Search results for: discord discovery
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 640

Search results for: discord discovery

640 Algorithms for Fast Computation of Pan Matrix Profiles of Time Series Under Unnormalized Euclidean Distances

Authors: Jing Zhang, Daniel Nikovski

Abstract:

We propose an approximation algorithm called LINKUMP to compute the Pan Matrix Profile (PMP) under the unnormalized l∞ distance (useful for value-based similarity search) using double-ended queue and linear interpolation. The algorithm has comparable time/space complexities as the state-of-the-art algorithm for typical PMP computation under the normalized l₂ distance (useful for shape-based similarity search). We validate its efficiency and effectiveness through extensive numerical experiments and a real-world anomaly detection application.

Keywords: pan matrix profile, unnormalized euclidean distance, double-ended queue, discord discovery, anomaly detection

Procedia PDF Downloads 247
639 Behaviour of Non-local Correlations and Quantum Information Theoretic Measures in Frustrated Molecular Wheels

Authors: Amit Tribedi

Abstract:

Genuine Quantumness present in Quantum Systems is the resource for implementing Quantum Information and Computation Protocols which can outperform the classical counterparts. These Quantumness measures encompass non-local ones known as quantum entanglement (QE) and quantum information theoretic (QIT) ones, e.g. Quantum Discord (QD). In this paper, some well-known measures of QE and QD in some wheel-like frustrated molecular magnetic systems have been studied. One of the systems has already been synthesized using coordination chemistry, and the other is hypothetical, where the dominant interaction is the spin-spin exchange interaction. Exact analytical methods and exact numerical diagonalization methods have been used. Some counter-intuitive non-trivial features, like non-monotonicity of quantum correlations with temperature, persistence of multipartite entanglement over bipartite ones etc. indicated by the behaviour of the correlations and the QIT measures have been found. The measures, being operational ones, can be used to realize the resource of Quantumness in experiments.

Keywords: 0D Magnets, discord, entanglement, frustration

Procedia PDF Downloads 229
638 Knowledge Discovery from Production Databases for Hierarchical Process Control

Authors: Pavol Tanuska, Pavel Vazan, Michal Kebisek, Dominika Jurovata

Abstract:

The paper gives the results of the project that was oriented on the usage of knowledge discoveries from production systems for needs of the hierarchical process control. One of the main project goals was the proposal of knowledge discovery model for process control. Specifics data mining methods and techniques was used for defined problems of the process control. The gained knowledge was used on the real production system, thus, the proposed solution has been verified. The paper documents how it is possible to apply new discovery knowledge to be used in the real hierarchical process control. There are specified the opportunities for application of the proposed knowledge discovery model for hierarchical process control.

Keywords: hierarchical process control, knowledge discovery from databases, neural network, process control

Procedia PDF Downloads 481
637 Network Word Discovery Framework Based on Sentence Semantic Vector Similarity

Authors: Ganfeng Yu, Yuefeng Ma, Shanliang Yang

Abstract:

The word discovery is a key problem in text information retrieval technology. Methods in new word discovery tend to be closely related to words because they generally obtain new word results by analyzing words. With the popularity of social networks, individual netizens and online self-media have generated various network texts for the convenience of online life, including network words that are far from standard Chinese expression. How detect network words is one of the important goals in the field of text information retrieval today. In this paper, we integrate the word embedding model and clustering methods to propose a network word discovery framework based on sentence semantic similarity (S³-NWD) to detect network words effectively from the corpus. This framework constructs sentence semantic vectors through a distributed representation model, uses the similarity of sentence semantic vectors to determine the semantic relationship between sentences, and finally realizes network word discovery by the meaning of semantic replacement between sentences. The experiment verifies that the framework not only completes the rapid discovery of network words but also realizes the standard word meaning of the discovery of network words, which reflects the effectiveness of our work.

Keywords: text information retrieval, natural language processing, new word discovery, information extraction

Procedia PDF Downloads 100
636 CERD: Cost Effective Route Discovery in Mobile Ad Hoc Networks

Authors: Anuradha Banerjee

Abstract:

A mobile ad hoc network is an infrastructure less network, where nodes are free to move independently in any direction. The nodes have limited battery power; hence, we require energy efficient route discovery technique to enhance their lifetime and network performance. In this paper, we propose an energy-efficient route discovery technique CERD that greatly reduces the number of route requests flooded into the network and also gives priority to the route request packets sent from the routers that has communicated with the destination very recently, in single or multi-hop paths. This does not only enhance the lifetime of nodes but also decreases the delay in tracking the destination.

