Search results for: desalination technologies
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3546

Search results for: desalination technologies

126 Numerical and Experimental Comparison of Surface Pressures around a Scaled Ship Wind-Assisted Propulsion System

Authors: James Cairns, Marco Vezza, Richard Green, Donald MacVicar

Abstract:

Significant legislative changes are set to revolutionise the commercial shipping industry. Upcoming emissions restrictions will force operators to look at technologies that can improve the efficiency of their vessels -reducing fuel consumption and emissions. A device which may help in this challenge is the Ship Wind-Assisted Propulsion system (SWAP), an actively controlled aerofoil mounted vertically on the deck of a ship. The device functions in a similar manner to a sail on a yacht, whereby the aerodynamic forces generated by the sail reach an equilibrium with the hydrodynamic forces on the hull and a forward velocity results. Numerical and experimental testing of the SWAP device is presented in this study. Circulation control takes the form of a co-flow jet aerofoil, utilising both blowing from the leading edge and suction from the trailing edge. A jet at the leading edge uses the Coanda effect to energise the boundary layer in order to delay flow separation and create high lift with low drag. The SWAP concept has been originated by the research and development team at SMAR Azure Ltd. The device will be retrofitted to existing ships so that a component of the aerodynamic forces acts forward and partially reduces the reliance on existing propulsion systems. Wind tunnel tests have been carried out at the de Havilland wind tunnel at the University of Glasgow on a 1:20 scale model of this system. The tests aim to understand the airflow characteristics around the aerofoil and investigate the approximate lift and drag coefficients that an early iteration of the SWAP device may produce. The data exhibits clear trends of increasing lift as injection momentum increases, with critical flow attachment points being identified at specific combinations of jet momentum coefficient, Cµ, and angle of attack, AOA. Various combinations of flow conditions were tested, with the jet momentum coefficient ranging from 0 to 0.7 and the AOA ranging from 0° to 35°. The Reynolds number across the tested conditions ranged from 80,000 to 240,000. Comparisons between 2D computational fluid dynamics (CFD) simulations and the experimental data are presented for multiple Reynolds-Averaged Navier-Stokes (RANS) turbulence models in the form of normalised surface pressure comparisons. These show good agreement for most of the tested cases. However, certain simulation conditions exhibited a well-documented shortcoming of RANS-based turbulence models for circulation control flows and over-predicted surface pressures and lift coefficient for fully attached flow cases. Work must be continued in finding an all-encompassing modelling approach which predicts surface pressures well for all combinations of jet injection momentum and AOA.

Keywords: CFD, circulation control, Coanda, turbo wing sail, wind tunnel

Procedia PDF Downloads 110
125 Phycoremiadation of Heavy Metals by Marine Macroalgae Collected from Olaikuda, Rameswaram, Southeast Coast of India

Authors: Suparna Roy, Anatharaman Perumal

Abstract:

The industrial effluent with high amount of heavy metals is known to have adverse effects on the environment. For the removal of heavy metals from aqueous environment, different conventional treatment technologies had been applied gradually which are not economically beneficial and also produce huge quantity of toxic chemical sludge. So, bio-sorption of heavy metals by marine plant is an eco-friendly innovative and alternative technology for removal of these pollutants from aqueous environment. The aim of this study is to evaluate the capacity of heavy metals accumulation and removal by some selected marine macroalgae (seaweeds) from marine environment. Methods: Seaweeds Acanthophora spicifera (Vahl.) Boergesen, Codium tomentosum Stackhouse, Halimeda gracilis Harvey ex. J. Agardh, Gracilaria opuntia Durairatnam.nom. inval. Valoniopsis pachynema (Martens) Boergesen, Caulerpa racemosa var. macrophysa (Sonder ex Kutzing) W. R. Taylor and Hydroclathrus clathratus (C. Agardh) Howe were collected from Olaikuda (09°17.526'N-079°19.662'E), Rameshwaram, south east coast of India during post monsoon period (April’2016). Seaweeds were washed with sterilized and filtered in-situ seawater repeatedly to remove all the epiphytes and debris and clean seaweeds were kept for shade drying for one week. The dried seaweeds were grinded to powder, and one gm powder seaweeds were taken in a 250ml conical flask, and 8 ml of 10 % HNO3 (70 % pure) was added to each sample and kept in room temperature (28 ̊C) for 24 hours and then samples were heated in hotplate at 120 ̊C, boiled to evaporate up to dryness and 20 ml of Nitric acid: Percholoric acid in 4:1 were added to it and again heated to hotplate at 90 ̊C up to evaporate to dryness, then samples were kept in room temperature for few minutes to cool and 10ml 10 % HNO3 were added to it and kept for 24 hours in cool and dark place and filtered with Whatman (589/2) filter paper and the filtrates were collected in 250ml clean conical flask and diluted accurately to 25 ml volume with double deionised water and triplicate of each sample were analysed with Inductively-Coupled plasma analysis (ICP-OES) to analyse total eleven heavy metals (Ag, Cd, B, Cu, Mn, Co, Ni, Cr, Pb, Zn, and Al content of the specified species and data were statistically evaluated for standard deviation. Results: Acanthophora spicifera contains highest amount of Ag (0.1± 0.2 mg/mg) followed by Cu (0.16±0.01 mg/mg), Mn (1.86±0.02 mg/mg), B (3.59±0.2 mg/mg), Halimeda gracilis showed highest accumulation of Al (384.75±0.12mg/mg), Valoniopsis pachynema accumulates maximum amount of Co (0.12±0.01 mg/mg), Zn (0.64±0.02 mg/mg), Caulerpa racemosa var. macrophysa contains Zn (0.63±0.01), Cr (0.26±0.01 mg/mg ), Ni (0.21±0.05), Pb (0.16±0.03 ) and Cd ( 0.02±00 ). Hydroclathrus clathratus, Codium tomentosum and Gracilaria opuntia also contain adequate amount of heavy metals. Conclusions: The mentioned species of seaweeds are contributing important role for decreasing the heavy metals pollution in marine environment by bioaccumulation. So, we can utilise this species to remove excess amount of heavy metals from polluted area.

Keywords: heavy metals pollution, seaweeds, bioaccumulation, eco-friendly, phyco-remediation

Procedia PDF Downloads 209
124 Physico-Mechanical Behavior of Indian Oil Shales

Authors: K. S. Rao, Ankesh Kumar

Abstract:

The search for alternative energy sources to petroleum has increased these days because of increase in need and depletion of petroleum reserves. Therefore the importance of oil shales as an economically viable substitute has increased many folds in last 20 years. The technologies like hydro-fracturing have opened the field of oil extraction from these unconventional rocks. Oil shale is a compact laminated rock of sedimentary origin containing organic matter known as kerogen which yields oil when distilled. Oil shales are formed from the contemporaneous deposition of fine grained mineral debris and organic degradation products derived from the breakdown of biota. Conditions required for the formation of oil shales include abundant organic productivity, early development of anaerobic conditions, and a lack of destructive organisms. These rocks are not gown through the high temperature and high pressure conditions in Mother Nature. The most common approach for oil extraction is drastically breaking the bond of the organics which involves retorting process. The two approaches for retorting are surface retorting and in-situ processing. The most environmental friendly approach for extraction is In-situ processing. The three steps involved in this process are fracturing, injection to achieve communication, and fluid migration at the underground location. Upon heating (retorting) oil shale at temperatures in the range of 300 to 400°C, the kerogen decomposes into oil, gas and residual carbon in a process referred to as pyrolysis. Therefore it is very important to understand the physico-mechenical behavior of such rocks, to improve the technology for in-situ extraction. It is clear from the past research and the physical observations that these rocks will behave as an anisotropic rock so it is very important to understand the mechanical behavior under high pressure at different orientation angles for the economical use of these resources. By knowing the engineering behavior under above conditions will allow us to simulate the deep ground retorting conditions numerically and experimentally. Many researchers have investigate the effect of organic content on the engineering behavior of oil shale but the coupled effect of organic and inorganic matrix is yet to be analyzed. The favourable characteristics of Assam coal for conversion to liquid fuels have been known for a long time. Studies have indicated that these coals and carbonaceous shale constitute the principal source rocks that have generated the hydrocarbons produced from the region. Rock cores of the representative samples are collected by performing on site drilling, as coring in laboratory is very difficult due to its highly anisotropic nature. Different tests are performed to understand the petrology of these samples, further the chemical analyses are also done to exactly quantify the organic content in these rocks. The mechanical properties of these rocks are investigated by considering different anisotropic angles. Now the results obtained from petrology and chemical analysis are correlated with the mechanical properties. These properties and correlations will further help in increasing the producibility of these rocks. It is well established that the organic content is negatively correlated to tensile strength, compressive strength and modulus of elasticity.

Keywords: oil shale, producibility, hydro-fracturing, kerogen, petrology, mechanical behavior

Procedia PDF Downloads 321
123 Sustainable Biostimulant and Bioprotective Compound for the Control of Fungal Diseases in Agricultural Crops

Authors: Geisa Lima Mesquita Zambrosi, Maisa Ciampi Guillardi, Flávia Rodrigues Patrício, Oliveiro Guerreiro Filho

Abstract:

Certified agricultural products are important components of the food industry. However, certifiers have been expanding the list of restricted or prohibited pesticides, limiting the options of products for phytosanitary control of plant diseases, but without offering alternatives to the farmers. Soybean and coffee leaf rust, brown eye spots, and Phoma leaf spots are the main fungal diseases that pose a serious threat to soybean and coffee cultivation worldwide. In conventional farming systems, these diseases are controlled by using synthetic fungicides, which, in addition to intensify the occurrence of fungal resistance, are highly toxic to the environment, farmers and consumers. In organic, agroecological, or regenerative farming systems, product options for plant protection are limited, being available only copper-based compounds, biodefensives or non-standard homemade products. Therefore, there is a growing demand for effective bioprotectors with low environmental impact for adoption in more sustainable agricultural systems. Then, to contribute with the covering of such a gap, we have developed a compound based on plant extracts and metallic elements for foliar application. This product has both biostimulant and bioprotective action, which promotes sustainable disease control, increases productivity as well as reduces the dependence on imported technologies the damages to the environment. The product's components have complementary mechanisms that promote protection against the disease by directly acting on the pathogens and activating the plant's natural defense system. The protective ability of the product against three coffee diseases (coffee leaf rust, brown eye spot, and Phoma leaf spot) and against soybean rust disease was evaluated, in addition to its ability to promote plant growth. Our goal is to offer an effective alternative to control the main coffee fungal diseases and soybean fungal diseases, with a biostimulant effect and low toxicity. The proposed product can also be part of the integrated management of coffee and soybean diseases in conventional farming associated with chemical and biological pesticides, offering the market a sustainable coffee and soybean with high added value and low residue content. Experiments were carried out under controlled conditions to evaluate the effectiveness of the product in controlling rust, phoma, and cercosporiosis in comparison to a control-inoculated plants that did not receive the product. The in vitro and in vivo effects of the product on the pathogen were evaluated using light microscopy and scanning electron microscopy, respectively. The fungistatic action of the product was demonstrated by a reduction of 85% and 95% in spore germination and disease symptoms severity on the leaves of coffee plants, respectively. The formulation had both a protective effect, acting to prevent infection by coffee leaf rust, and a curative effect, reducing the rust symptoms after its establishment.

