 2% w/w and 5% w/w level and Magnesium stearate upto 1%w/w as lubrication the DT is within 1 minute and the dissolution rate is the fastest (> 80% in 15 minutes) as compared to when PVP or pregelatinized starch is used as binder. Regarding the process, fast disintegrating and rapidly dissolving tablets are obtained when the level of drug, binder and fluid uptake in agglomeration stage is 25% w/w 0% w/w binder and 0.033%. w/w. At the other 2 levels of these three ingredients, the DT is significantly impacted and dissolution is also slower. For pyrazinamide,it was identified that for the tablets with 2% w/w level of each of PVP as binder and Cross Caramellose Sodium disintegrant the DT is within 2 minutes and the dissolution rate is the fastest(>80 in 15 minutes)as compared to when HPMC or pregelatinized starch is used as binder. This may be attributed to the fact that PVP may be acting as a solubilizer for the practically insoluble Pyrazinamide. Regarding the process,fast dispersing and rapidly disintegrating tablets are obtained when the level of drug, binder and fluid uptake in agglomeration stage is 10% w/w,25% w/w binder and 1% w/w.At the other 2 levels of these three ingredients, the DT is significantly impacted and dissolution is comparatively slower and less complete.

Keywords: agglomeration stage, isoniazide, MADG, moisture distribution stage, pyrazinamide

Procedia PDF Downloads 222
494 The Presence of Ochratoxin a in Breast-Milk, Urine and Serum of Lactating Women

Authors: Magdalena Twaruzek, Karolina Ropejko

Abstract:

Mycotoxins are secondary metabolites of molds. Ochratoxin A (OTA) is the most common in the Polish climate. It is produced by fungi of the genera Aspergillus and Penicillium. It is produced as a result of improper food storage. It is present in many products that are consumed both by humans and animals: cereals, wheat gluten, coffee, dried fruit, wine, grape juice, spices, beer, and products based on them. OTA is nephrotoxic, hepatotoxic, potentially carcinogenic, and teratogenic. OTA mainly enters an organism by oral intake. The aim of the study was to detect the presence of OTA in milk, urine, and serum of lactating women. A survey was also conducted regarding the daily diet of women. The research group consisted of 32 lactating women (11 were the donors from the Milk Bank in Toruń, the other 21 were recruited for this study). Results of the analysis showed the occurrence of OTA only in 3 milk samples (9.38%). The minimum level was 0.01 ng/ml, while the maximum 0.018 ng/ml and the mean 0.0013 ng/ml. Twenty-six urine samples (81.25%) were OTA positive, with minimum level 0.013 ng/ml, maximum level 0.117 ng/ml and mean 0.0192 ng/ml. Also, all 32 serum samples (100%) were contaminated by OTA, with a minimum level of 0.099 ng/ml, a maximum level of 2.38 ng/ml, and a mean of 0.4649 ng/ml. In the case of 3 women, OTA was present in all tested body fluids. Based on the results, the following conclusions can be drawn: the breast-milk of women in the study group is slightly contaminated with ochratoxin A. Ten samples of urine contained ochratoxin A above its average content in tested samples. Moreover, serum of 8 women contains ochratoxin A at a level above the average content of this mycotoxin in tested samples. The average ochratoxin A level in serum in the presented studies was 0.4649 ng/ml, which is much lower than the average serum ochratoxin A level established in several countries in the world, i.e., 0.7 ng/ml. Acknowledgment: This study was supported by the Polish Minister of Science and Higher Education under the program 'Regional Initiative of Excellence' in 2019 - 2022 (Grant No. 008/RID/2018/19).

