Search results for: crack ratio
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4855

Search results for: crack ratio

4705 Modeling of Thermo Acoustic Emission Memory Effect in Rocks of Varying Textures

Authors: Vladimir Vinnikov

Abstract:

The paper proposes a model of an inhomogeneous rock mass with initially random distribution of microcracks on mineral grain boundaries. It describes the behavior of cracks in a medium under the effect of thermal field, the medium heated instantaneously to a predetermined temperature. Crack growth occurs according to the concept of fracture mechanics provided that the stress intensity factor K exceeds the critical value of Kc. The modeling of thermally induced acoustic emission memory effects is based on the assumption that every event of crack nucleation or crack growth caused by heating is accompanied with a single acoustic emission event. Parameters of the thermally induced acoustic emission memory effect produced by cyclic heating and cooling (with the temperature amplitude increasing from cycle to cycle) were calculated for several rock texture types (massive, banded, and disseminated). The study substantiates the adaptation of the proposed model to humidity interference with the thermally induced acoustic emission memory effect. The influence of humidity on the thermally induced acoustic emission memory effect in quasi-homogeneous and banded rocks is estimated. It is shown that such modeling allows the structure and texture of rocks to be taken into account and the influence of interference factors on the distinctness of the thermally induced acoustic emission memory effect to be estimated. The numerical modeling can be used to obtain information about the thermal impacts on rocks in the past and determine the degree of rock disturbance by means of non-destructive testing.

Keywords: crack growth, cyclic heating and cooling, rock texture, thermo acoustic emission memory effect

Procedia PDF Downloads 246
4704 A Failure Investigations of High-Temperature Hydrogen Attack at Plat Forming Unit Furnace Elbow

Authors: Altoumi Alndalusi

Abstract:

High-temperature hydrogen attack (HTHA) failure is the common phenomena at elevated temperature in hydrogen environment in oil and gas field. The failure occurred once after four years at the internal surface of Platforming elbow. Both visual and microscopic examinations revealed that the failure was initiated due to blistering forming followed by large cracking at the inner surface. Crack morphology showed that the crack depth was about 50% of material wall thickness and its behavior generally was intergranular. This study concluded that the main reason led to failure due to incorrect material selection comparing to the platforming conditions.

Keywords: decarburization, failure, heat affected zone, morphology, partial pressure, plate form

Procedia PDF Downloads 126
4703 Enhanced Methane Production from Waste Paper through Anaerobic Co-Digestion with Macroalgae

Authors: Cristina Rodriguez, Abed Alaswad, Zaki El-Hassan, Abdul G. Olabi

Abstract:

This study investigates the effect on methane production from the waste paper when co-digested with macroalgal biomass as a source of nitrogen. Both feedstocks were previously mechanically pretreated in order to reduce their particle size. Methane potential assays were carried out at laboratory scale in batch mode for 28 days. The study was planned according to two factors: the feedstock to inoculum (F/I) ratio and the waste paper to macroalgae (WP/MA) ratio. The F/I ratios checked were 0.2, 0.3 and 0.4 and the WP/MA ratios were 0:100, 25:75, 50:50, 75:25 and 100:0. The highest methane yield (608 ml/g of volatile solids (VS)) was achieved at an F/I ratio of 0.2 and a WP/MA ratio of 50:50. The methane yield at a ratio WP/MA of 50:50 is higher than for single compound, while for ratios WP/MA of 25:75 and 75:25 the methane yield decreases compared to biomass mono-digestion. This behavior is observed for the three levels of F/I ratio being more noticeable at F/I ratio of 0.3. A synergistic effect was found for the WP/MA ratio of 50:50 and all F/I ratios and for WP/MA=50:50 and F/I=0.2. A maximum increase of methane yield of 49.58% was found for a co-digestion ratio of 50:50 and an F/I ratio of 0.4. It was concluded that methane production from waste paper improves significantly when co-digested with macroalgae biomass. The methane yields from co-digestion were also found higher that from macroalgae mono-digestion.