Keywords: plant disease, natural fungicide, plant health, sustainability, alternative disease management

Procedia PDF Downloads 14
122 Organizational Resilience in the Perspective of Supply Chain Risk Management: A Scholarly Network Analysis

Authors: William Ho, Agus Wicaksana

Abstract:

Anecdotal evidence in the last decade shows that the occurrence of disruptive events and uncertainties in the supply chain is increasing. The coupling of these events with the nature of an increasingly complex and interdependent business environment leads to devastating impacts that quickly propagate within and across organizations. For example, the recent COVID-19 pandemic increased the global supply chain disruption frequency by at least 20% in 2020 and is projected to have an accumulative cost of $13.8 trillion by 2024. This crisis raises attention to organizational resilience to weather business uncertainty. However, the concept has been criticized for being vague and lacking a consistent definition, thus reducing the significance of the concept for practice and research. This study is intended to solve that issue by providing a comprehensive review of the conceptualization, measurement, and antecedents of operational resilience that have been discussed in the supply chain risk management literature (SCRM). We performed a Scholarly Network Analysis, combining citation-based and text-based approaches, on 252 articles published from 2000 to 2021 in top-tier journals based on three parameters: AJG ranking and ABS ranking, UT Dallas and FT50 list, and editorial board review. We utilized a hybrid scholarly network analysis by combining citation-based and text-based approaches to understand the conceptualization, measurement, and antecedents of operational resilience in the SCRM literature. Specifically, we employed a Bibliographic Coupling Analysis in the research cluster formation stage and a Co-words Analysis in the research cluster interpretation and analysis stage. Our analysis reveals three major research clusters of resilience research in the SCRM literature, namely (1) supply chain network design and optimization, (2) organizational capabilities, and (3) digital technologies. We portray the research process in the last two decades in terms of the exemplar studies, problems studied, commonly used approaches and theories, and solutions provided in each cluster. We then provide a conceptual framework on the conceptualization and antecedents of resilience based on studies in these clusters and highlight potential areas that need to be studied further. Finally, we leverage the concept of abnormal operating performance to propose a new measurement strategy for resilience. This measurement overcomes the limitation of most current measurements that are event-dependent and focus on the resistance or recovery stage - without capturing the growth stage. In conclusion, this study provides a robust literature review through a scholarly network analysis that increases the completeness and accuracy of research cluster identification and analysis to understand conceptualization, antecedents, and measurement of resilience. It also enables us to perform a comprehensive review of resilience research in SCRM literature by including research articles published during the pandemic and connects this development with a plethora of articles published in the last two decades. From the managerial perspective, this study provides practitioners with clarity on the conceptualization and critical success factors of firm resilience from the SCRM perspective.

Keywords: supply chain risk management, organizational resilience, scholarly network analysis, systematic literature review

Procedia PDF Downloads 50
121 Optimizing Data Transfer and Processing in Multi-Cloud Environments for Big Data Workloads

Authors: Gaurav Kumar Sinha

Abstract:

In an era defined by the proliferation of data and the utilization of cloud computing environments, the efficient transfer and processing of big data workloads across multi-cloud platforms have emerged as critical challenges. This research paper embarks on a comprehensive exploration of the complexities associated with managing and optimizing big data in a multi-cloud ecosystem.The foundation of this study is rooted in the recognition that modern enterprises increasingly rely on multiple cloud providers to meet diverse business needs, enhance redundancy, and reduce vendor lock-in. As a consequence, managing data across these heterogeneous cloud environments has become intricate, necessitating innovative approaches to ensure data integrity, security, and performance.The primary objective of this research is to investigate strategies and techniques for enhancing the efficiency of data transfer and processing in multi-cloud scenarios. It recognizes that big data workloads are characterized by their sheer volume, variety, velocity, and complexity, making traditional data management solutions insufficient for harnessing the full potential of multi-cloud architectures.The study commences by elucidating the challenges posed by multi-cloud environments in the context of big data. These challenges encompass data fragmentation, latency, security concerns, and cost optimization. To address these challenges, the research explores a range of methodologies and solutions. One of the key areas of focus is data transfer optimization. The paper delves into techniques for minimizing data movement latency, optimizing bandwidth utilization, and ensuring secure data transmission between different cloud providers. It evaluates the applicability of dedicated data transfer protocols, intelligent data routing algorithms, and edge computing approaches in reducing transfer times.Furthermore, the study examines strategies for efficient data processing across multi-cloud environments. It acknowledges that big data processing requires distributed and parallel computing capabilities that span across cloud boundaries. The research investigates containerization and orchestration technologies, serverless computing models, and interoperability standards that facilitate seamless data processing workflows.Security and data governance are paramount concerns in multi-cloud environments. The paper explores methods for ensuring data security, access control, and compliance with regulatory frameworks. It considers encryption techniques, identity and access management, and auditing mechanisms as essential components of a robust multi-cloud data security strategy.The research also evaluates cost optimization strategies, recognizing that the dynamic nature of multi-cloud pricing models can impact the overall cost of data transfer and processing. It examines approaches for workload placement, resource allocation, and predictive cost modeling to minimize operational expenses while maximizing performance.Moreover, this study provides insights into real-world case studies and best practices adopted by organizations that have successfully navigated the challenges of multi-cloud big data management. It presents a comparative analysis of various multi-cloud management platforms and tools available in the market.

Keywords: multi-cloud environments, big data workloads, data transfer optimization, data processing strategies

Procedia PDF Downloads 40
120 Scenario-Based Scales and Situational Judgment Tasks to Measure the Social and Emotional Skills

Authors: Alena Kulikova, Leonid Parmaksiz, Ekaterina Orel

Abstract:

Social and emotional skills are considered by modern researchers as predictors of a person's success both in specific areas of activity and in the life of a person as a whole. The popularity of this scientific direction ensures the emergence of a large number of practices aimed at developing and evaluating socio-emotional skills. Assessment of social and emotional development is carried out at the national level, as well as at the level of individual regions and institutions. Despite the fact that many of the already existing social and emotional skills assessment tools are quite convenient and reliable, there are now more and more new technologies and task formats which improve the basic characteristics of the tools. Thus, the goal of the current study is to develop a tool for assessing social and emotional skills such as emotion recognition, emotion regulation, empathy and a culture of self-care. To develop a tool assessing social and emotional skills, Rasch-Gutman scenario-based approach was used. This approach has shown its reliability and merit for measuring various complex constructs: parental involvement; teacher practices that support cultural diversity and equity; willingness to participate in the life of the community after psychiatric rehabilitation; educational motivation and others. To assess emotion recognition, we used a situational judgment task based on OCC (Ortony, Clore, and Collins) emotions theory. The main advantage of these two approaches compare to classical Likert scales is that it reduces social desirability in answers. A field test to check the psychometric properties of the developed instrument was conducted. The instrument was developed for the presidential autonomous non-profit organization “Russia - Land of Opportunity” for nationwide soft skills assessment among higher education students. The sample for the field test consisted of 500 people, students aged from 18 to 25 (mean = 20; standard deviation 1.8), 71% female. 67% of students are only studying and are not currently working and 500 employed adults aged from 26 to 65 (mean = 42.5; SD 9), 57% female. Analysis of the psychometric characteristics of the scales was carried out using the methods of IRT (Item Response Theory). A one-parameter rating scale model RSM (Rating scale model) and Graded Response model (GRM) of the modern testing theory were applied. GRM is a polyatomic extension of the dichotomous two-parameter model of modern testing theory (2PL) based on the cumulative logit function for modeling the probability of a correct answer. The validity of the developed scales was assessed using correlation analysis and MTMM (multitrait-multimethod matrix). The developed instrument showed good psychometric quality and can be used by HR specialists or educational management. The detailed results of a psychometric study of the quality of the instrument, including the functioning of the tasks of each scale, will be presented. Also, the results of the validity study by MTMM analysis will be discussed.