Keywords: breast-milk, urine, serum, contamination, ochratoxin A

Procedia PDF Downloads 114
493 Eco-Friendly Approach in the Management of Stored Sorghum Insect Pests in Small-Scale Farmers’ Storage Structures of Northern Nigeria

Authors: Mohammed Suleiman, Ibrahim Sani, Samaila Abubakar, Kabir Abdullahi Bindawa

Abstract:

Farmers’ storage structures in Pauwa village of Katsina State, Northern Nigeria, were simulated and incorporated with the application of leaf powders of Euphorbia balsamifera Aiton, Lawsonia inermis L., Mitracarpus hirtus (L.) DC. and Senna obtusifolia L. to search for more eco-friendly methods of managing insect pests of stored sorghum. The four most commonly grown sorghum varieties in the study area, namely “Farar Kaura” (FK), “Jar Kaura” (JK), “Yar Gidan Daudu” (YGD), and ICSV400 in threshed forms were used for the study. The four varieties (2.50 kg each) were packed in small polypropylene bags, mixed with the leaf powders at the concentration of 5% (w/w) of the plants, and kept in small stores of the aforementioned village for 12 weeks. Insect pests recovered after 12 weeks were Sitophilus zeamais, Rhyzopertha dominica, Tribolium castaneum, Cryptolestes ferrugineus, and Oryzaephilus surinamensis. There were significantly fewer insect pests in treated sorghum than in untreated types (p < 0.05). More weight losses were recorded in untreated grains than in those treated with the botanical powders. In terms of varieties, grain weight losses were in the order FK > JK > YGD > ICSV400. The botanicals also showed significant (p < 0.05) protectant ability against the weevils with their performance as E. balsamifera > L. inermis > M. hirtus > S. obtusifolia.

Keywords: botanical powders, infestations, insect pests, management, sorghum varieties, storage structures, weight losses

Procedia PDF Downloads 64
492 Technological Properties, in Vitro Starch Digestibility, and Antioxidant Activity of Gluten-Free Cakes Enriched With Prunus spinosa

Authors: Elif Cakir, Görkem Özülkü, Hatice Bekiroğlu, Muhammet Arici, Osman Sağdic

Abstract:

It is important to be able to formulate cakes with a wide consumption mass with gluten-free and high nutritional value ingredients to increase the consumption possibilities of people with limited nutrition opportunities. Although people do not prefer Prunus spinosa (PS)because of its sour taste and its use in the food industry is limited on a local scale, the potential of using PS, which is a naturally rich source of many micronutrients and bioactive compounds, in glutenfree cake production has been investigated. In this study, the potential of using PS, a natural wild fruit, in the production of functional gluten-free cakes was investigated. It was aimed to evaluate the effects of freeze-dried and powdered PS-enriched rice flour cakes on tech functionality, nutrition and eating quality. In terms of physicochemical properties, PS raises increased the ash, protein, and moisture values of the cakes. PS with high phenolic content, phenolic component content, and radical reducing power made by ABTS, FRAP, and DPPH techniques were higher in all samples than control, and the highest 4% PS was determined in cakes. In terms of the glycemic index (GI), which is an important feature of diet products, it was determined that the GI in cakes decreased by 86.30±1.04.75.05±1.16 and 69.38±1.21, respectively, with the increase in PS ratio. Except for the 1%, PS added sample, the increase in PS caused a decrease in specific volume, % porosity and increase in hardness, including 4 days of storage. PS increase decreased the L* and b* values and increased a* value and redness of the cake. Sensory liking of the cake samples containing PS was scored significantly (p<0.05) higher of control.

Keywords: Prunus spinosa, gluten-free cake, antioxidant, phenolic, glycemic index

Procedia PDF Downloads 95
491 Triose Phosphate Utilisation at the (Sub)Foliar Scale Is Modulated by Whole-plant Source-sink Ratios and Nitrogen Budgets in Rice

Authors: Zhenxiang Zhou

Abstract:

The triose phosphate utilisation (TPU) limitation to leaf photosynthesis is a biochemical process concerning the sub-foliar carbon sink-source (im)balance, in which photorespiration-associated amino acids exports provide an additional outlet for carbon and increases leaf photosynthetic rate. However, whether this process is regulated by whole-plant sink-source relations and nitrogen budgets remains unclear. We address this question by model analyses of gas-exchange data measured on leaves at three growth stages of rice plants grown at two-nitrogen levels, where three means (leaf-colour modification, adaxial vs abaxial measurements, and panicle pruning) were explored to alter source-sink ratios. Higher specific leaf nitrogen (SLN) resulted in higher rates of TPU and also led to the TPU limitation occurring at a lower intercellular CO2 concentration. Photorespiratory nitrogen assimilation was greater in higher-nitrogen leaves but became smaller in cases associated with yellower-leaf modification, abaxial measurement, or panicle pruning. The feedback inhibition of panicle pruning on rates of TPU was not always observed because panicle pruning blocked nitrogen remobilisation from leaves to grains, and the increased SLN masked the feedback inhibition. The (sub)foliar TPU limitation can be modulated by whole-plant source-sink ratios and nitrogen budgets during rice grain filling, suggesting a close link between sub-foliar and whole-plant sink limitations.