Keywords: ad hoc network, energy efficiency, flooding, node lifetime, route discovery

Procedia PDF Downloads 348
635 Intuitional Insight in Islamic Mysticism

Authors: Maryam Bakhtyar, Pegah Akrami

Abstract:

Intuitional insight or mystical cognition is a different insight from common, concrete and intellectual insights. This kind of insight is not achieved by visionary contemplation but by the recitation of God, self-purification, and mystical life. In this insight, there is no distance or medium between the subject of cognition and its object, and they have a sort of unification, unison, and incorporation. As a result, knowledgeable consider this insight as direct, immediate, and personal. The goal of this insight is God, cosmos’ creatures, and the general inner and hidden aspect of the world that is nothing except God’s manifestations in the view of mystics. AS our common cognitions have diversity and stages, intuitional insight also has diversity and levels. As our senses are divided into concrete and rational, mystical discovery is divided into superficial discovery and spiritual one. Based on Islamic mystics, the preferable way to know God and believe in him is intuitional insight. There are two important criteria for evaluating mystical intuition, especially for beginner mystics of intellect and revelation. Indeed, the conclusion and a brief evaluation of Islamic mystics’ viewpoint is the main subject of this paper.

Keywords: intuition, discovery, mystical insight, personal knowledge, superficial discovery, spiritual discovery

Procedia PDF Downloads 94
634 Signal Strength Based Multipath Routing for Mobile Ad Hoc Networks

Authors: Chothmal

Abstract:

In this paper, we present a route discovery process which uses the signal strength on a link as a parameter of its inclusion in the route discovery method. The proposed signal-to-interference and noise ratio (SINR) based multipath reactive routing protocol is named as SINR-MP protocol. The proposed SINR-MP routing protocols has two following two features: a) SINR-MP protocol selects routes based on the SINR of the links during the route discovery process therefore it select the routes which has long lifetime and low frame error rate for data transmission, and b) SINR-MP protocols route discovery process is multipath which discovers more than one SINR based route between a given source destination pair. The multiple routes selected by our SINR-MP protocol are node-disjoint in nature which increases their robustness against link failures, as failure of one route will not affect the other route. The secondary route is very useful in situations where the primary route is broken because we can now use the secondary route without causing a new route discovery process. Due to this, the network overhead caused by a route discovery process is avoided. This increases the network performance greatly. The proposed SINR-MP routing protocol is implemented in the trail version of network simulator called Qualnet.

Keywords: ad hoc networks, quality of service, video streaming, H.264/SVC, multiple routes, video traces

Procedia PDF Downloads 250
633 Lightweight Cryptographically Generated Address for IPv6 Neighbor Discovery

Authors: Amjed Sid Ahmed, Rosilah Hassan, Nor Effendy Othman

Abstract:

Limited functioning of the Internet Protocol version 4 (IPv4) has necessitated the development of the Internetworking Protocol next generation (IPng) to curb the challenges. Indeed, the IPng is also referred to as the Internet Protocol version 6 (IPv6) and includes the Neighbor Discovery Protocol (NDP). The latter performs the role of Address Auto-configuration, Router Discovery (RD), and Neighbor Discovery (ND). Furthermore, the role of the NDP entails redirecting the service, detecting the duplicate address, and detecting the unreachable services. Despite the fact that there is an NDP’s assumption regarding the existence of trust the links’ nodes, several crucial attacks may affect the Protocol. Internet Engineering Task Force (IETF) therefore has recommended implementation of Secure Neighbor Discovery Protocol (SEND) to tackle safety issues in NDP. The SEND protocol is mainly used for validation of address rights, malicious response inhibiting techniques and finally router certification procedures. For routine running of these tasks, SEND utilizes on the following options, Cryptographically Generated Address (CGA), RSA Signature, Nonce and Timestamp option. CGA is produced at extra high costs making it the most notable disadvantage of SEND. In this paper a clear description of the constituents of CGA, its operation and also recommendations for improvements in its generation are given.