Keywords: social and emotional skills, psychometrics, MTMM, IRT

Procedia PDF Downloads 48
119 Assessment of Cytogenetic Damage as a Function of Radiofrequency Electromagnetic Radiations Exposure Measured by Electric Field Strength: A Gender Based Study

Authors: Ramanpreet, Gursatej Gandhi

Abstract:

Background: Dependence on electromagnetic radiations involved in communication and information technologies has incredibly increased in the personal and professional world. Among the numerous radiations, sources are fixed site transmitters, mobile phone base stations, and power lines beside indoor devices like cordless phones, WiFi, Bluetooth, TV, radio, microwave ovens, etc. Rather there is the continuous emittance of radiofrequency radiations (RFR) even to those not using the devices from mobile phone base stations. The consistent and widespread usage of wireless devices has build-up electromagnetic fields everywhere. In fact, the radiofrequency electromagnetic field (RF-EMF) has insidiously become a part of the environment and like any contaminant may pose to be health-hazardous requiring assessment. Materials and Methods: In the present study, cytogenetic damage was assessed using the Buccal Micronucleus Cytome (BMCyt) assay as a function of radiation exposure after Institutional Ethics Committee clearance of the study and written voluntary informed consent from the participants. On a pre-designed questionnaire, general information lifestyle patterns (diet, physical activity, smoking, drinking, use of mobile phones, internet, Wi-Fi usage, etc.) genetic, reproductive (pedigrees) and medical histories were recorded. For this, 24 hour-personal exposimeter measurements (PEM) were recorded for unrelated 60 healthy adults (40 cases residing in the vicinity of mobile phone base stations since their installation and 20 controls residing in areas with no base stations). The personal exposimeter collects information from all the sources generating EMF (TETRA, GSM, UMTS, DECT, and WLAN) as total RF-EMF uplink and downlink. Findings: The cases (n=40; 23-90 years) and the controls (n=20; 19-65 years) matched for alcohol drinking, smoking habits, and mobile and cordless phone usage. The PEM in cases (149.28 ± 8.98 mV/m) revealed significantly higher (p=0.000) electric field strength compared to the recorded value (80.40 ± 0.30 mV/m) in controls. The GSM 900 uplink (p=0.000), GSM 1800 downlink (p=0.000),UMTS (both uplink; p=0.013 and downlink; p=0.001) and DECT (p=0.000) electric field strength were significantly elevated in the cases as compared to controls. The electric field strength in the cases was significantly from GSM1800 (52.26 ± 4.49mV/m) followed by GSM900 (45.69 ± 4.98mV/m), UMTS (25.03 ± 3.33mV/m), DECT (18.02 ± 2.14mV/m) and was least from WLAN (8.26 ± 2.35mV/m). The higher significantly (p=0.000) increased exposure to the cases was from GSM (97.96 ± 6.97mV/m) in comparison to UMTS, DECT, and WLAN. The frequencies of micronuclei (1.86X, p=0.007), nuclear buds (2.95X, p=0.002) and cell death parameter (condensed chromatin cells) were significantly (1.75X, p=0.007) elevated in cases compared to that in controls probably as a function of radiofrequency radiation exposure. Conclusion: In the absence of other exposure(s), any cytogenetic damage if unrepaired is a cause of concern as it can cause malignancy. Larger sample size with the clinical assessment will prove more insightful of such an effect.

Keywords: Buccal micronucleus cytome assay, cytogenetic damage, electric field strength, personal exposimeter

Procedia PDF Downloads 133
118 Wetting Characterization of High Aspect Ratio Nanostructures by Gigahertz Acoustic Reflectometry

Authors: C. Virgilio, J. Carlier, P. Campistron, M. Toubal, P. Garnier, L. Broussous, V. Thomy, B. Nongaillard

Abstract:

Wetting efficiency of microstructures or nanostructures patterned on Si wafers is a real challenge in integrated circuits manufacturing. In fact, bad or non-uniform wetting during wet processes limits chemical reactions and can lead to non-complete etching or cleaning inside the patterns and device defectivity. This issue is more and more important with the transistors size shrinkage and concerns mainly high aspect ratio structures. Deep Trench Isolation (DTI) structures enabling pixels’ isolation in imaging devices are subject to this phenomenon. While low-frequency acoustic reflectometry principle is a well-known method for Non Destructive Test applications, we have recently shown that it is also well suited for nanostructures wetting characterization in a higher frequency range. In this paper, we present a high-frequency acoustic reflectometry characterization of DTI wetting through a confrontation of both experimental and modeling results. The acoustic method proposed is based on the evaluation of the reflection of a longitudinal acoustic wave generated by a 100 µm diameter ZnO piezoelectric transducer sputtered on the silicon wafer backside using MEMS technologies. The transducers have been fabricated to work at 5 GHz corresponding to a wavelength of 1.7 µm in silicon. The DTI studied structures, manufactured on the wafer frontside, are crossing trenches of 200 nm wide and 4 µm deep (aspect ratio of 20) etched into a Si wafer frontside. In that case, the acoustic signal reflection occurs at the bottom and at the top of the DTI enabling its characterization by monitoring the electrical reflection coefficient of the transducer. A Finite Difference Time Domain (FDTD) model has been developed to predict the behavior of the emitted wave. The model shows that the separation of the reflected echoes (top and bottom of the DTI) from different acoustic modes is possible at 5 Ghz. A good correspondence between experimental and theoretical signals is observed. The model enables the identification of the different acoustic modes. The evaluation of DTI wetting is then performed by focusing on the first reflected echo obtained through the reflection at Si bottom interface, where wetting efficiency is crucial. The reflection coefficient is measured with different water / ethanol mixtures (tunable surface tension) deposited on the wafer frontside. Two cases are studied: with and without PFTS hydrophobic treatment. In the untreated surface case, acoustic reflection coefficient values with water show that liquid imbibition is partial. In the treated surface case, the acoustic reflection is total with water (no liquid in DTI). The impalement of the liquid occurs for a specific surface tension but it is still partial for pure ethanol. DTI bottom shape and local pattern collapse of the trenches can explain these incomplete wetting phenomena. This high-frequency acoustic method sensitivity coupled with a FDTD propagative model thus enables the local determination of the wetting state of a liquid on real structures. Partial wetting states for non-hydrophobic surfaces or low surface tension liquids are then detectable with this method.

Keywords: wetting, acoustic reflectometry, gigahertz, semiconductor

Procedia PDF Downloads 306
117 The Perceptions of Patients with Osteoarthritis at a Public Community Rehabilitation Centre in the Cape Metropole for Using Digital Technology in Rehabilitation

Authors: Gabriela Prins, Quinette Louw, Dawn Ernstzen

Abstract:

Background: Access to rehabilitation services is a major challenge globally, especially in low-and-middle income countries (LMICs) where resources and infrastructure are extremely limited. Telerehabilitation (TR) has emerged in recent decades as a highly promising method to dramatically expand accessibility to rehabilitation services globally. TR provides rehabilitation care remotely using communication technologies such as video conferencing, smartphones, and internet-connected devices. This boosts accessibility to underprivileged regions and allows for greater flexibility for patients. Despite this, TR is hindered by several factors, including limited technological resources, high costs, lack of digital access, and the unavailability of healthcare systems, which are major barriers to widespread adoption among LMIC patients. These barriers have collectively hindered the potential implementation and adoption of TR services in LMICs healthcare settings. Adoption of TR will also require the buy-in of end users and limited information is known on the perspectives of the SA population. Aim: The study aimed to understand patients' perspectives regarding the use of digital technology as part of their OA rehabilitation at a public community healthcare centre in the Cape Metropole Area. Methods: A qualitative descriptive study design was used on 10 OA patients from a public community rehabilitation centre in South Africa. Data collection included semi-structured interviews and patient-reported outcome measures (PSFS, ASES-8, and EuroQol EQ-5D-5L) on functioning and quality of life. Transcribed interview data were coded in Atlas.ti. 22.2 and analyzed using thematic analysis. The results were narratively documented. Results: Four themes arose from the interviews. The themes were Telerehabilitation awareness (Use of Digital Technology Information Sources and Prior Experience with Technology /TR), Telerehabilitation Benefits (Access to healthcare providers, Access to educational information, Convenience, Time and Resource Efficiency and Facilitating Family Involvement), Telerehabilitation Implementation Considerations (Openness towards TR Implementation, Learning about TR and Technology, Therapeutic relationship, and Privacy) and Future use of Telerehabilitation (Personal Preference and TR for the next generation). The ten participants demonstrated limited awareness and exposure to TR, as well as minimal digital literacy and skills. Skepticism was shown when comparing the effectiveness of TR to in-person rehabilitation and valued physical interactions with health professionals. However, some recognized potential benefits of TR for accessibility, convenience, family involvement and improving community health in the long term. Willingness existed to try TR with sufficient training. Conclusion: With targeted efforts addressing identified barriers around awareness, technological literacy, clinician readiness and resource availability, perspectives on TR may shift positively from uncertainty towards endorsement of this expanding approach for simpler rehabilitation access in LMICs.

Keywords: digital technology, osteoarthritis, primary health care, telerehabilitation

Procedia PDF Downloads 35
116 A Flipped Learning Experience in an Introductory Course of Information and Communication Technology in Two Bachelor's Degrees: Combining the Best of Online and Face-to-Face Teaching

Authors: Begona del Pino, Beatriz Prieto, Alberto Prieto

Abstract:

Two opposite approaches to teaching can be considered: in-class learning (teacher-oriented) versus virtual learning (student-oriented). The most known example of the latter is Massive Online Open Courses (MOOCs). Both methodologies have pros and cons. Nowadays there is an increasing trend towards combining both of them. Blending learning is considered a valuable tool for improving learning since it combines student-centred interactive e-learning and face to face instruction. The aim of this contribution is to exchange and share the experience and research results of a blended-learning project that took place in the University of Granada (Spain). The research objective was to prove how combining didactic resources of a MOOC with in-class teaching, interacting directly with students, can substantially improve academic results, as well as student acceptance. The proposed methodology is based on the use of flipped learning technics applied to the subject ‘Fundamentals of Computer Science’ of the first course of two degrees: Telecommunications Engineering, and Industrial Electronics. In this proposal, students acquire the theoretical knowledges at home through a MOOC platform, where they watch video-lectures, do self-evaluation tests, and use other academic multimedia online resources. Afterwards, they have to attend to in-class teaching where they do other activities in order to interact with teachers and the rest of students (discussing of the videos, solving of doubts and practical exercises, etc.), trying to overcome the disadvantages of self-regulated learning. The results are obtained through the grades of the students and their assessment of the blended experience, based on an opinion survey conducted at the end of the course. The major findings of the study are the following: The percentage of students passing the subject has grown from 53% (average from 2011 to 2014 using traditional learning methodology) to 76% (average from 2015 to 2018 using blended methodology). The average grade has improved from 5.20±1.99 to 6.38±1.66. The results of the opinion survey indicate that most students preferred blended methodology to traditional approaches, and positively valued both courses. In fact, 69% of students felt ‘quite’ or ‘very’ satisfied with the classroom activities; 65% of students preferred the flipped classroom methodology to traditional in-class lectures, and finally, 79% said they were ‘quite’ or ‘very’ satisfied with the course in general. The main conclusions of the experience are the improvement in academic results, as well as the highly satisfactory assessments obtained in the opinion surveys. The results confirm the huge potential of combining MOOCs in formal undergraduate studies with on-campus learning activities. Nevertheless, the results in terms of students’ participation and follow-up have a wide margin for improvement. The method is highly demanding for both students and teachers. As a recommendation, students must perform the assigned tasks with perseverance, every week, in order to take advantage of the face-to-face classes. This perseverance is precisely what needs to be promoted among students because it clearly brings about an improvement in learning.