Keywords: triose phosphate utilization, sink limitation, panicle pruning, oryza sativa

Procedia PDF Downloads 51
490 Economic Assessment of the Fish Solar Tent Dryers

Authors: Collen Kawiya

Abstract:

In an effort of reducing post-harvest losses and improving the supply of quality fish products in Malawi, the fish solar tent dryers have been designed in the southern part of Lake Malawi for processing small fish species under the project of Cultivate Africa’s Future (CultiAF). This study was done to promote the adoption of the fish solar tent dryers by the many small scale fish processors in Malawi through the assessment of the economic viability of these dryers. With the use of the project’s baseline survey data, a business model for a constructed ‘ready for use’ solar tent dryer was developed where investment appraisal techniques were calculated in addition with the sensitivity analysis. The study also conducted a risk analysis through the use of the Monte Carlo simulation technique and a probabilistic net present value was found. The investment appraisal results showed that the net present value was US$8,756.85, the internal rate of return was 62% higher than the 16.32% cost of capital and the payback period was 1.64 years. The sensitivity analysis results showed that only two input variables influenced the fish solar dryer investment’s net present value. These are the dried fish selling prices that were correlating positively with the net present value and the fresh fish buying prices that were negatively correlating with the net present value. Risk analysis results showed that the chances that fish processors will make a loss from this type of investment are 17.56%. It was also observed that there exist only a 0.20 probability of experiencing a negative net present value from this type of investment. Lastly, the study found that the net present value of the fish solar tent dryer’s investment is still robust in spite of any changes in the levels of investors risk preferences. With these results, it is concluded that the fish solar tent dryers in Malawi are an economically viable investment because they are able to improve the returns in the fish processing activity. As such, fish processors need to adopt them by investing their money to construct and use them.

Keywords: investment appraisal, risk analysis, sensitivity analysis, solar tent drying

Procedia PDF Downloads 249
489 Quality Evaluation of Grape Seed Oils of the Ionian Islands Based on GC-MS and Other Spectroscopic Techniques

Authors: I. Oikonomou, I. Lappa, D. Daferera, C. Kanakis, L. Kiokakis, K. Skordilis, A. Avramouli, E. Kalli, C. Pappas, P. A. Tarantilis, E. Skotti

Abstract:

Grape seeds are waste products of wineries and often referred to as an important agricultural and industrial waste product with the potential to be used in pharmaceutical, food, and cosmetic applications. In this study, grape seed oil from traditional Ionian varieties was examined for the determination of the quality and the characteristics of each variety. Initially, the fatty acid methyl ester (FAME) profiles were analyzed using Gas Chromatography-Mass Spectrometry, after transesterification. Furthermore, other quality parameters of the grape seed oils were determined by Spectroscopy techniques, UV-Vis and Raman included. Moreover, the antioxidant capacity of the oil was measured by 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and 2,2-Diphenyl-1-picrylhydrazyl (DPPH) assays and their antioxidant capacity expressed in Trolox equivalents. K and ΔΚ indices were measured in 232, 268, 270 nm, as an oil quality index. The results indicate that the air-dried grape seed total oil content ranged from 5.26 to 8.77% w/w, which is in accordance with the other grape seed varieties tested in similar studies. The composition of grape seed oil is predominated with linoleic and oleic fatty acids, with the linoleic fatty acid ranging from 53.68 to 69.95% and both the linoleic and oleic fatty acids totaling 78-82% of FAMEs, which is analogous to the fatty acid composition of safflower oil. The antioxidant assays ABTS and DPPH scored high, exhibiting that the oils have potential in the cosmetic and culinary businesses. Above that, our results demonstrate that Ionian grape seed oils have prospects that can go further than cosmetic or culinary use, into the pharmaceuticals industry. Finally, the reclamation of grape seeds from wineries waste stream is in accordance with the bio-economy strategic framework and contributes to environmental protection.