Keywords: anaerobic co-digestion, biogas, macroalgae, waste paper

Procedia PDF Downloads 339
4702 Effect of Si/Al Ratio on SSZ-13 Crystallization and Its Methanol-To-Olefins Catalytic Properties

Authors: Zhiqiang Xu, Hongfang Ma, Haitao Zhang, Weixin Qian, Weiyong Ying

Abstract:

SSZ-13 materials with different Si/Al ratio were prepared by varying the composition of aluminosilicate precursor solutions upon hydrothermal treatment at 150 °C. The Si/Al ratio of the initial system was systematically changed from 12.5 to infinity in order to study the limits of Al composition in precursor solutions for constructing CHA structure. The intermediates and final products were investigated by complementary techniques such as XRD, HRTEM, FESEM, and chemical analysis. NH3-TPD was used to study the Brønsted acidity of SSZ-13 samples with different Si/Al ratios. The effect of the Si/Al ratio on the precursor species, ultimate crystal size, morphology and yield was investigated. The results revealed that Al species determine the nucleation rate and the number of nuclei, which is tied to the morphology and yield of SSZ-13. The size of SSZ-13 increased and the yield decreased as the Si/Al ratio was improved. Varying Si/Al ratio of the initial system is a facile, commercially viable method of tailoring SSZ-13 crystal size and morphology. Furthermore, SSZ-13 materials with different Si/Al ratio were tested as catalysts for the methanol to olefins (MTO) reaction at 350 °C. SSZ-13 with the Si/Al ratio of 35 shows the best MTO catalytic performance.

Keywords: crystallization, MTO, Si/Al ratio, SSZ-13

Procedia PDF Downloads 263
4701 The Determination of Sodium/Potassium Ion Ratio in Selected Edible Leafy Vegetables in North-Eastern Nigeria

Authors: Raymond D. Uzoh, Philip K. Shallsuku, Christopher S. Vaachia

Abstract:

Selected edible leafy vegetables from North-eastern Nigeria were analysed for their sodium and potassium content in mg/100 g and the ratio Na+/K+ worked out. From experimental results, Venonia amydalina (bitter leaf) contained 150 mg (0.15 g) of sodium and 20500 mg (20.5 g) potassium with a ratio of 0.007, Brassica oleracea var capitata (cabbage) contained 300 mg (0.3 g) of sodium and 19000 mg (19 g) of potassium with a ration of 0.012. Others are Telfairia occidentalis (fluted pumpkin) with 400 mg (0.45 g) of sodium and 19500 mg (19.5 g) of potassium with a ratio of 0.020; Hibiscus sabdriffa (sorrel) has 200 mg (0.2 g) of sodium and 600 mg (0.6 g) of potassium with a ratio of 0.300; and Amarantus caudatus (spinach) contained 450 mg (0.45 g) of sodium and 23000 mg (23 g) of potassium with a ratio of 0.020. The presence of sodium and potassium in foods has become increasingly important as recent studies and dietary information gathered in this research has shown that sodium intake is not the sole consideration in elevated blood pressure but its considered as a ratio Na+/K+ fixed at 0.6. This ratio has been found to be a more important factor, suggesting that our diet should contain 67 % more potassium than sodium.

Keywords: vegetables, sodium, potassium, blood pressure, diet, foods

Procedia PDF Downloads 444
4700 Exploring Hydrogen Embrittlement and Fatigue Crack Growth in API 5L X52 Steel Pipeline Under Cyclic Internal Pressure

Authors: Omar Bouledroua, Djamel Zelmati, Zahreddine Hafsi, Milos B. Djukic

Abstract:

Transporting hydrogen gas through the existing natural gas pipeline network offers an efficient solution for energy storage and conveyance. Hydrogen generated from excess renewable electricity can be conveyed through the API 5L steel-made pipelines that already exist. In recent years, there has been a growing demand for the transportation of hydrogen through existing gas pipelines. Therefore, numerical and experimental tests are required to verify and ensure the mechanical integrity of the API 5L steel pipelines that will be used for pressurized hydrogen transportation. Internal pressure loading is likely to accelerate hydrogen diffusion through the internal pipe wall and consequently accentuate the hydrogen embrittlement of steel pipelines. Furthermore, pre-cracked pipelines are susceptible to quick failure, mainly under a time-dependent cyclic pressure loading that drives fatigue crack propagation. Meanwhile, after several loading cycles, the initial cracks will propagate to a critical size. At this point, the remaining service life of the pipeline can be estimated, and inspection intervals can be determined. This paper focuses on the hydrogen embrittlement of API 5L steel-made pipeline under cyclic pressure loading. Pressurized hydrogen gas is transported through a network of pipelines where demands at consumption nodes vary periodically. The resulting pressure profile over time is considered a cyclic loading on the internal wall of a pre-cracked pipeline made of API 5L steel-grade material. Numerical modeling has allowed the prediction of fatigue crack evolution and estimation of the remaining service life of the pipeline. The developed methodology in this paper is based on the ASME B31.12 standard, which outlines the guidelines for hydrogen pipelines.