Keywords: CGA, IPv6, NDP, SEND

Procedia PDF Downloads 385
632 Research on Fuzzy Test Framework Based on Concolic Execution

Authors: Xiong Xie, Yuhang Chen

Abstract:

Vulnerability discovery technology is a significant field of the current. In this paper, a fuzzy framework based on concolic execution has been proposed. Fuzzy test and symbolic execution are widely used in the field of vulnerability discovery technology. But each of them has its own advantages and disadvantages. During the path generation stage, path traversal algorithm based on generation is used to get more accurate path. During the constraint solving stage, dynamic concolic execution is used to avoid the path explosion. If there is external call, the concolic based on function summary is used. Experiments show that the framework can effectively improve the ability of triggering vulnerabilities and code coverage.

Keywords: concolic execution, constraint solving, fuzzy test, vulnerability discovery

Procedia PDF Downloads 229
631 Tuberculosis Massive Active Case Discovery in East Jakarta 2016-2017: The Role of Ketuk Pintu Layani Dengan Hati and Juru Pemantau Batuk (Jumantuk) Cadre Programs

Authors: Ngabilas Salama

Abstract:

Background: Indonesia has the 2nd highest number of incidents of tuberculosis (TB). It accounts for 1.020.000 new cases per year, only 30% of which has been reported. To find the lost 70%, a massive active case discovery was conducted through two programs: Ketuk Pintu Layani Dengan Hati (KPLDH) and Kader Juru Pemantau Batuk (Jumantuk cadres), who also plays a role in child TB screening. Methods: Data was collected and analyzed through Tuberculosis Integrated Online System from 2014 to 2017 involving 129 DOTS facility with 86 primary health centers in East Jakarta. Results: East Jakarta consists of 2.900.722 people. KPLDH program started in February 2016 consisting of 84 teams (310 people). Jumantuk cadres was formed 4 months later (218 orang). The number of new TB cases in East Jakarta (primary health center) from 2014 to June 2017 respectively is as follows: 6.499 (2.637), 7.438 (2.651), 8.948 (3.211), 5.701 (1.830). Meanwhile, the percentage of child TB case discovery in primary health center was 8,5%, 9,8%, 12,1% from 2014 to 2016 respectively. In 2017, child TB case discovery was 13,1% for the first 3 months and 16,5% for the next 3 months. Discussion: Increased TB incidence rate from 2014 to 2017 was 14,4%, 20,3%, and 27,4% respectively in East Jakarta, and 0,5%, 21,1%, and 14% in primary health center. This reveals the positive role of KPLDH and Jumantuk in TB detection and reporting. Likewise, these programs were responsible for the increase in child TB case discovery, especially in the first 3 months of 2017 (Ketuk Pintu TB Day program) and the next 3 months (active TB screening). Conclusion: KPLDH dan Jumantuk are actively involved in increasing TB case discovery in both adults and children.

Keywords: tuberculosis, case discovery program, primary health center, cadre

Procedia PDF Downloads 332
630 Intrapreneurship Discovery: Standard Strategy to Boost Innovation inside Companies

Authors: Chiara Mansanta, Daniela Sani

Abstract:

This paper studies the concept of intrapreneurship discovery for innovation and technology development related to the manufacturing industries set up in the center of Italy, in Marche Region. The study underlined the key drivers of the innovation process and the main factors that influence innovation. Starting from a literature study on open innovation, this paper examines the role of human capital to support company’s development. The empirical part of the study is based on a survey to 151 manufacturing companies that represent the 34% of that universe at the regional level. The survey underlined the main KPI’s that influence companies in their decision processes; then tools for these decision processes are presented.

Keywords: business model, decision making, intrapreneurship discovery, standard methodology

Procedia PDF Downloads 175
629 Study of Evaluation Model Based on Information System Success Model and Flow Theory Using Web-scale Discovery System

Authors: June-Jei Kuo, Yi-Chuan Hsieh

Abstract:

Because of the rapid growth of information technology, more and more libraries introduce the new information retrieval systems to enhance the users’ experience, improve the retrieval efficiency, and increase the applicability of the library resources. Nevertheless, few of them are discussed the usability from the users’ aspect. The aims of this study are to understand that the scenario of the information retrieval system utilization, and to know why users are willing to continuously use the web-scale discovery system to improve the web-scale discovery system and promote their use of university libraries. Besides of questionnaires, observations and interviews, this study employs both Information System Success Model introduced by DeLone and McLean in 2003 and the flow theory to evaluate the system quality, information quality, service quality, use, user satisfaction, flow, and continuing to use web-scale discovery system of students from National Chung Hsing University. Then, the results are analyzed through descriptive statistics and structural equation modeling using AMOS. The results reveal that in web-scale discovery system, the user’s evaluation of system quality, information quality, and service quality is positively related to the use and satisfaction; however, the service quality only affects user satisfaction. User satisfaction and the flow show a significant impact on continuing to use. Moreover, user satisfaction has a significant impact on user flow. According to the results of this study, to maintain the stability of the information retrieval system, to improve the information content quality, and to enhance the relationship between subject librarians and students are recommended for the academic libraries. Meanwhile, to improve the system user interface, to minimize layer from system-level, to strengthen the data accuracy and relevance, to modify the sorting criteria of the data, and to support the auto-correct function are required for system provider. Finally, to establish better communication with librariana commended for all users.

Keywords: web-scale discovery system, discovery system, information system success model, flow theory, academic library

Procedia PDF Downloads 104
628 Application of Data Mining Techniques for Tourism Knowledge Discovery

Authors: Teklu Urgessa, Wookjae Maeng, Joong Seek Lee

Abstract:

Application of five implementations of three data mining classification techniques was experimented for extracting important insights from tourism data. The aim was to find out the best performing algorithm among the compared ones for tourism knowledge discovery. Knowledge discovery process from data was used as a process model. 10-fold cross validation method is used for testing purpose. Various data preprocessing activities were performed to get the final dataset for model building. Classification models of the selected algorithms were built with different scenarios on the preprocessed dataset. The outperformed algorithm tourism dataset was Random Forest (76%) before applying information gain based attribute selection and J48 (C4.5) (75%) after selection of top relevant attributes to the class (target) attribute. In terms of time for model building, attribute selection improves the efficiency of all algorithms. Artificial Neural Network (multilayer perceptron) showed the highest improvement (90%). The rules extracted from the decision tree model are presented, which showed intricate, non-trivial knowledge/insight that would otherwise not be discovered by simple statistical analysis with mediocre accuracy of the machine using classification algorithms.

Keywords: classification algorithms, data mining, knowledge discovery, tourism

Procedia PDF Downloads 295
627 Enhancing Students’ Achievement, Interest and Retention in Chemistry through an Integrated Teaching/Learning Approach

Authors: K. V. F. Fatokun, P. A. Eniayeju

Abstract:

This study concerns the effects of concept mapping-guided discovery integrated teaching approach on the learning style and achievement of chemistry students. The sample comprised 162 senior secondary school (SS 2) students drawn from two science schools in Nasarawa State which have equivalent mean scores of 9.68 and 9.49 in their pre-test. Five instruments were developed and validated while the sixth was purely adopted by the investigator for the study, Four null hypotheses were tested at α = 0.05 level of significance. Chi square analysis showed that there is a significant shift in students’ learning style from accommodating and diverging to converging and assimilating when exposed to concept mapping- guided discovery approach. Also t-test and ANOVA that those in experimental group achieve and retain content learnt better. Results of the Scheffe’s test for multiple comparisons showed that boys in the experimental group performed better than girls. It is therefore concluded that the concept mapping-guided discovery integrated approach should be used in secondary schools to successfully teach electrochemistry. It is strongly recommended that chemistry teachers should be encouraged to adopt this method for teaching difficult concepts.

Keywords: integrated teaching approach, concept mapping-guided discovery, achievement, retention, learning styles and interest

Procedia PDF Downloads 329
626 Knowledge-Driven Decision Support System Based on Knowledge Warehouse and Data Mining by Improving Apriori Algorithm with Fuzzy Logic

Authors: Pejman Hosseinioun, Hasan Shakeri, Ghasem Ghorbanirostam

Abstract:

In recent years, we have seen an increasing importance of research and study on knowledge source, decision support systems, data mining and procedure of knowledge discovery in data bases and it is considered that each of these aspects affects the others. In this article, we have merged information source and knowledge source to suggest a knowledge based system within limits of management based on storing and restoring of knowledge to manage information and improve decision making and resources. In this article, we have used method of data mining and Apriori algorithm in procedure of knowledge discovery one of the problems of Apriori algorithm is that, a user should specify the minimum threshold for supporting the regularity. Imagine that a user wants to apply Apriori algorithm for a database with millions of transactions. Definitely, the user does not have necessary knowledge of all existing transactions in that database, and therefore cannot specify a suitable threshold. Our purpose in this article is to improve Apriori algorithm. To achieve our goal, we tried using fuzzy logic to put data in different clusters before applying the Apriori algorithm for existing data in the database and we also try to suggest the most suitable threshold to the user automatically.

Keywords: decision support system, data mining, knowledge discovery, data discovery, fuzzy logic

Procedia PDF Downloads 336
625 Zika Virus NS5 Protein Potential Inhibitors: An Enhanced in silico Approach in Drug Discovery

Authors: Pritika Ramharack, Mahmoud E. S. Soliman

Abstract:

The re-emerging Zika virus is an arthropod-borne virus that has been described to have explosive potential as a worldwide pandemic. The initial transmission of the virus was through a mosquito vector, however, evolving modes of transmission has allowed the spread of the disease over continents. The virus already been linked to irreversible chronic central nervous system (CNS) conditions. The concerns of the scientific and clinical community are the consequences of Zika viral mutations, thus suggesting the urgent need for viral inhibitors. There have been large strides in vaccine development against the virus but there are still no FDA-approved drugs available. Rapid rational drug design and discovery research is fundamental in the production of potent inhibitors against the virus that will not just mask the virus, but destroy it completely. In silico drug design allows for this prompt screening of potential leads, thus decreasing the consumption of precious time and resources. This study demonstrates an optimized and proven screening technique in the discovery of two potential small molecule inhibitors of Zika virus Methyltransferase and RNA-dependent RNA polymerase. This in silico “per-residue energy decomposition pharmacophore” virtual screening approach will be critical in aiding scientists in the discovery of not only effective inhibitors of Zika viral targets, but also a wide range of anti-viral agents.

Keywords: NS5 protein inhibitors, per-residue decomposition, pharmacophore model, virtual screening, Zika virus

Procedia PDF Downloads 229
624 Modeling Optimal Lipophilicity and Drug Performance in Ligand-Receptor Interactions: A Machine Learning Approach to Drug Discovery

Authors: Jay Ananth

Abstract:

The drug discovery process currently requires numerous years of clinical testing as well as money just for a single drug to earn FDA approval. For drugs that even make it this far in the process, there is a very slim chance of receiving FDA approval, resulting in detrimental hurdles to drug accessibility. To minimize these inefficiencies, numerous studies have implemented computational methods, although few computational investigations have focused on a crucial feature of drugs: lipophilicity. Lipophilicity is a physical attribute of a compound that measures its solubility in lipids and is a determinant of drug efficacy. This project leverages Artificial Intelligence to predict the impact of a drug’s lipophilicity on its performance by accounting for factors such as binding affinity and toxicity. The model predicted lipophilicity and binding affinity in the validation set with very high R² scores of 0.921 and 0.788, respectively, while also being applicable to a variety of target receptors. The results expressed a strong positive correlation between lipophilicity and both binding affinity and toxicity. The model helps in both drug development and discovery, providing every pharmaceutical company with recommended lipophilicity levels for drug candidates as well as a rapid assessment of early-stage drugs prior to any testing, eliminating significant amounts of time and resources currently restricting drug accessibility.

Keywords: drug discovery, lipophilicity, ligand-receptor interactions, machine learning, drug development

Procedia PDF Downloads 111
623 Application of Causal Inference and Discovery in Curriculum Evaluation and Continuous Improvement

Authors: Lunliang Zhong, Bin Duan

Abstract:

The undergraduate graduation project is a vital part of the higher education curriculum, crucial for engineering accreditation. Current evaluations often summarize data without identifying underlying issues. This study applies the Peter-Clark algorithm to analyze causal relationships within the graduation project data of an Electronics and Information Engineering program, creating a causal model. Structural equation modeling confirmed the model's validity. The analysis reveals key teaching stages affecting project success, uncovering problems in the process. Introducing causal discovery and inference into project evaluation helps identify issues and propose targeted improvement measures. The effectiveness of these measures is validated by comparing the learning outcomes of two student cohorts, stratified by confounding factors, leading to improved teaching quality.