Keywords: antioxidant capacity, fatty acid methyl esters, grape seed oil, GC-MS

Procedia PDF Downloads 179
488 Cotton Fiber Quality Improvement by Introducing Sucrose Synthase (SuS) Gene into Gossypium hirsutum L.

Authors: Ahmad Ali Shahid, Mukhtar Ahmed

Abstract:

The demand for long staple fiber having better strength and length is increasing with the introduction of modern spinning and weaving industry in Pakistan. Work on gene discovery from developing cotton fibers has helped to identify dozens of genes that take part in cotton fiber development and several genes have been characterized for their role in fiber development. Sucrose synthase (SuS) is a key enzyme in the metabolism of sucrose in a plant cell, in cotton fiber it catalyzes a reversible reaction, but preferentially converts sucrose and UDP into fructose and UDP-glucose. UDP-glucose (UDPG) is a nucleotide sugar act as a donor for glucose residue in many glycosylation reactions and is essential for the cytosolic formation of sucrose and involved in the synthesis of cell wall cellulose. The study was focused on successful Agrobacterium-mediated stable transformation of SuS gene in pCAMBIA 1301 into cotton under a CaMV35S promoter. Integration and expression of the gene were confirmed by PCR, GUS assay, and real-time PCR. Young leaves of SuS overexpressing lines showed increased total soluble sugars and plant biomass as compared to non-transgenic control plants. Cellulose contents from fiber were significantly increased. SEM analysis revealed that fibers from transgenic cotton were highly spiral and fiber twist number increased per unit length when compared with control. Morphological data from field plants showed that transgenic plants performed better in field conditions. Incorporation of genes related to cotton fiber length and quality can provide new avenues for fiber improvement. The utilization of this technology would provide an efficient import substitution and sustained production of long-staple fiber in Pakistan to fulfill the industrial requirements.

Keywords: agrobacterium-mediated transformation, cotton fiber, sucrose synthase gene, staple length

Procedia PDF Downloads 204
487 Phelipanche Ramosa (L. - Pomel) Control in Field Tomato Crop

Authors: G. Disciglio, F. Lops, A. Carlucci, G. Gatta, A. Tarantino, L. Frabboni, F. Carriero, F. Cibelli, M. L. Raimondo, E. Tarantino

Abstract:

The Phelipanche ramosa is is an important crop whose cultivation in the Mediterranean basin is severely contained the phitoparasitic weed Phelipanche ramose. The semiarid regions of the world are considered the main center of this parasitic weed, where heavy infestation is due to the ability to produce high numbers of seeds (up to 500,000 per plant), that remain viable for extended period (more than 19 years). In this paper 12 treatments of parasitic weed control including chemical, agronomic, biological and biotechnological methods have been carried out. In 2014 a trial was performed at Foggia (southern Italy). on processing tomato (cv Docet), grown in field infested by Phelipanche ramosa, Tomato seedlings were transplant on May 5, 2014 on a clay-loam soil (USDA) fertilized by 100 kg ha-1 of N; 60 kg ha-1 of P2O5 and 20 kg ha-1 of S. Afterwards, top dressing was performed with 70 kg ha-1 of N. The randomized block design with 3 replicates was adopted. During the growing cycle of the tomato, at 56-78 and 92 days after transplantation, the number of parasitic shoots emerged in each pot was detected. At harvesting, on August 18, the major quantity-quality yield parameters were determined (marketable yield, mean weight, dry matter, pH, soluble solids and color of fruits). All data were subjected to analysis of variance (ANOVA), using the JMP software (SAS Institute Inc., Cary, NC, USA), and for comparison of means was used Tukey's test. Each treatment studied did not provide complete control against Phelipanche ramosa. However among the 12 tested methods, Fusarium, gliphosate, radicon biostimulant and Red Setter tomato cv (improved genotypes obtained by Tilling technology) proved to mitigate the virulence of the attacks of Phelipanche ramose. It is assumed that these effects can be improved by combining some of these treatments each other, especially for a gradual and continuing reduction of the “seed bank” of the parasite in the soil.