Keywords: hydrogen embrittlement, pipelines, transient flow, cyclic pressure, fatigue crack growth

Procedia PDF Downloads 45
4699 Lightweight Concrete Fracture Energy Derived by Inverse Analysis

Authors: Minho Kwon, Seonghyeok Lee, Wooyoung Jung

Abstract:

In recent years, with increase of construction of skyscraper structures, the study of concrete materials to improve their weight and performance has been emerging as a key of research area. Typically, the concrete structures has disadvantage of increasing the weight due to its mass in comparison to the strength of the materials. Therefore, in order to improve such problems, the light-weight aggregate concrete and high strength concrete materials have been studied during the past decades. On the other hand, the study of light-weight aggregate concrete materials has lack of data in comparison to the concrete structure using high strength materials, relatively. Consequently, this study presents the performance characteristics of light-weight aggregate concrete materials due to the material properties and strength. Also, this study conducted the experimental tests with respect to normal and lightweight aggregate materials, in order to indentify the tensile crack failure of the concrete structures. As a result, the Crack Mouth Opening Displacement (CMOD) from the experimental tests was constructed and the fracture energy using inverse problem analysis was developed from the force-CMOD relationship in this study, respectively.

Keywords: lightweight aggregate concrete, crack mouth opening displacement, inverse analysis, fracture energy

Procedia PDF Downloads 330
4698 Model-Based Diagnostics of Multiple Tooth Cracks in Spur Gears

Authors: Ahmed Saeed Mohamed, Sadok Sassi, Mohammad Roshun Paurobally

Abstract:

Gears are important machine components that are widely used to transmit power and change speed in many rotating machines. Any breakdown of these vital components may cause severe disturbance to production and incur heavy financial losses. One of the most common causes of gear failure is the tooth fatigue crack. Early detection of teeth cracks is still a challenging task for engineers and maintenance personnel. So far, to analyze the vibration behavior of gears, different approaches have been tried based on theoretical developments, numerical simulations, or experimental investigations. The objective of this study was to develop a numerical model that could be used to simulate the effect of teeth cracks on the resulting vibrations and hence to permit early fault detection for gear transmission systems. Unlike the majority of published papers, where only one single crack has been considered, this work is more realistic, since it incorporates the possibility of multiple simultaneous cracks with different lengths. As cracks significantly alter the gear mesh stiffness, we performed a finite element analysis using SolidWorks software to determine the stiffness variation with respect to the angular position for different combinations of crack lengths. A simplified six degrees of freedom non-linear lumped parameter model of a one-stage gear system is proposed to study the vibration of a pair of spur gears, with and without tooth cracks. The model takes several physical properties into account, including variable gear mesh stiffness and the effect of friction, but ignores the lubrication effect. The vibration simulation results of the gearbox were obtained via Matlab and Simulink. The results were found to be consistent with the results from previously published works. The effect of one crack with different levels was studied and very similar changes in the total mesh stiffness and the vibration response, both were observed and compared to what has been found in previous studies. The effect of the crack length on various statistical time domain parameters was considered and the results show that these parameters were not equally sensitive to the crack percentage. Multiple cracks are introduced at different locations and the vibration response and the statistical parameters were obtained.

Keywords: dynamic simulation, gear mesh stiffness, simultaneous tooth cracks, spur gear, vibration-based fault detection

Procedia PDF Downloads 184
4697 Calculating Stress Intensity Factor of Cracked Axis by Using a Meshless Method

Authors: S. Shahrooi, A. Talavari

Abstract:

Numeral study on the crack and discontinuity using element-free methods has been widely spread in recent years. In this study, for stress intensity factor calculation of the cracked axis under torsional loading has been used from a new element-free method as MLPG method. Region range is discretized by some dispersed nodal points. From method of moving least square (MLS) utilized to create the functions using these nodal points. Then, results of meshless method and finite element method (FEM) were compared. The results is shown which the element-free method was of good accuracy.