Keywords: blended learning, educational paradigm, flipped classroom, flipped learning technologies, lessons learned, massive online open course, MOOC, teacher roles through technology

Procedia PDF Downloads 157
115 Design of an Automated Deep Learning Recurrent Neural Networks System Integrated with IoT for Anomaly Detection in Residential Electric Vehicle Charging in Smart Cities

Authors: Wanchalerm Patanacharoenwong, Panaya Sudta, Prachya Bumrungkun

Abstract:

The paper focuses on the development of a system that combines Internet of Things (IoT) technologies and deep learning algorithms for anomaly detection in residential Electric Vehicle (EV) charging in smart cities. With the increasing number of EVs, ensuring efficient and reliable charging systems has become crucial. The aim of this research is to develop an integrated IoT and deep learning system for detecting anomalies in residential EV charging and enhancing EV load profiling and event detection in smart cities. This approach utilizes IoT devices equipped with infrared cameras to collect thermal images and household EV charging profiles from the database of Thailand utility, subsequently transmitting this data to a cloud database for comprehensive analysis. The methodology includes the use of advanced deep learning techniques such as Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM) algorithms. IoT devices equipped with infrared cameras are used to collect thermal images and EV charging profiles. The data is transmitted to a cloud database for comprehensive analysis. The researchers also utilize feature-based Gaussian mixture models for EV load profiling and event detection. Moreover, the research findings demonstrate the effectiveness of the developed system in detecting anomalies and critical profiles in EV charging behavior. The system provides timely alarms to users regarding potential issues and categorizes the severity of detected problems based on a health index for each charging device. The system also outperforms existing models in event detection accuracy. This research contributes to the field by showcasing the potential of integrating IoT and deep learning techniques in managing residential EV charging in smart cities. The system ensures operational safety and efficiency while also promoting sustainable energy management. The data is collected using IoT devices equipped with infrared cameras and is stored in a cloud database for analysis. The collected data is then analyzed using RNN, LSTM, and feature-based Gaussian mixture models. The approach includes both EV load profiling and event detection, utilizing a feature-based Gaussian mixture model. This comprehensive method aids in identifying unique power consumption patterns among EV owners and outperforms existing models in event detection accuracy. In summary, the research concludes that integrating IoT and deep learning techniques can effectively detect anomalies in residential EV charging and enhance EV load profiling and event detection accuracy. The developed system ensures operational safety and efficiency, contributing to sustainable energy management in smart cities.

Keywords: cloud computing framework, recurrent neural networks, long short-term memory, Iot, EV charging, smart grids

Procedia PDF Downloads 30
114 Ultrasound Disintegration as a Potential Method for the Pre-Treatment of Virginia Fanpetals (Sida hermaphrodita) Biomass before Methane Fermentation Process

Authors: Marcin Dębowski, Marcin Zieliński, Mirosław Krzemieniewski

Abstract:

As methane fermentation is a complex series of successive biochemical transformations, its subsequent stages are determined, to a various extent, by physical and chemical factors. A specific state of equilibrium is being settled in the functioning fermentation system between environmental conditions and the rate of biochemical reactions and products of successive transformations. In the case of physical factors that influence the effectiveness of methane fermentation transformations, the key significance is ascribed to temperature and intensity of biomass agitation. Among the chemical factors, significant are pH value, type, and availability of the culture medium (to put it simply: the C/N ratio) as well as the presence of toxic substances. One of the important elements which influence the effectiveness of methane fermentation is the pre-treatment of organic substrates and the mode in which the organic matter is made available to anaerobes. Out of all known and described methods for organic substrate pre-treatment before methane fermentation process, the ultrasound disintegration is one of the most interesting technologies. Investigations undertaken on the ultrasound field and the use of installations operating on the existing systems result principally from very wide and universal technological possibilities offered by the sonication process. This physical factor may induce deep physicochemical changes in ultrasonicated substrates that are highly beneficial from the viewpoint of methane fermentation processes. In this case, special role is ascribed to disintegration of biomass that is further subjected to methane fermentation. Once cell walls are damaged, cytoplasm and cellular enzymes are released. The released substances – either in dissolved or colloidal form – are immediately available to anaerobic bacteria for biodegradation. To ensure the maximal release of organic matter from dead biomass cells, disintegration processes are aimed to achieve particle size below 50 μm. It has been demonstrated in many research works and in systems operating in the technical scale that immediately after substrate supersonication the content of organic matter (characterized by COD, BOD5 and TOC indices) was increasing in the dissolved phase of sedimentation water. This phenomenon points to the immediate sonolysis of solid substances contained in the biomass and to the release of cell material, and consequently to the intensification of the hydrolytic phase of fermentation. It results in a significant reduction of fermentation time and increased effectiveness of production of gaseous metabolites of anaerobic bacteria. Because disintegration of Virginia fanpetals biomass via ultrasounds applied in order to intensify its conversion is a novel technique, it is often underestimated by exploiters of agri-biogas works. It has, however, many advantages that have a direct impact on its technological and economical superiority over thus far applied methods of biomass conversion. As for now, ultrasound disintegrators for biomass conversion are not produced on the mass-scale, but by specialized groups in scientific or R&D centers. Therefore, their quality and effectiveness are to a large extent determined by their manufacturers’ knowledge and skills in the fields of acoustics and electronic engineering.

Keywords: ultrasound disintegration, biomass, methane fermentation, biogas, Virginia fanpetals

Procedia PDF Downloads 339
113 Classical Music Unplugged: The Future of Classical Music Performance: Tradition, Technology, and Audience Engagement

Authors: Orit Wolf

Abstract:

Classical music performance is undergoing a profound transformation, marked by a confluence of technological advancements and evolving cultural dynamics. This academic paper explores the multifaceted changes and challenges faced by classical music performance, considering the impact of artificial intelligence (AI) along with other vital factors shaping this evolution. In the contemporary era, classical music is experiencing shifts in performance practices. This paper delves into these changes, emphasizing the need for adaptability within the classical music world. From repertoire selection and concert formats to artistic expression, performers and institutions navigate a delicate balance between tradition and innovation. We explore how these changes impact the authenticity and vitality of classical music performances. Furthermore, the influence of AI in the classical music concert world cannot be underestimated. AI technologies are making inroads into various aspects, from composition assistance to rehearsal and live performances. This paper examines the transformative effects of AI, considering how it enhances precision, adaptability, and creative exploration for musicians. We explore the implications for composers, performers, and the overall concert experience while addressing ethical concerns and creative opportunities. In addition to AI, there is the importance of cross-genre interactions within the classical music sphere. Mash-ups and collaborations with artists from diverse musical backgrounds are redefining the boundaries of classical music and creating works that resonate with a wider and more diverse audience. The benefits of cross-pollination in classical music seem crucial, offering a fresh perspective to listeners. As an active concert artist, Orit Wolf will share how the expectations of classical music audiences are evolving. Modern concertgoers seek not only exceptional musical performances but also immersive experiences that may involve technology, multimedia, and interactive elements. This paper examines how classical musicians and institutions are adapting to these changing expectations, using technology and innovative concert formats to deliver a unique and enriched experience to their audiences. As these changes and challenges reshape the classical music world, the need for a harmonious coexistence of tradition, technology, and innovation becomes evident. Musicians, composers, and institutions are striving to find a balance that ensures classical music remains relevant in a rapidly changing cultural landscape while maintaining the value it brings to compositions and audiences. This paper, therefore, aims to explore the evolving trends in classical music performance. It considers the influence of AI as one element within the broader context of change, highlighting the necessity of adaptability, cross-genre interactions, and a response to evolving audience expectations. By doing so, the classical music world can navigate this transformative period while preserving its timeless traditions and adding value to both performers and listeners. Orit Wolf, an international concert pianist, fulfils her vision to bring this music in new ways to mass audiences and will share her personal and professional experience as an artist who goes on stage and makes disruptive concerts.

Keywords: cross culture collaboration, music performance and ai, classical music in the digital age, classical concerts, innovation and technology, performance innovation, audience engagement in classical concerts

Procedia PDF Downloads 35
112 Effect of Natural and Urban Environments on the Perception of Thermal Pain – Experimental Research Using Virtual Environments

Authors: Anna Mucha, Ewa Wojtyna, Anita Pollak

Abstract:

The environment in which an individual resides and observes may play a meaningful role in well-being and related constructs. Contact with nature may have a positive influence of natural environments on individuals, impacting mood and psychophysical sensations, such as pain relief. Conversely, urban settings, dominated by concrete elements, might lead to mood decline and heightened stress levels. Similarly, the situation may appear in the case of the perception of virtual environments. However, this is a topic that requires further exploration, especially in the context of relationships with pain. The aforementioned matters served as the basis for formulating and executing the outlined experimental research within the realm of environmental psychology, leveraging new technologies, notably virtual reality (VR), which is progressively gaining prominence in the domain of mental health. The primary objective was to investigate the impact of a simulated virtual environment, mirroring a natural setting abundant in greenery, on the perception of acute pain induced by thermal stimuli (high temperature) – encompassing intensity, unpleasantness, and pain tolerance. Comparative analyses were conducted between the virtual natural environment (intentionally constructed in the likeness of a therapeutic garden), virtual urban environment, and a control group devoid of virtual projections. Secondary objectives aimed to determine the mutual relationships among variables such as positive and negative emotions, preferences regarding virtual environments, sense of presence, and restorative experience in the context of the perception of presented virtual environments and induced thermal pain. The study encompassed 126 physically healthy Polish adults, distributing 42 individuals across each of the three comparative groups. Oculus Rift VR technology and the TSA-II neurosensory analyzer facilitated the experiment. Alongside demographic data, participants' subjective feelings concerning virtual reality and pain were evaluated using the Visual Analogue Scale (VAS), the original Restorative Experience in the Virtual World questionnaire (Doświadczenie Regeneracji w Wirtualnym Świecie), and an adapted Slater-Usoh-Steed (SUS) questionnaire. Results of statistical and psychometric analyses, such as Kruskal-Wallis tests, Wilcoxon tests, and contrast analyses, underscored the positive impact of the virtual natural environment on individual pain perception and mood. The virtual natural environment outperformed the virtual urban environment and the control group without virtual projection, particularly in subjective pain components like intensity and unpleasantness. Variables such as restorative experience, sense of presence and virtual environment preference also proved pivotal in pain perception and pain tolerance threshold alterations, contingent on specific conditions. This implies considerable application potential for virtual natural environments across diverse realms of psychology and related fields, among others as a supportive analgesic approach and a form of relaxation following psychotherapeutic sessions.