Keywords: control methods, Phelipanche ramosa, tomato crop, mediterranean basin

Procedia PDF Downloads 543
486 Increasing Soybean (Glycine Max L) Drought Resistance with Osmolit Sorbitol

Authors: Aminah Muchdar

Abstract:

Efforts to increase soybean production have been pursued for years in Indonesia through the process of intensification and extensification. Increased production through intensification of increasing grain yield per hectare, among others includes the improvement of cultivation system such as the use of cultivars that have superior resistance to drought. Increased soybean production has been through the expansion of planting areas utilizing available idle dry land. However, one of the constraints faced in dryland agriculture was the limited water supply due to low intensity of rainfall that leads to low crop production. In order to ensure that soybeans are cultivated on dry land remains capable of high production, it is necessary to physiologically engineer the soybean with open stomata. The study was conducted in the greenhouse of Balai Penelitian Tanaman Serealia (BALITSEREAL) Maros, Sulawesi, Indonesia with a completely randomized block design h factorial pattern. The first factor was the water stress stadia while the second was the amount of sorbitol osmolit concentration application. Results indicated that there was an interaction between the plant height growth and number of leaves between the water clamping time and concentration of the osmolit sorbitol. The vegetative stage especially during flowering and pod formation was inhibited when the water was clamped, but by spraying osmolit sorbitol, soybean growth in terms of its height and number of leaves was enhanced. This study implies that the application of osmolit sorbitol may enhance the drought resistance of soybean growth. Future research suggested that more work should be done on the application of osmolit sorbital to other agriculture crops to increase their drought resistance in the drylands.

Keywords: DROUGHT, engineered physiology, osmolit sorbitol, soybean

Procedia PDF Downloads 186
485 Characteristics of Smoked Edible Film Made from Myofibril, Collagen and Carrageenan

Authors: Roike Iwan Montolalu, Henny Adeleida Dien, Feny Mentang, Kristhina P. Rahael, Tomy Moga, Ayub Meko, Siegfried Berhimpon

Abstract:

In the last 20 years, packaging materials derived from petrochemicals polymers were widely used as packaging materials. This due to various advantages such as flexible, strong, transparent, and the price is relatively cheap. However, the plastic polymer also has various disadvantages, such as the transmission monomer contamination into the material to be packed, and waste is non-biodegradable. Edible film (EF) is an up to date materials, generated after the biodegradable packaging materials. The advantages of the EF materials, is the materials can be eat together with food, and the materials can be applied as a coating materials for a widely kind of foods especially snack foods. The aims of this research are to produce and to analyze the characteristics of smoked EF made from carrageenan, myofibril and collagen of Black Marlin (Makaira indica) industrial waste. Smoked EF made with an addition of 0.8 % smoke liquid. Three biopolymers i.e. carrageenan, myofibril, and collagen were used as treatments, and homogenate for 1 hours at speed of 1500 rpm. The analysis carried out on the pH and physical properties i.e. thickness, solubility, tensile strength, % elongation, and water vapor transmission rate (WVTR), as well as on the sensory characteristics of texture i.e. wateriness, firmness, elasticity, hardness, and juiciness of the coated products. The result shown that the higher the concentration the higher the thickness of EF, where as for myofibril proteins appeared higher than carrageenan and collagen. Both of collagen and myofibril shown that concentration of 6% was most soluble, while for carrageenan were in concentration of 2 to 2.5%. For tensile strength, carrageenan was significantly higher than myofibril and collagen; while for elongation, collagen film more elastic than carragenan and myofibril protein. Water vapor transmission rate, shown that myofibril protein film lower than carrageenan and collagen film. From sensory assessment of texture, carrageenan has a high elasticity and juiciness, while collagen and myofibril have a high in firmness and hardness.