Keywords: stress intensity factor, crack, torsional loading, meshless method

Procedia PDF Downloads 533
4696 Comparative Study of Arch Bridges with Varying Rise to Span Ratio

Authors: Tauhidur Rahman, Arnab Kumar Sinha

Abstract:

This paper presents a comparative study of Arch bridges based on their varying rise to span ratio. The comparison is done between different steel Arch bridges which have variable span length and rise to span ratio keeping the same support condition. The aim of our present study is to select the optimum value of rise to span ratio of Arch bridge as the cost of the Arch bridge increases with the increasing of the rise. In order to fulfill the objective, several rise to span ratio have been considered for same span of Arch bridge and various structural parameters such as Bending moment, shear force etc have been calculated for different model. A comparative study has been done for several Arch bridges finally to select the optimum rise to span ratio of the Arch bridges. In the present study, Finite Element model for medium to long span, with different rise to span ratio have been modeled and are analyzed with the help of a Computational Software named MIDAS Civil to evaluate the results such as Bending moments, Shear force, displacements, Stresses, influence line diagrams, critical loads. In the present study, 60 models of Arch bridges for 80 to 120 m span with different rise to span ratio has been thoroughly investigated.

Keywords: arch bridge, analysis, comparative study, rise to span ratio

Procedia PDF Downloads 482
4695 Fracture Behaviour of Functionally Graded Materials Using Graded Finite Elements

Authors: Mohamad Molavi Nojumi, Xiaodong Wang

Abstract:

In this research fracture behaviour of linear elastic isotropic functionally graded materials (FGMs) are investigated using modified finite element method (FEM). FGMs are advantageous because they enhance the bonding strength of two incompatible materials, and reduce the residual stress and thermal stress. Ceramic/metals are a main type of FGMs. Ceramic materials are brittle. So, there is high possibility of crack existence during fabrication or in-service loading. In addition, damage analysis is necessary for a safe and efficient design. FEM is a strong numerical tool for analyzing complicated problems. Thus, FEM is used to investigate the fracture behaviour of FGMs. Here an accurate 9-node biquadratic quadrilateral graded element is proposed in which the influence of the variation of material properties is considered at the element level. The stiffness matrix of graded elements is obtained using the principle of minimum potential energy. The implementation of graded elements prevents the forced sudden jump of material properties in traditional finite elements for modelling FGMs. Numerical results are verified with existing solutions. Different numerical simulations are carried out to model stationary crack problems in nonhomogeneous plates. In these simulations, material variation is supposed to happen in directions perpendicular and parallel to the crack line. Two special linear and exponential functions have been utilized to model the material gradient as they are mostly discussed in literature. Also, various sizes of the crack length are considered. A major difference in the fracture behaviour of FGMs and homogeneous materials is related to the break of material symmetry. For example, when the material gradation direction is normal to the crack line, even under applying the mode I loading there exists coupled modes I and II of fracture which originates from the induced shear in the model. Therefore, the necessity of the proper modelling of the material variation should be considered in capturing the fracture behaviour of FGMs specially, when the material gradient index is high. Fracture properties such as mode I and mode II stress intensity factors (SIFs), energy release rates, and field variables near the crack tip are investigated and compared with results obtained using conventional homogeneous elements. It is revealed that graded elements provide higher accuracy with less effort in comparison with conventional homogeneous elements.

Keywords: finite element, fracture mechanics, functionally graded materials, graded element

Procedia PDF Downloads 149
4694 Non-Destructive Evaluation for Physical State Monitoring of an Angle Section Thin-Walled Curved Beam

Authors: Palash Dey, Sudip Talukdar

Abstract:

In this work, a cross-breed approach is presented for obtaining both the amount of the damage intensity and location of damage existing in thin-walled members. This cross-breed approach is developed based on response surface methodology (RSM) and genetic algorithm (GA). Theoretical finite element (FE) model of cracked angle section thin walled curved beam has been linked to the developed approach to carry out trial experiments to generate response surface functions (RSFs) of free, forced and heterogeneous dynamic response data. Subsequently, the error between the computed response surface functions and measured dynamic response data has been minimized using GA to find out the optimum damage parameters (amount of the damage intensity and location). A single crack of varying location and depth has been considered in this study. The presented approach has been found to reveal good accuracy in prediction of crack parameters and possess great potential in crack detection as it requires only the current response of a cracked beam.