Keywords: environmental psychology, nature, acute pain, emotions, vitrual reality, virtual environments

Procedia PDF Downloads 37
111 Advertising Campaigns for a Sustainable Future: The Fight against Plastic Pollution in the Ocean

Authors: Mokhlisur Rahman

Abstract:

Ocean inhibits one of the most complex ecosystems on the planet that regulates the earth's climate and weather by providing us with compatible weather to live. Ocean provides food by extending various ways of lifestyles that are dependent on it, transportation by accommodating the world's biggest carriers, recreation by offering its beauty in many moods, and home to countless species. At the essence of receiving various forms of entertainment, consumers choose to be close to the ocean while performing many fun activities. Which, at some point, upsets the stomach of the ocean by threatening marine life and the environment. Consumers throw the waste into the ocean after using it. Most of them are plastics that float over the ocean and turn into thousands of micro pieces that are hard to observe with the naked eye but easily eaten by the sea species. Eventually, that conflicts with the natural consumption process of any living species, making them sick. This information is not known by most consumers who go to the sea or seashores occasionally to spend time, nor is it widely discussed, which creates an information gap among consumers. However, advertising is a powerful tool to educate people about ocean pollution. This abstract analyzes three major ocean-saving advertisement campaigns that use innovative and advanced technology to get maximum exposure. The study collects data from the selected campaigns' websites and retrieves all available content related to messages, videos, and images. First, the SeaLegacy campaign uses stunning images to create awareness among the people; they use social media content, videos, and other educational content. They create content and strategies to build an emotional connection among the consumers that encourage them to move on an action. All the messages in their campaign empower consumers by using powerful words. Second, Ocean Conservancy Campaign uses social media marketing, events, and educational content to protect the ocean from various pollutants, including plastics, climate change, and overfishing. They use powerful images and videos of marine life. Their mission is to create evidence-based solutions toward a healthy ocean. Their message includes the message regarding the local communities along with the sea species. Third, ocean clean-up is a campaign that applies strategies using innovative technologies to remove plastic waste from the ocean. They use social media, digital, and email marketing to reach people and raise awareness. They also use images and videos to evoke an emotional response to take action. These tree advertisements use realistic images, powerful words, and the presence of living species in the imagery presentation, which are eye-catching and can grow emotional connection among the consumers. Identifying the effectiveness of the messages these advertisements carry and their strategies highlights the knowledge gap of mass people between real pollution and its consequences, making the message more accessible to the mass of people. This study aims to provide insights into the effectiveness of ocean-saving advertisement campaigns and their impact on the public's awareness of ocean conservation. The findings from this study help shape future campaigns.

Keywords: advertising-campaign, content-creation, images ocean-saving technology, videos

Procedia PDF Downloads 45
110 Creation of a Trust-Wide, Cross-Speciality, Virtual Teaching Programme for Doctors, Nurses and Allied Healthcare Professionals

Authors: Nelomi Anandagoda, Leanne J. Eveson

Abstract:

During the COVID-19 pandemic, the surge in in-patient admissions across the medical directorate of a district general hospital necessitated the implementation of an incident rota. Conscious of the impact on training and professional development, the idea of developing a virtual teaching programme was conceived. The programme initially aimed to provide junior doctors, specialist nurses, pharmacists, and allied healthcare professionals from medical specialties and those re-deployed from other specialties (e.g., ophthalmology, GP, surgery, psychiatry) the knowledge and skills to manage the deteriorating patient with COVID-19. The programme was later developed to incorporate the general internal medicine curriculum. To facilitate continuing medical education whilst maintaining social distancing during this period, a virtual platform was used to deliver teaching to junior doctors across two large district general hospitals and two community hospitals. Teaching sessions were recorded and uploaded to a common platform, providing a resource for participants to catch up on and re-watch teaching sessions, making strides towards reducing discrimination against the professional development of less than full-time trainees. Thus, creating a learning environment, which is inclusive and accessible to adult learners in a self-directed manner. The negative impact of the pandemic on the well-being of healthcare professionals is well documented. To support the multi-disciplinary team, the virtual teaching programme evolved to included sessions on well-being, resilience, and work-life balance. Providing teaching for learners across the multi-disciplinary team (MDT) has been an eye-opening experience. By challenging the concept that learners should only be taught within their own peer groups, the authors have fostered a greater appreciation of the strengths of the MDT and showcased the immense wealth of expertise available within the trust. The inclusive nature of the teaching and the ease of joining a virtual teaching session has facilitated the dissemination of knowledge across the MDT, thus improving patient care on the frontline. The weekly teaching programme has been running for over eight months, with ongoing engagement, interest, and participation. As described above, the teaching programme has evolved to accommodate the needs of its learners. It has received excellent feedback with an appreciation of its inclusive, multi-disciplinary, and holistic nature. The COVID-19 pandemic provided a catalyst to rapidly develop novel methods of working and training and widened access/exposure to the virtual technologies available to large organisations. By merging pedagogical expertise and technology, the authors have created an effective online learning environment. Although the authors do not propose to replace face-to-face teaching altogether, this model of virtual multidisciplinary team, cross-site teaching has proven to be a great leveler. It has made high-quality teaching accessible to learners of different confidence levels, grades, specialties, and working patterns.

Keywords: cross-site, cross-speciality, inter-disciplinary, multidisciplinary, virtual teaching

Procedia PDF Downloads 147
109 Ionian Sea Aquarium-Museum in Kefallinia Island, Greece: A Hub Developing the Underwater Natural and Cultural Resources in the Ionian Sea and Advancing the Ocean Literacy to the Public

Authors: Ferentinos George, Papatheodorou George, Belmonte Genuario, Geraga Maria, Christodoulou Dimitris, Fakiris Elias, Iatrou Margarita, Kordella Stravroula, Prevenios Michail, Mentogianis Vassilis, Sotiropoulos Makis

Abstract:

The Ionian Sea Aquarium-Museum in Kefallinia Island, Greece and its twinning with that of Santa Maria al Bagno in the Salento peninsula, Italy, are recently established Hubs in the Ionian Sea funded by the European Territorial Cooperation Programme, Greece-Italy 2007-2013. The objectives of the Ionian Sea Aquarium-Museum are: (i) exhibiting to the public the underwater natural and cultural treasures of the seas surrounding the island, (ii) the functioning of a recreational/vocational hub for all educational levels but also for sea users and stakeholders, to raise their awareness of the seas and engage them in the European notion of the Blue Growth of the Seas and (iii) setting up diving parks in sites of natural and cultural importance. The natural heritage in the Aquarium-Museum is exhibited in five tanks displaying the two most important benthic habitats in the Mediterranean Sea, that is, the Posidonia oceanica and the Coralligene assemblages with the associated rich fauna. The cultural heritage is exhibited in: (i) Dioramas displaying scale model replicas of the three best preserved ancient and historic wrecks. -The Fiscardo Roman wreck dating between 1st cent B.C. and 2nd cent. A.D., which is one of the largest and best preserved in the Mediterranean Sea. -The HMS PERSEUS British submarine, which is known for the second deepest submarine escape from all sunken submarines in WW II, and -A wooden wreck, the Italian ship Alma probably, which was requisitioned by the German army and used for transporting supplies and ammunition. (ii) Documentaries: The first two present the complete story from launching to sinking of: the HMS PERSEUS British submarine, the SS Ardena which is associated with the Italian Aqui Division killed by the German forces in Kefallinia and made known from the book and film “Captain Corelli’s Mandolin” and the third documentary deals with the birth place of seafaring in the world, which took place in the Greek. Archipelago by Neanderthals and modern humans between 115 and 35 thousand years ago. The Aquarium-Museum starts from next year (a) educational programmes for schools and tourists to discover the natural and cultural treasures around Kefallinia island, (b) recreational/vocational holiday activities centered on eco-diving and get involved in mapping and monitoring NATURA 2000 sites around the island and thus actively engaged in the Blue Growth of the seas and (c) summer schools aimed at under/post-graduate students, who are interested in marine archaeology and geo-habitat mapping and are looking for a job in the sustainable management of the seas. The exhibition themes in the Aquarium-Museum as well as the recreational /vocational and educational activities are prepared by the Oceanus Net laboratories of Patras University and were selected after surveying the seafloor using the latest state of art sonar and camera technologies.

Keywords: aquarium-museum, cultural and natural treasures, ionian sea, Kefallinia Island

Procedia PDF Downloads 559
108 Rainwater Management: A Case Study of Residential Reconstruction of Cultural Heritage Buildings in Russia

Authors: V. Vsevolozhskaia

Abstract:

Since 1990, energy-efficient development concepts have constituted both a turning point in civil engineering and a challenge for an environmentally friendly future. Energy and water currently play an essential role in the sustainable economic growth of the world in general and Russia in particular: the efficiency of the water supply system is the second most important parameter for energy consumption according to the British assessment method, while the water-energy nexus has been identified as a focus for accelerating sustainable growth and developing effective, innovative solutions. The activities considered in this study were aimed at organizing and executing the renovation of the property in residential buildings located in St. Petersburg, specifically buildings with local or federal historical heritage status under the control of the St. Petersburg Committee for the State Inspection and Protection of Historic and Cultural Monuments (KGIOP) and UNESCO. Even after reconstruction, these buildings still fall into energy efficiency class D. Russian Government Resolution No. 87 on the structure and required content of project documentation contains a section entitled ‘Measures to ensure compliance with energy efficiency and equipment requirements for buildings, structures, and constructions with energy metering devices’. Mention is made of the need to install collectors and meters, which only calculate energy, neglecting the main purpose: to make buildings more energy-efficient, potentially even energy efficiency class A. The least-explored aspects of energy-efficient technology in the Russian Federation remain the water balance and the possibility of implementing rain and meltwater collection systems. These modern technologies are used exclusively for new buildings due to a lack of government directive to create project documentation during the planning of major renovations and reconstruction that would include the collection and reuse of rainwater. Energy-efficient technology for rain and meltwater collection is currently applied only to new buildings, even though research has proved that using rainwater is safe and offers a huge step forward in terms of eco-efficiency analysis and water innovation. Where conservation is mandatory, making changes to protected sites is prohibited. In most cases, the protected site is the cultural heritage building itself, including the main walls and roof. However, the installation of a second water supply system and collection of rainwater would not affect the protected building itself. Water efficiency in St. Petersburg is currently considered only from the point of view of the installation that regulates the flow of the pipeline shutoff valves. The development of technical guidelines for the use of grey- and/or rainwater to meet the needs of residential buildings during reconstruction or renovation is not yet complete. The ideas for water treatment, collection and distribution systems presented in this study should be taken into consideration during the reconstruction or renovation of residential cultural heritage buildings under the protection of KGIOP and UNESCO. The methodology applied also has the potential to be extended to other cultural heritage sites in northern countries and lands with an average annual rainfall of over 600 mm to cover average toilet-flush needs.