Keywords: edible film, collagen, myofibril, carrageenan

Procedia PDF Downloads 397
484 The Effect of Grading Characteristics on the Shear Strength and Mechanical Behavior of Granular Classes of Sand-Silt

Authors: Youssouf Benmeriem

Abstract:

Shear strength of sandy soils has been considered as the important parameter to study the stability of different civil engineering structures when subjected to monotonic, cyclic and earthquake loading conditions. The proposed research investigated the effect of grading characteristics on the shear strength and mechanical behavior of granular classes of sands mixed with silt in loose and dense states (Dr = 15% and 90%). The laboratory investigation aimed at understanding the extent or degree at which shear strength of sand-silt mixture soil is affected by its gradation under static loading conditions. For the purpose of clarifying and evaluating the shear strength characteristics of sandy soils, a series of Casagrande shear box tests were carried out on different reconstituted samples of sand-silt mixtures with various gradations. The soil samples were tested under different normal stresses (100, 200 and 300 kPa). The results from this laboratory investigation were used to develop insight into the shear strength response of sand and sand-silt mixtures under monotonic loading conditions. The analysis of the obtained data revealed that the grading characteristics (D10, D50, Cu, ESR, and MGSR) have significant influence on the shear strength response. It was found that shear strength can be correlated to the grading characteristics for the sand-silt mixture. The effective size ratio (ESR) and mean grain size ratio (MGSR) appear as pertinent parameters to predict the shear strength response of the sand-silt mixtures for soil gradation under study.

Keywords: grading characteristics, granular classes of sands, mechanical behavior, sand-silt, shear strength

Procedia PDF Downloads 357
483 Physical Property Characterization of Adult Dairy Nutritional Products for Powder Reconstitution

Authors: Wei Wang, Martin Chen

Abstract:

The reconstitution behaviours of nutritional products could impact user experience. Reconstitution issues such as lump formation and white flecks sticking to bottles surfaces could be very unappealing for the consumers in milk preparation. The controlling steps in dissolving instant milk powders include wetting, swelling, sinking, dispersing, and dissolution as in the literature. Each stage happens simultaneously with the others during milk preparation, and it is challenging to isolate and measure each step individually. This study characterized three adult nutritional products for different properties including particle size, density, dispersibility, stickiness, and capillary wetting to understand the relationship between powder physical properties and their reconstitution behaviours. From the results, the formation of clumps can be caused by different factors limiting the critical steps of powder reconstitution. It can be caused by small particle size distribution, light particle density limiting powder wetting, or the rapid swelling and dissolving of particle surface materials to impede water penetration in the capillary channels formed by powder agglomerates. For the grain or white flecks formation in milk preparation, it was believed to be controlled by dissolution speed of the particles after dispersion into water. By understanding those relationship between fundamental powder structure and their user experience in reconstitution, this information provides us new and multiple perspectives on how to improve the powder characteristics in the commercial manufacturing.

Keywords: characterization, dairy nutritional powder, physical property, reconstitution

Procedia PDF Downloads 83
482 Evaluation of Raw Diatomaceous Earth and Plant Powders in the Control of Callosobruchus subinnotatus (Pic.) on Stored Bambara Groundnut (Vigna subterranea (L.) (Verdc.) Seeds

Authors: Ibrahim Nasiru Dole, Audu Abdullahi, Dike Michiel Chidozie, Lawal Mansur

Abstract:

Bambara groundnut is an important grain legume and the seeds in storage suffer infestation by Callosobruchus subinnotatus. Laboratory study was conducted to evaluate the efficacy of raw diatomaceous earth (RDE) and plant powders (Jatropha curcas (L.), Eucalyptus camaldulensis (Dehnh.) and Melia azedarach (L.) against C. subinnotatus infesting stored bambara groundnut seeds. Rearing of the insects and the experiments were conducted in Agricultural Biology Laboratory of the Usmanu Danfodiyo University, Sokoto - Nigeria under ambient conditions (29-33oC and a relative humidity of 44-56%). Four treatments at three levels: RDE at 0.5, 1.0 and 1.5 g while plant powders at 0.5, 1.0 and 2.0 g, standard/check (2.0 g of Actellic dust), and a control. These were separately admixed with 100 g of sterilized seeds in glass jars. Each jar was later infested with thirty, 1-2-days old C. subinnotatus of mixed sexes. Adult mortality was assessed 24, 48, 72 and 96 hours, F1 and F2 progenies, seed damage, weight loss and viability were also assessed after 90 days. Eighty-nine (89%) percent adult mortality was recorded in the highest dose of RDE after 96 hours of exposure. These treatments significantly (P < 0.05) suppressed F1 and F2 progenies emergence in relation to the control. The control suffered significantly (P < 0.05) higher seed damage (51.0 %) and weight loss (40.8%) thereby recording lower seed germination. Therefore, RDE and plant powders could be used against C. subinnotatus on stored bambara groundnut seeds.