Keywords: causal discovery, causal inference, continuous improvement, Peter-Clark algorithm, structural equation modeling

Procedia PDF Downloads 20
622 Research of Data Cleaning Methods Based on Dependency Rules

Authors: Yang Bao, Shi Wei Deng, WangQun Lin

Abstract:

This paper introduces the concept and principle of data cleaning, analyzes the types and causes of dirty data, and proposes several key steps of typical cleaning process, puts forward a well scalability and versatility data cleaning framework, in view of data with attribute dependency relation, designs several of violation data discovery algorithms by formal formula, which can obtain inconsistent data to all target columns with condition attribute dependent no matter data is structured (SQL) or unstructured (NoSQL), and gives 6 data cleaning methods based on these algorithms.

Keywords: data cleaning, dependency rules, violation data discovery, data repair

Procedia PDF Downloads 564
621 The Construction of Multilingual Online Gaming Community

Authors: Dina Alnefaie

Abstract:

This poster presents a study of a Discord private server with thirteen multilingual gamers, aiming to explore the elements that construct a multilingual online gaming community. The study focuses on the communication practices of four Saudi female and male gamers, using various data collection methods, including online observations through recorded videos and screenshots, interviews, and informal conversations for one year. The primary findings show that translanguaging was a prominent feature of their verbal and textual communication practices. Besides, these practices that mostly accompany cultural ones were used to facilitate communication and express their identities in an intercultural context.

Keywords: online community construction, perceptions, multilingualism, digital identity

Procedia PDF Downloads 85
620 Data Mining As A Tool For Knowledge Management: A Review

Authors: Maram Saleh

Abstract:

Knowledge has become an essential resource in today’s economy and become the most important asset of maintaining competition advantage in organizations. The importance of knowledge has made organizations to manage their knowledge assets and resources through all multiple knowledge management stages such as: Knowledge Creation, knowledge storage, knowledge sharing and knowledge use. Researches on data mining are continues growing over recent years on both business and educational fields. Data mining is one of the most important steps of the knowledge discovery in databases process aiming to extract implicit, unknown but useful knowledge and it is considered as significant subfield in knowledge management. Data miming have the great potential to help organizations to focus on extracting the most important information on their data warehouses. Data mining tools and techniques can predict future trends and behaviors, allowing businesses to make proactive, knowledge-driven decisions. This review paper explores the applications of data mining techniques in supporting knowledge management process as an effective knowledge discovery technique. In this paper, we identify the relationship between data mining and knowledge management, and then focus on introducing some application of date mining techniques in knowledge management for some real life domains.

Keywords: Data Mining, Knowledge management, Knowledge discovery, Knowledge creation.

Procedia PDF Downloads 210
619 Open educational Resources' Metadata: Towards the First Star to Quality of Open Educational Resources

Authors: Audrey Romero-Pelaez, Juan Carlos Morocho-Yunga

Abstract:

The increasing amount of open educational resources (OER) published on the web for consumption in teaching and learning environments also generates a growing need to ensure the quality of these resources. The low level of OER discovery is one of the most significant drawbacks when faced with its reuse, and as a consequence, high-quality educational resources can go unnoticed. Metadata enables the discovery of resources on the web. The purpose of this study is to lay the foundations for open educational resources to achieve their first quality star within the Quality4OER Framework. In this study, we evaluate the quality of OER metadata and establish the main guidelines on metadata quality in this context.

Keywords: open educational resources, OER quality, quality metadata

Procedia PDF Downloads 242
618 Web-Based Cognitive Writing Instruction (WeCWI): A Theoretical-and-Pedagogical e-Framework for Language Development

Authors: Boon Yih Mah

Abstract:

Web-based Cognitive Writing Instruction (WeCWI)’s contribution towards language development can be divided into linguistic and non-linguistic perspectives. In linguistic perspective, WeCWI focuses on the literacy and language discoveries, while the cognitive and psychological discoveries are the hubs in non-linguistic perspective. In linguistic perspective, WeCWI draws attention to free reading and enterprises, which are supported by the language acquisition theories. Besides, the adoption of process genre approach as a hybrid guided writing approach fosters literacy development. Literacy and language developments are interconnected in the communication process; hence, WeCWI encourages meaningful discussion based on the interactionist theory that involves input, negotiation, output, and interactional feedback. Rooted in the e-learning interaction-based model, WeCWI promotes online discussion via synchronous and asynchronous communications, which allows interactions happened among the learners, instructor, and digital content. In non-linguistic perspective, WeCWI highlights on the contribution of reading, discussion, and writing towards cognitive development. Based on the inquiry models, learners’ critical thinking is fostered during information exploration process through interaction and questioning. Lastly, to lower writing anxiety, WeCWI develops the instructional tool with supportive features to facilitate the writing process. To bring a positive user experience to the learner, WeCWI aims to create the instructional tool with different interface designs based on two different types of perceptual learning style.

Keywords: WeCWI, literacy discovery, language discovery, cognitive discovery, psychological discovery

Procedia PDF Downloads 562
617 The Feasibility of Online, Interactive Workshops to Facilitate Anatomy Education during the UK COVID-19 Lockdowns

Authors: Prabhvir Singh Marway, Kai Lok Chan, Maria-Ruxandra Jinga, Rachel Bok Ying Lee, Matthew Bok Kit Lee, Krishan Nandapalan, Sze Yi Beh, Harry Carr, Christopher Kui

Abstract:

We piloted a structured series of online workshops on the 3D segmentation of anatomical structures from CT scans. 33 participants were recruited from four UK universities for two-day workshops between 2020 and 2021. Open-source software (3D-Slicer) was used. We hypothesized that active participation via real-time screen-sharing and voice-communication via Discord would enable improved engagement and learning, despite national lockdowns. Written feedback indicated positive learning experiences, with subjective measures of anatomical understanding and software confidence improving.

Keywords: medical education, workshop, segmentation, anatomy

Procedia PDF Downloads 201
616 Screening for Hit Identification against Mycobacterium abscessus

Authors: Jichan Jang

Abstract:

Mycobacterium abscessus is a rapidly growing life-threatening mycobacterium with multiple drug-resistance mechanisms. In this study, we screened the library to identify active molecules targeting Mycobacterium abscessus using resazurin live/dead assays. In this screening assay, the Z-factor was 0.7, as an indication of the statistical confidence of the assay. A cut-off of 80% growth inhibition in the screening resulted in the identification of four different compounds at a single concentration (20 μM). Dose-response curves identified three different hit candidates, which generated good inhibitory curves. All hit candidates were expected to have different molecular targets. Thus, we found that compound X, identified, may be a promising candidate in the M. abscessus drug discovery pipeline.

Keywords: Mycobacterium abscessus, antibiotics, drug discovery, emerging Pathogen

Procedia PDF Downloads 209
615 Improving Cryptographically Generated Address Algorithm in IPv6 Secure Neighbor Discovery Protocol through Trust Management

Authors: M. Moslehpour, S. Khorsandi

Abstract:

As transition to widespread use of IPv6 addresses has gained momentum, it has been shown to be vulnerable to certain security attacks such as those targeting Neighbor Discovery Protocol (NDP) which provides the address resolution functionality in IPv6. To protect this protocol, Secure Neighbor Discovery (SEND) is introduced. This protocol uses Cryptographically Generated Address (CGA) and asymmetric cryptography as a defense against threats on integrity and identity of NDP. Although SEND protects NDP against attacks, it is computationally intensive due to Hash2 condition in CGA. To improve the CGA computation speed, we parallelized CGA generation process and used the available resources in a trusted network. Furthermore, we focused on the influence of the existence of malicious nodes on the overall load of un-malicious ones in the network. According to the evaluation results, malicious nodes have adverse impacts on the average CGA generation time and on the average number of tries. We utilized a Trust Management that is capable of detecting and isolating the malicious node to remove possible incentives for malicious behavior. We have demonstrated the effectiveness of the Trust Management System in detecting the malicious nodes and hence improving the overall system performance.