Keywords: cultural heritage, energy efficiency, renovation, rainwater collection, reconstruction, water management, water supply

Procedia PDF Downloads 73
107 Stakeholder Mapping and Requirements Identification for Improving Traceability in the Halal Food Supply Chain

Authors: Laila A. H. F. Dashti, Tom Jackson, Andrew West, Lisa Jackson

Abstract:

Traceability systems are important in the agri-food and halal food sectors for monitoring ingredient movements, tracking sources, and ensuring food integrity. However, designing a traceability system for the halal food supply chain is challenging due to diverse stakeholder requirements and complex needs. Existing literature on stakeholder mapping and identifying requirements for halal food supply chains is limited. To address this gap, a pilot study was conducted to identify the objectives, requirements, and recommendations of stakeholders in the Kuwaiti halal food industry. The study collected data through semi-structured interviews with an international halal food manufacturer based in Kuwait. The aim was to gain a deep understanding of stakeholders' objectives, requirements, processes, and concerns related to the design of a traceability system in the country's halal food sector. Traceability systems are being developed and tested in the agri-food and halal food sectors due to their ability to monitor ingredient movements, track sources, and detect potential issues related to food integrity. Designing a traceability system for the halal food supply chain poses significant challenges due to diverse stakeholder requirements and the complexity of their needs (including varying food ingredients, different sources, destinations, supplier processes, certifications, etc.). Achieving a halal food traceability solution tailored to stakeholders' requirements within the supply chain necessitates prior knowledge of these needs. Although attempts have been made to address design-related issues in traceability systems, literature on stakeholder mapping and identification of requirements specific to halal food supply chains is scarce. Thus, this pilot study aims to identify the objectives, requirements, and recommendations of stakeholders in the halal food industry. The paper presents insights gained from the pilot study, which utilized semi-structured interviews to collect data from a Kuwait-based international halal food manufacturer. The objective was to gain an in-depth understanding of stakeholders' objectives, requirements, processes, and concerns pertaining to the design of a traceability system in Kuwait's halal food sector. The stakeholder mapping results revealed that government entities, food manufacturers, retailers, and suppliers are key stakeholders in Kuwait's halal food supply chain. Lessons learned from this pilot study regarding requirement capture for traceability systems include the need to streamline communication, focus on communication at each level of the supply chain, leverage innovative technologies to enhance process structuring and operations and reduce halal certification costs. The findings also emphasized the limitations of existing traceability solutions, such as limited cooperation and collaboration among stakeholders, high costs of implementing traceability systems without government support, lack of clarity regarding product routes, and disrupted communication channels between stakeholders. These findings contribute to a broader research program aimed at developing a stakeholder requirements framework that utilizes "business process modelling" to establish a unified model for traceable stakeholder requirements.

Keywords: supply chain, traceability system, halal food, stakeholders’ requirements

Procedia PDF Downloads 78
106 Kinetic Rate Comparison of Methane Catalytic Combustion of Palladium Catalysts Impregnated onto ɤ-Alumina and Bio-Char

Authors: Noor S. Nasri, Eric C. A. Tatt, Usman D. Hamza, Jibril Mohammed, Husna M. Zain

Abstract:

Climate change has becoming a global environmental issue that may trigger irreversible changes in the environment with catastrophic consequences for human, animals and plants on our planet. Methane, carbon dioxide and nitrous oxide are the greenhouse gases (GHG) and as the main factor that significantly contributes to the global warming. Mainly carbon dioxide be produced and released to atmosphere by thermal industrial and power generation sectors. Methane is dominant component of natural gas releases significant of thermal heat, and the gaseous pollutants when homogeneous thermal combustion takes place at high temperature. Heterogeneous catalytic Combustion (HCC) principle is promising technologies towards environmental friendly energy production should be developed to ensure higher yields with lower pollutants gaseous emissions and perform complete combustion oxidation at moderate temperature condition as comparing to homogeneous high thermal combustion. Hence the principle has become a very interesting alternative total oxidation for the treatment of pollutants gaseous emission especially NOX product formation. Noble metals are dispersed on a support-porous HCC such as γ- Al2O3, TiO2 and ThO2 to increase thermal stability of catalyst and to increase to effectiveness of catalytic combustion. Support-porous HCC material to be selected based on factors of the surface area, porosity, thermal stability, thermal conductivity, reactivity with reactants or products, chemical stability, catalytic activity, and catalyst life. γ- Al2O3 with high catalytic activity and can last longer life of catalyst, is commonly used as the support for Pd catalyst at low temperatures. Sustainable and renewable support-material of bio-mass char was derived from agro-industrial waste material and used to compare with those the conventional support-porous material. The abundant of biomass wastes generated in palm oil industries is one potential source to convert the wastes into sustainable material as replacement of support material for catalysts. Objective of this study was to compare the kinetic rate of reaction the combustion of methane on Palladium (Pd) based catalyst with Al2O3 support and bio-char (Bc) support derived from shell kernel. The 2wt% Pd was prepared using incipient wetness impregnation method and the HCC performance was accomplished using tubular quartz reactor with gas mixture ratio of 3% methane and 97% air. Material characterization was determined using TGA, SEM, and BET surface area. The methane porous-HCC conversion was carried out by online gas analyzer connected to the reactor that performed porous-HCC. BET surface area for prepared 2 wt% Pd/Bc is smaller than prepared 2wt% Pd/ Al2O3 due to its low porosity between particles. The order of catalyst activity based on kinetic rate on reaction of catalysts in low temperature is prepared 2wt% Pd/Bc > calcined 2wt% Pd/ Al2O3 > prepared 2wt% Pd/ Al2O3 > calcined 2wt% Pd/Bc. Hence the usage of agro-industrial bio-mass waste material can enhance the sustainability principle.

Keywords: catalytic-combustion, environmental, support-bio-char material, sustainable and renewable material

Procedia PDF Downloads 371
105 Artificial Intelligence for Traffic Signal Control and Data Collection

Authors: Reggie Chandra

Abstract:

Trafficaccidents and traffic signal optimization are correlated. However, 70-90% of the traffic signals across the USA are not synchronized. The reason behind that is insufficient resources to create and implement timing plans. In this work, we will discuss the use of a breakthrough Artificial Intelligence (AI) technology to optimize traffic flow and collect 24/7/365 accurate traffic data using a vehicle detection system. We will discuss what are recent advances in Artificial Intelligence technology, how does AI work in vehicles, pedestrians, and bike data collection, creating timing plans, and what is the best workflow for that. Apart from that, this paper will showcase how Artificial Intelligence makes signal timing affordable. We will introduce a technology that uses Convolutional Neural Networks (CNN) and deep learning algorithms to detect, collect data, develop timing plans and deploy them in the field. Convolutional Neural Networks are a class of deep learning networks inspired by the biological processes in the visual cortex. A neural net is modeled after the human brain. It consists of millions of densely connected processing nodes. It is a form of machine learning where the neural net learns to recognize vehicles through training - which is called Deep Learning. The well-trained algorithm overcomes most of the issues faced by other detection methods and provides nearly 100% traffic data accuracy. Through this continuous learning-based method, we can constantly update traffic patterns, generate an unlimited number of timing plans and thus improve vehicle flow. Convolutional Neural Networks not only outperform other detection algorithms but also, in cases such as classifying objects into fine-grained categories, outperform humans. Safety is of primary importance to traffic professionals, but they don't have the studies or data to support their decisions. Currently, one-third of transportation agencies do not collect pedestrian and bike data. We will discuss how the use of Artificial Intelligence for data collection can help reduce pedestrian fatalities and enhance the safety of all vulnerable road users. Moreover, it provides traffic engineers with tools that allow them to unleash their potential, instead of dealing with constant complaints, a snapshot of limited handpicked data, dealing with multiple systems requiring additional work for adaptation. The methodologies used and proposed in the research contain a camera model identification method based on deep Convolutional Neural Networks. The proposed application was evaluated on our data sets acquired through a variety of daily real-world road conditions and compared with the performance of the commonly used methods requiring data collection by counting, evaluating, and adapting it, and running it through well-established algorithms, and then deploying it to the field. This work explores themes such as how technologies powered by Artificial Intelligence can benefit your community and how to translate the complex and often overwhelming benefits into a language accessible to elected officials, community leaders, and the public. Exploring such topics empowers citizens with insider knowledge about the potential of better traffic technology to save lives and improve communities. The synergies that Artificial Intelligence brings to traffic signal control and data collection are unsurpassed.