Keywords: bambara, callosobruchus subinnotatus, plant powders, raw diatomaceous earth,

Procedia PDF Downloads 396
481 Effect of Local Processing Techniques on the Nutrients and Anti-Nutrients Content of Bitter Cassava (Manihot Esculenta Crantz)

Authors: J. S. Alakali, A. R. Ismaila, T. G. Atume

Abstract:

The effects of local processing techniques on the nutrients and anti-nutrients content of bitter cassava were investigated. Raw bitter cassava tubers were boiled, sundried, roasted, fried to produce Kuese, partially fermented and sun dried to produce Alubo, fermented by submersion to produce Akpu and fermented by solid state to produce yellow and white gari. These locally processed cassava products were subjected to proximate, mineral analysis and anti-nutrient analysis using standard methods. The result of the proximate analysis showed that, raw bitter cassava is composed of 1.85% ash, 20.38% moisture, 4.11% crude fibre, 1.03% crude protein, 0.66% lipids and 71.88% total carbohydrate. For the mineral analysis, the raw bitter cassava tuber contained 32.00% Calcium, 12.55% Magnesium, 1.38% Iron and 80.17% Phosphorous. Even though all processing techniques significantly increased the mineral content, fermentation had higher mineral increment effect. The anti-nutrients analysis showed that the raw tuber contained 98.16mg/100g cyanide, 44.00mg/100g oxalate 304.20mg/100g phytate and 73.00mg/100g saponin. In general all the processing techniques showed a significant reduction of the phytate, oxalate and saponin content of the cassava. However, only fermentation, sun drying and gasification were able to reduce the cyanide content of bitter cassava below the safe level (10mg/100g) recommended by Standard Organization of Nigeria. Yellow gari(with the addition of palm oil) showed low cyanide content (1.10 mg/100g) than white gari (3.51 mg/100g). Processing methods involving fermentation reduce cyanide and other anti-nutrients in the cassava to levels that are safe for consumption and should be widely practiced.

Keywords: bitter cassava, local processing, fermentation, anti-nutrient.

Procedia PDF Downloads 276
480 Microwave Assisted Rapid Synthesis of Nano-Binder from Renewable Resource and Their Application in Textile Printing

Authors: K. Haggag, N. S. Elshemy

Abstract:

Due to limited fossil resource and an increased need for environmentally friendly, sustainable technologies, the importance of using renewable feed stocks in textile industry area will increase in the decades to come. This research highlights some of the perspectives in this area. Alkyd resins for high characterization and reactive properties, completely based on commercially available renewable resources (sunflower and/or soybean oil) were prepared and characterized. In this work, we present results on the synthesis of various alkyd resins according to the alcoholysis – polyesterification process under different preparation conditions using a microwave synthesis as energy source to determine suitable reaction conditions. Effects of polymerization parameters, such as catalyst ratio, reaction temperature and microwave power level have been studied. The prepared binder was characterized via FT-IR, scanning electron microscope (SEM) and transmission electron microscope (TEM), in addition to acid value (AV), iodine value (IV), water absorbance, weight loss, and glass transition temperature. The prepared binder showed high performance physico-mechanical properties. TEM analysis showed that the polymer latex nanoparticle within range of 20–200 nm. The study involved the application of the prepared alkyd resins as binder for pigment printing process onto cotton fabric by using a flat screen technique and the prints were dried and thermal cured. The optimum curing conditions were determined, color strength and fastness properties of pigment printed areas to light, washing, perspiration and crocking were evaluated. The rheological properties and apparent viscosity of prepared binders were measured in addition roughness of the prints was also determined.