Keywords: CGA, ICMPv6, IPv6, malicious node, modifier, NDP, overall load, SEND, trust management

Procedia PDF Downloads 185
614 Proposing an Architecture for Drug Response Prediction by Integrating Multiomics Data and Utilizing Graph Transformers

Authors: Nishank Raisinghani

Abstract:

Efficiently predicting drug response remains a challenge in the realm of drug discovery. To address this issue, we propose four model architectures that combine graphical representation with varying positions of multiheaded self-attention mechanisms. By leveraging two types of multi-omics data, transcriptomics and genomics, we create a comprehensive representation of target cells and enable drug response prediction in precision medicine. A majority of our architectures utilize multiple transformer models, one with a graph attention mechanism and the other with a multiheaded self-attention mechanism, to generate latent representations of both drug and omics data, respectively. Our model architectures apply an attention mechanism to both drug and multiomics data, with the goal of procuring more comprehensive latent representations. The latent representations are then concatenated and input into a fully connected network to predict the IC-50 score, a measure of cell drug response. We experiment with all four of these architectures and extract results from all of them. Our study greatly contributes to the future of drug discovery and precision medicine by looking to optimize the time and accuracy of drug response prediction.

Keywords: drug discovery, transformers, graph neural networks, multiomics

Procedia PDF Downloads 156
613 Ontology-Driven Knowledge Discovery and Validation from Admission Databases: A Structural Causal Model Approach for Polytechnic Education in Nigeria

Authors: Bernard Igoche Igoche, Olumuyiwa Matthew, Peter Bednar, Alexander Gegov

Abstract:

This study presents an ontology-driven approach for knowledge discovery and validation from admission databases in Nigerian polytechnic institutions. The research aims to address the challenges of extracting meaningful insights from vast amounts of admission data and utilizing them for decision-making and process improvement. The proposed methodology combines the knowledge discovery in databases (KDD) process with a structural causal model (SCM) ontological framework. The admission database of Benue State Polytechnic Ugbokolo (Benpoly) is used as a case study. The KDD process is employed to mine and distill knowledge from the database, while the SCM ontology is designed to identify and validate the important features of the admission process. The SCM validation is performed using the conditional independence test (CIT) criteria, and an algorithm is developed to implement the validation process. The identified features are then used for machine learning (ML) modeling and prediction of admission status. The results demonstrate the adequacy of the SCM ontological framework in representing the admission process and the high predictive accuracies achieved by the ML models, with k-nearest neighbors (KNN) and support vector machine (SVM) achieving 92% accuracy. The study concludes that the proposed ontology-driven approach contributes to the advancement of educational data mining and provides a foundation for future research in this domain.

Keywords: admission databases, educational data mining, machine learning, ontology-driven knowledge discovery, polytechnic education, structural causal model

Procedia PDF Downloads 66
612 Discovery the Relics of Buddhist Stupa at Thanesar, Kurukshetra

Authors: Chander Shekhar, Manoj Kumar

Abstract:

Present paper deal with the discovery of the stupa’s relics which belongs to the Kushana period. These remains were found during the scientific clearance work at a mound near Brahma-SarovarThanesar, Kurukshetra. This archaeological work was done by Department of Archaeology & Museums Haryana Government. The relics of stupa show that it would have been similar to Assandh and Damekhstupa. As per-Buddhist literature, GoutamBudhha reached Thanesar. In memory of Buddh’s Journey, King Ashoka built a big Stupa at Thanesar on the bank of Sarasvati River. Chinese pilgrim Yuan Chuang also referred a Monastery and stupa near Aujas-ghatof Brahma-sarovar. It may be part of that settlement which was mentioned by Yuan Chuang.

Keywords: archaeology, stupa, buddhism, excavtoin

Procedia PDF Downloads 194
611 Review and Comparison of Associative Classification Data Mining Approaches

Authors: Suzan Wedyan

Abstract:

Data mining is one of the main phases in the Knowledge Discovery Database (KDD) which is responsible of finding hidden and useful knowledge from databases. There are many different tasks for data mining including regression, pattern recognition, clustering, classification, and association rule. In recent years a promising data mining approach called associative classification (AC) has been proposed, AC integrates classification and association rule discovery to build classification models (classifiers). This paper surveys and critically compares several AC algorithms with reference of the different procedures are used in each algorithm, such as rule learning, rule sorting, rule pruning, classifier building, and class allocation for test cases.

Keywords: associative classification, classification, data mining, learning, rule ranking, rule pruning, prediction

Procedia PDF Downloads 537