Keywords: artificial intelligence, convolutional neural networks, data collection, signal control, traffic signal

Procedia PDF Downloads 126
104 Feasibility of Washing/Extraction Treatment for the Remediation of Deep-Sea Mining Trailings

Authors: Kyoungrean Kim

Abstract:

Importance of deep-sea mineral resources is dramatically increasing due to the depletion of land mineral resources corresponding to increasing human’s economic activities. Korea has acquired exclusive exploration licenses at four areas which are the Clarion-Clipperton Fracture Zone in the Pacific Ocean (2002), Tonga (2008), Fiji (2011) and Indian Ocean (2014). The preparation for commercial mining of Nautilus minerals (Canada) and Lockheed martin minerals (USA) is expected by 2020. The London Protocol 1996 (LP) under International Maritime Organization (IMO) and International Seabed Authority (ISA) will set environmental guidelines for deep-sea mining until 2020, to protect marine environment. In this research, the applicability of washing/extraction treatment for the remediation of deep-sea mining tailings was mainly evaluated in order to present preliminary data to develop practical remediation technology in near future. Polymetallic nodule samples were collected at the Clarion-Clipperton Fracture Zone in the Pacific Ocean, then stored at room temperature. Samples were pulverized by using jaw crusher and ball mill then, classified into 3 particle sizes (> 63 µm, 63-20 µm, < 20 µm) by using vibratory sieve shakers (Analysette 3 Pro, Fritsch, Germany) with 63 µm and 20 µm sieve. Only the particle size 63-20 µm was used as the samples for investigation considering the lower limit of ore dressing process which is tens to 100 µm. Rhamnolipid and sodium alginate as biosurfactant and aluminum sulfate which are mainly used as flocculant were used as environmentally friendly additives. Samples were adjusted to 2% liquid with deionized water then mixed with various concentrations of additives. The mixture was stirred with a magnetic bar during specific reaction times and then the liquid phase was separated by a centrifugal separator (Thermo Fisher Scientific, USA) under 4,000 rpm for 1 h. The separated liquid was filtered with a syringe and acrylic-based filter (0.45 µm). The extracted heavy metals in the filtered liquid were then determined using a UV-Vis spectrometer (DR-5000, Hach, USA) and a heat block (DBR 200, Hach, USA) followed by US EPA methods (8506, 8009, 10217 and 10220). Polymetallic nodule was mainly composed of manganese (27%), iron (8%), nickel (1.4%), cupper (1.3 %), cobalt (1.3%) and molybdenum (0.04%). Based on remediation standards of various countries, Nickel (Ni), Copper (Cu), Cadmium (Cd) and Zinc (Zn) were selected as primary target materials. Throughout this research, the use of rhamnolipid was shown to be an effective approach for removing heavy metals in samples originated from manganese nodules. Sodium alginate might also be one of the effective additives for the remediation of deep-sea mining tailings such as polymetallic nodules. Compare to the use of rhamnolipid and sodium alginate, aluminum sulfate was more effective additive at short reaction time within 4 h. Based on these results, sequencing particle separation, selective extraction/washing, advanced filtration of liquid phase, water treatment without dewatering and solidification/stabilization may be considered as candidate technologies for the remediation of deep-sea mining tailings.

Keywords: deep-sea mining tailings, heavy metals, remediation, extraction, additives

Procedia PDF Downloads 135
103 Michel Foucault’s Docile Bodies and The Matrix Trilogy: A Close Reading Applied to the Human Pods and Growing Fields in the Films

Authors: Julian Iliev

Abstract:

The recent release of The Matrix Resurrections persuaded many film scholars that The Matrix trilogy had lost its appeal and its concepts were largely outdated. This study examines the human pods and growing fields in the trilogy. Their functionality is compared to Michel Foucault’s concept of docile bodies: linking fictional and contemporary worlds. This paradigm is scrutinized through surveillance literature. The analogy brings to light common elements of hidden surveillance practices in technologies. The comparison illustrates the effects of body manipulation portrayed in the movies and their relevance with contemporary surveillance practices. Many scholars have utilized a close reading methodology in film studies (J.Bizzocchi, J.Tanenbaum, P.Larsen, S. Herbrechter, and Deacon et al.). The use of a particular lens through which media text is examined is an indispensable factor that needs to be incorporated into the methodology. The study spotlights both scenes from the trilogy depicting the human pods and growing fields. The functionality of the pods and the fields compare directly with Foucault’s concept of docile bodies. By utilizing Foucault’s study as a lens, the research will unearth hidden components and insights into the films. Foucault recognizes three disciplines that produce docile bodies: 1) manipulation and the interchangeability of individual bodies, 2) elimination of unnecessary movements and management of time, and 3) command system guaranteeing constant supervision and continuity protection. These disciplines can be found in the pods and growing fields. Each body occupies a single pod aiding easier manipulation and fast interchangeability. The movement of the bodies in the pods is reduced to the absolute minimum. Thus, the body is transformed into the ultimate object of control – minimum movement correlates to maximum energy generation. Supervision is exercised by wiring the body with numerous types of cables. This ultimate supervision of body activity reduces the body’s purpose to mere functioning. If a body does not function as an energy source, then it’s unplugged, ejected, and liquefied. The command system secures the constant supervision and continuity of the process. To Foucault, the disciplines are distinctly different from slavery because they stop short of a total takeover of the bodies. This is a clear difference from the slave system implemented in the films. Even though their system might lack sophistication, it makes up for it in the elevation of functionality. Further, surveillance literature illustrates the connection between the generation of body energy in The Matrix trilogy to the generation of individual data in contemporary society. This study found that the three disciplines producing docile bodies were present in the portrayal of the pods and fields in The Matrix trilogy. The above comparison combined with surveillance literature yields insights into analogous processes and contemporary surveillance practices. Thus, the constant generation of energy in The Matrix trilogy can be equated to the consistent data generation in contemporary society. This essay shows the relevance of the body manipulation concept in the Matrix films with contemporary surveillance practices.

Keywords: docile bodies, film trilogies, matrix movies, michel foucault, privacy loss, surveillance

Procedia PDF Downloads 61
102 Characterizing the Spatially Distributed Differences in the Operational Performance of Solar Power Plants Considering Input Volatility: Evidence from China

Authors: Bai-Chen Xie, Xian-Peng Chen

Abstract:

China has become the world's largest energy producer and consumer, and its development of renewable energy is of great significance to global energy governance and the fight against climate change. The rapid growth of solar power in China could help achieve its ambitious carbon peak and carbon neutrality targets early. However, the non-technical costs of solar power in China are much higher than at international levels, meaning that inefficiencies are rooted in poor management and improper policy design and that efficiency distortions have become a serious challenge to the sustainable development of the renewable energy industry. Unlike fossil energy generation technologies, the output of solar power is closely related to the volatile solar resource, and the spatial unevenness of solar resource distribution leads to potential efficiency spatial distribution differences. It is necessary to develop an efficiency evaluation method that considers the volatility of solar resources and explores the mechanism of the influence of natural geography and social environment on the spatially varying characteristics of efficiency distribution to uncover the root causes of managing inefficiencies. The study sets solar resources as stochastic inputs, introduces a chance-constrained data envelopment analysis model combined with the directional distance function, and measures the solar resource utilization efficiency of 222 solar power plants in representative photovoltaic bases in northwestern China. By the meta-frontier analysis, we measured the characteristics of different power plant clusters and compared the differences among groups, discussed the mechanism of environmental factors influencing inefficiencies, and performed statistical tests through the system generalized method of moments. Rational localization of power plants is a systematic project that requires careful consideration of the full utilization of solar resources, low transmission costs, and power consumption guarantee. Suitable temperature, precipitation, and wind speed can improve the working performance of photovoltaic modules, reasonable terrain inclination can reduce land cost, and the proximity to cities strongly guarantees the consumption of electricity. The density of electricity demand and high-tech industries is more important than resource abundance because they trigger the clustering of power plants to result in a good demonstration and competitive effect. To ensure renewable energy consumption, increased support for rural grids and encouraging direct trading between generators and neighboring users will provide solutions. The study will provide proposals for improving the full life-cycle operational activities of solar power plants in China to reduce high non-technical costs and improve competitiveness against fossil energy sources.

Keywords: solar power plants, environmental factors, data envelopment analysis, efficiency evaluation

Procedia PDF Downloads 60
101 A Proposal of a Strategic Framework for the Development of Smart Cities: The Argentinian Case

Authors: Luis Castiella, Mariano Rueda, Catalina Palacio

Abstract:

The world’s rapid urbanisation represents an excellent opportunity to implement initiatives that are oriented towards a country’s general development. However, this phenomenon has created considerable pressure on current urban models, pushing them nearer to a crisis. As a result, several factors usually associated with underdevelopment have been steadily rising. Moreover, actions taken by public authorities have not been able to keep up with the speed of urbanisation, which has impeded them from meeting the demands of society, responding with reactionary policies instead of with coordinated, organised efforts. In contrast, the concept of a Smart City which emerged around two decades ago, in principle, represents a city that utilises innovative technologies to remedy the everyday issues of the citizen, empowering them with the newest available technology and information. This concept has come to adopt a wider meaning, including human and social capital, as well as productivity, economic growth, quality of life, environment and participative governance. These developments have also disrupted the management of institutions such as academia, which have become key in generating scientific advancements that can solve pressing problems, and in forming a specialised class that is able to follow up on these breakthroughs. In this light, the Ministry of Modernisation of the Argentinian Nation has created a model that is rooted in the concept of a ‘Smart City’. This effort considered all the dimensions that are at play in an urban environment, with careful monitoring of each sub-dimensions in order to establish the government’s priorities and improving the effectiveness of its operations. In an attempt to ameliorate the overall efficiency of the country’s economic and social development, these focused initiatives have also encouraged citizen participation and the cooperation of the private sector: replacing short-sighted policies with some that are coherent and organised. This process was developed gradually. The first stage consisted in building the model’s structure; the second, at applying the method created on specific case studies and verifying that the mechanisms used respected the desired technical and social aspects. Finally, the third stage consists in the repetition and subsequent comparison of this experiment in order to measure the effects on the ‘treatment group’ over time. The first trial was conducted on 717 municipalities and evaluated the dimension of Governance. Results showed that levels of governmental maturity varied sharply with relation to size: cities with less than 150.000 people had a strikingly lower level of governmental maturity than cities with more than 150.000 people. With the help of this analysis, some important trends and target population were made apparent, which enabled the public administration to focus its efforts and increase its probability of being successful. It also permitted to cut costs, time, and create a dynamic framework in tune with the population’s demands, improving quality of life with sustained efforts to develop social and economic conditions within the territorial structure.