Keywords: nano-binder, microwave heating, renewable resource, alkyd resins, sunflower oil, soybean oil

Procedia PDF Downloads 345
479 Effect of Pollution and Ethylene-Diurea on Bean Plants Grown in KSA

Authors: Abdel Rahman A. Alzandi

Abstract:

The primary objectives of this investigation were to examine the interactive effects of three air quality treatments, ethylene-diurea (EDU) and two irrigation conditions on physiological characteristics of kidney beans (Phaseolus vulgaris L.) during its whole growth. These plants were grown in 12-open top chambers (OTC's). Ethylene-diurea (EDU) was used as a factor to evaluate O3 pollution impact on plant growth. The air quality treatments consisted of charcoal filtered (CF) air, nonfiltered (NF) air and ambient air (AA) were irrigated and non- irrigated. Leaf samples were collected from upper canopy positions six times (pre- EDU addition, week after four EDU's addition, at the time of harvesting). Maximal differences in leaf carbohydrate, N contents, pigments and total lipids were observed in response to moisture conditions in presence and absence of EDU applications. Significant reduction were noted for air quality treatments regarding carbohydrate and pigment fractions but not for all cases of leaf N and lipid contents under O3 effects only. Minimal differences were found for first EDU application while maximal ones were recorded at 200 mg l-1 of treatments. The EDU treatments stimulated carbohydrate and pigment contents at the upper canopy position with higher levels for both NF and AA compared to untreated conditions. The NF and AA treatments caused lower total carbohydrate and pigment contents in the canopy position before harvesting of EDU applications. The stimulation in leaf carbohydrates by the EDU treatment, compared to the non-treated EDU of AA and NF treatments, provides a rational explanation for the counteracting effects of EDU against moderate exposures to O3 regarding grain yields in C3 plants.

Keywords: leaf contents, moisture relations, EDU additions, global climate change, kidney bean

Procedia PDF Downloads 324
478 Fertilizer Value of Nitrogen Captured from Poultry Facilities Using Ammonia Scrubbers

Authors: Philip A. Moore Jr., Jerry Martin, Hong Li

Abstract:

Research has shown that over half of the nitrogen (N) excreted from broiler chickens is emitted to the atmosphere before the manure is removed from the barns, resulting in air and water pollution, as well as the loss of a valuable fertilizer resource. The objective of this study was to determine the fertilizer efficiency of N captured from the exhaust air from poultry houses using acid scrubbers. This research was conducted using 24 plots located on a Captina silt loam soil. There were six treatments: (1) unfertilized control, (2) aluminum sulfate (alum) scrubber solution, (3) potassium bisulfate scrubber solution, (4) sodium bisulfate scrubber solution, (5) sulfuric acid scrubber solution and (6) ammonium nitrate fertilizer dissolved in water. There were four replications per treatment in a randomized block design. The scrubber solutions were obtained from acid scrubbers attached to exhaust fans on commercial broiler houses. All N sources were applied at an application rate equivalent to 112 kg N ha⁻¹. Forage yields were measured five times throughout the growing season. Five months after the fertilizer sources were applied, a rainfall simulation study was conducted to determine the potential effects on phosphorus (P) runoff. Forage yields were significantly higher in plots fertilized with scrubber solutions from potassium bisulfate and sodium bisulfate than plots fertilized with scrubber solutions made from alum or sulfuric acid or ammonium nitrate, which were higher than the controls (7.61, 7.46, 6.87, 6.72, 6.45, and 5.12 Mg ha ⁻¹, respectively). Forage N uptake followed similar trends as yields. Phosphorus runoff and water soluble P was significantly lower in plots fertilized with the scrubber solutions made from aluminum sulfate. This study demonstrates that N captured using ammonia scrubbers is as good or possibly better than commercial ammonium nitrate fertilizer.

Keywords: air quality, ammonia emissions, nitrogen fertilizer, poultry

Procedia PDF Downloads 176