Keywords: composite index, comprehensive model, smart cities, strategic framework

Procedia PDF Downloads 155
100 Measuring Green Growth Indicators: Implication for Policy

Authors: Hanee Ryu

Abstract:

The former president Lee Myung-bak's administration of Korea presented “green growth” as a catchphrase from 2008. He declared “low-carbon, green growth” the nation's vision for the next decade according to United Nation Framework on Climate Change. The government designed omnidirectional policy for low-carbon and green growth with concentrating all effort of departments. The structural change was expected because this slogan is the identity of the government, which is strongly driven with the whole department. After his administration ends, the purpose of this paper is to quantify the policy effect and to compare with the value of the other OECD countries. The major target values under direct policy objectives were suggested, but it could not capture the entire landscape on which the policy makes changes. This paper figures out the policy impacts through comparing the value of ex-ante between the one of ex-post. Furthermore, each index level of Korea’s low-carbon and green growth comparing with the value of the other OECD countries. To measure the policy effect, indicators international organizations have developed are considered. Environmental Sustainable Index (ESI) and Environmental Performance Index (EPI) have been developed by Yale University’s Center for Environmental Law and Policy and Columbia University’s Center for International Earth Science Information Network in collaboration with the World Economic Forum and Joint Research Center of European Commission. It has been widely used to assess the level of natural resource endowments, pollution level, environmental management efforts and society’s capacity to improve its environmental performance over time. Recently OCED publish the Green Growth Indicator for monitoring progress towards green growth based on internationally comparable data. They build up the conceptual framework and select indicators according to well specified criteria: economic activities, natural asset base, environmental dimension of quality of life and economic opportunities and policy response. It considers the socio-economic context and reflects the characteristic of growth. Some selected indicators are used for measuring the level of changes the green growth policies have induced in this paper. As results, the CO2 productivity and energy productivity show trends of declination. It means that policy intended industry structure shift for achieving carbon emission target affects weakly in the short-term. Increasing green technologies patents might result from the investment of previous period. The increasing of official development aids which can be immediately embarked by political decision with no time lag present only in 2008-2009. It means international collaboration and investment to developing countries via ODA has not succeeded since the initial stage of his administration. The green growth framework makes the public expect structural change, but it shows sporadic effect. It needs organization to manage it in terms of the long-range perspectives. Energy, climate change and green growth are not the issue to be handled in the one period of the administration. The policy mechanism to transfer cost problem to value creation should be developed consistently.

Keywords: comparing ex-ante between ex-post indicator, green growth indicator, implication for green growth policy, measuring policy effect

Procedia PDF Downloads 423
99 Fabrication of Antimicrobial Dental Model Using Digital Light Processing (DLP) Integrated with 3D-Bioprinting Technology

Authors: Rana Mohamed, Ahmed E. Gomaa, Gehan Safwat, Ayman Diab

Abstract:

Background: Bio-fabrication is a multidisciplinary research field that combines several principles, fabrication techniques, and protocols from different fields. The open-source-software movement is a movement that supports the use of open-source licenses for some or all software as part of the broader notion of open collaboration. Additive manufacturing is the concept of 3D printing, where it is a manufacturing method through adding layer-by-layer using computer-aided designs (CAD). There are several types of AM system used, and they can be categorized by the type of process used. One of these AM technologies is Digital light processing (DLP) which is a 3D printing technology used to rapidly cure a photopolymer resin to create hard scaffolds. DLP uses a projected light source to cure (Harden or crosslinking) the entire layer at once. Current applications of DLP are focused on dental and medical applications. Other developments have been made in this field, leading to the revolutionary field 3D bioprinting. The open-source movement was started to spread the concept of open-source software to provide software or hardware that is cheaper, reliable, and has better quality. Objective: Modification of desktop 3D printer into 3D bio-printer and the integration of DLP technology and bio-fabrication to produce an antibacterial dental model. Method: Modification of a desktop 3D printer into a 3D bioprinter. Gelatin hydrogel and sodium alginate hydrogel were prepared with different concentrations. Rhizome of Zingiber officinale, Flower buds of Syzygium aromaticum, and Bulbs of Allium sativum were extracted, and extractions were selected on different levels (Powder, aqueous extracts, total oils, and Essential oils) prepared for antibacterial bioactivity. Agar well diffusion method along with the E. coli have been used to perform the sensitivity test for the antibacterial activity of the extracts acquired by Zingiber officinale, Syzygium aromaticum, and Allium sativum. Lastly, DLP printing was performed to produce several dental models with the natural extracted combined with hydrogel to represent and simulate the Hard and Soft tissues. Result: The desktop 3D printer was modified into 3D bioprinter using open-source software Marline and modified custom-made 3D printed parts. Sodium alginate hydrogel and gelatin hydrogel were prepared at 5% (w/v), 10% (w/v), and 15%(w/v). Resin integration with the natural extracts of Rhizome of Zingiber officinale, Flower buds of Syzygium aromaticum, and Bulbs of Allium sativum was done following the percentage 1- 3% for each extract. Finally, the Antimicrobial dental model was printed; exhibits the antimicrobial activity, followed by merging with sodium alginate hydrogel. Conclusion: The open-source movement was successful in modifying and producing a low-cost Desktop 3D Bioprinter showing the potential of further enhancement in such scope. Additionally, the potential of integrating the DLP technology with bioprinting is a promising step toward the usage of the antimicrobial activity using natural products.

Keywords: 3D printing, 3D bio-printing, DLP, hydrogel, antibacterial activity, zingiber officinale, syzygium aromaticum, allium sativum, panax ginseng, dental applications

Procedia PDF Downloads 65
98 The Implantable MEMS Blood Pressure Sensor Model With Wireless Powering And Data Transmission

Authors: Vitaliy Petrov, Natalia Shusharina, Vitaliy Kasymov, Maksim Patrushev, Evgeny Bogdanov

Abstract:

The leading worldwide death reasons are ischemic heart disease and other cardiovascular illnesses. Generally, the common symptom is high blood pressure. Long-time blood pressure control is very important for the prophylaxis, correct diagnosis and timely therapy. Non-invasive methods which are based on Korotkoff sounds are impossible to apply often and for a long time. Implantable devices can combine longtime monitoring with high accuracy of measurements. The main purpose of this work is to create a real-time monitoring system for decreasing the death rate from cardiovascular diseases. These days implantable electronic devices began to play an important role in medicine. Usually implantable devices consist of a transmitter, powering which could be wireless with a special made battery and measurement circuit. Common problems in making implantable devices are short lifetime of the battery, big size and biocompatibility. In these work, blood pressure measure will be the focus because it’s one of the main symptoms of cardiovascular diseases. Our device will consist of three parts: the implantable pressure sensor, external transmitter and automated workstation in a hospital. The Implantable part of pressure sensors could be based on piezoresistive or capacitive technologies. Both sensors have some advantages and some limitations. The Developed circuit is based on a small capacitive sensor which is made of the technology of microelectromechanical systems (MEMS). The Capacitive sensor can provide high sensitivity, low power consumption and minimum hysteresis compared to the piezoresistive sensor. For this device, it was selected the oscillator-based circuit where frequency depends from the capacitance of sensor hence from capacitance one can calculate pressure. The external device (transmitter) used for wireless charging and signal transmission. Some implant devices for these applications are passive, the external device sends radio wave signal on internal LC circuit device. The external device gets reflected the signal from the implant and from a change of frequency is possible to calculate changing of capacitance and then blood pressure. However, this method has some disadvantages, such as the patient position dependence and static using. Developed implantable device doesn’t have these disadvantages and sends blood pressure data to the external part in real-time. The external device continuously sends information about blood pressure to hospital cloud service for analysis by a physician. Doctor’s automated workstation at the hospital also acts as a dashboard, which displays actual medical data of patients (which require attention) and stores it in cloud service. Usually, critical heart conditions occur few hours before heart attack but the device is able to send an alarm signal to the hospital for an early action of medical service. The system was tested with wireless charging and data transmission. These results can be used for ASIC design for MEMS pressure sensor.

Keywords: MEMS sensor, RF power, wireless data, oscillator-based circuit

Procedia PDF Downloads 559
97 Exposing The Invisible

Authors: Kimberley Adamek

Abstract:

According to the Council on Tall Buildings, there has been a rapid increase in the construction of tall or “megatall” buildings over the past two decades. Simultaneously, the New England Journal of Medicine has reported that there has been a steady increase in climate related natural disasters since the 1970s; the eastern expansion of the USA's infamous Tornado Alley being just one of many current issues. In the future, this could mean that tall buildings, which already guide high speed winds down to pedestrian levels would have to withstand stronger forces and protect pedestrians in more extreme ways. Although many projects are required to be verified within wind tunnels and a handful of cities such as San Francisco have included wind testing within building code standards, there are still many examples where wind is only considered for basic loading. This typically results in and an increase of structural expense and unwanted mitigation strategies that are proposed late within a project. When building cities, architects rarely consider how each building alters the invisible patterns of wind and how these alterations effect other areas in different ways later on. It is not until these forces move, overpower and even destroy cities that people take notice. For example, towers have caused winds to blow objects into people (Walkie-Talkie Tower, Leeds, England), cause building parts to vibrate and produce loud humming noises (Beetham Tower, Manchester), caused wind tunnels in streets as well as many other issues. Alternatively, there exist towers which have used their form to naturally draw in air and ventilate entire facilities in order to eliminate the needs for costly HVAC systems (The Met, Thailand) and used their form to increase wind speeds to generate electricity (Bahrain Tower, Dubai). Wind and weather exist and effect all parts of the world in ways such as: Science, health, war, infrastructure, catastrophes, tourism, shopping, media and materials. Working in partnership with a leading wind engineering company RWDI, a series of tests, images and animations documenting discovered interactions of different building forms with wind will be collected to emphasize the possibilities for wind use to architects. A site within San Francisco (due to its increasing tower development, consistently wind conditions and existing strict wind comfort criteria) will host a final design. Iterations of this design will be tested within the wind tunnel and computational fluid dynamic systems which will expose, utilize and manipulate wind flows to create new forms, technologies and experiences. Ultimately, this thesis aims to question the amount which the environment is allowed to permeate building enclosures, uncover new programmatic possibilities for wind in buildings, and push the boundaries of working with the wind to ensure the development and safety of future cities. This investigation will improve and expand upon the traditional understanding of wind in order to give architects, wind engineers as well as the general public the ability to broaden their scope in order to productively utilize this living phenomenon that everyone constantly feels but cannot see.

Keywords: wind engineering, climate, visualization, architectural aerodynamics

Procedia PDF Downloads 338