Keywords: damage parameters, finite element, genetic algorithm, response surface methodology, thin walled curved beam

Procedia PDF Downloads 221
4693 Resilient Machine Learning in the Nuclear Industry: Crack Detection as a Case Study

Authors: Anita Khadka, Gregory Epiphaniou, Carsten Maple

Abstract:

There is a dramatic surge in the adoption of machine learning (ML) techniques in many areas, including the nuclear industry (such as fault diagnosis and fuel management in nuclear power plants), autonomous systems (including self-driving vehicles), space systems (space debris recovery, for example), medical surgery, network intrusion detection, malware detection, to name a few. With the application of learning methods in such diverse domains, artificial intelligence (AI) has become a part of everyday modern human life. To date, the predominant focus has been on developing underpinning ML algorithms that can improve accuracy, while factors such as resiliency and robustness of algorithms have been largely overlooked. If an adversarial attack is able to compromise the learning method or data, the consequences can be fatal, especially but not exclusively in safety-critical applications. In this paper, we present an in-depth analysis of five adversarial attacks and three defence methods on a crack detection ML model. Our analysis shows that it can be dangerous to adopt machine learning techniques in security-critical areas such as the nuclear industry without rigorous testing since they may be vulnerable to adversarial attacks. While common defence methods can effectively defend against different attacks, none of the three considered can provide protection against all five adversarial attacks analysed.

Keywords: adversarial machine learning, attacks, defences, nuclear industry, crack detection

Procedia PDF Downloads 129
4692 Simplified Linearized Layering Method for Stress Intensity Factor Determination

Authors: Jeries J. Abou-Hanna, Bradley Storm

Abstract:

This paper looks to reduce the complexity of determining stress intensity factors while maintaining high levels of accuracy by the use of a linearized layering approach. Many techniques for stress intensity factor determination exist, but they can be limited by conservative results, requiring too many user parameters, or by being too computationally intensive. Multiple notch geometries with various crack lengths were investigated in this study to better understand the effectiveness of the proposed method. By linearizing the average stresses in radial layers around the crack tip, stress intensity factors were found to have error ranging from -10.03% to 8.94% when compared to analytically exact solutions. This approach proved to be a robust and efficient method of accurately determining stress intensity factors.

Keywords: fracture mechanics, finite element method, stress intensity factor, stress linearization

Procedia PDF Downloads 106
4691 Dynamic Modeling of Orthotropic Cracked Materials by X-FEM

Authors: S. Houcine Habib, B. Elkhalil Hachi, Mohamed Guesmi, Mohamed Haboussi

Abstract:

In this paper, dynamic fracture behaviors of cracked orthotropic structure are modeled using extended finite element method (X-FEM). In this approach, the finite element method model is first created and then enriched by special orthotropic crack tip enrichments and Heaviside functions in the framework of partition of unity. The mixed mode stress intensity factor (SIF) is computed using the interaction integral technique based on J-integral in order to predict cracking behavior of the structure. The developments of these procedures are programmed and introduced in a self-software platform code. To assess the accuracy of the developed code, results obtained by the proposed method are compared with those of literature.

Keywords: X-FEM, composites, stress intensity factor, crack, dynamic orthotropic behavior

Procedia PDF Downloads 533
4690 Adhesive Bonded Joints Characterization and Crack Propagation in Composite Materials under Cyclic Impact Fatigue and Constant Amplitude Fatigue Loadings

Authors: Andres Bautista, Alicia Porras, Juan P. Casas, Maribel Silva

Abstract:

The Colombian aeronautical industry has stimulated research in the mechanical behavior of materials under different loading conditions aircrafts are generally exposed during its operation. The Calima T-90 is the first military aircraft built in the country, used for primary flight training of Colombian Air Force Pilots, therefore, it may be exposed to adverse operating situations such as hard landings which cause impact loads on the aircraft that might produce the impact fatigue phenomenon. The Calima T-90 structure is mainly manufactured by composites materials generating assemblies and subassemblies of different components of it. The main method of bonding these components is by using adhesive joints. Each type of adhesive bond must be studied on its own since its performance depends on the conditions of the manufacturing process and operating characteristics. This study aims to characterize the typical adhesive joints of the aircraft under usual loads. To this purpose, the evaluation of the effect of adhesive thickness on the mechanical performance of the joint under quasi-static loading conditions, constant amplitude fatigue and cyclic impact fatigue using single lap-joint specimens will be performed. Additionally, using a double cantilever beam specimen, the influence of the thickness of the adhesive on the crack growth rate for mode I delamination failure, as a function of the critical energy release rate will be determined. Finally, an analysis of the fracture surface of the test specimens considering the mechanical interaction between the substrate (composite) and the adhesive, provide insights into the magnitude of the damage, the type of failure mechanism that occurs and its correlation with the way crack propagates under the proposed loading conditions.

Keywords: adhesive, composites, crack propagation, fatigue

Procedia PDF Downloads 182
4689 Outreach Intervention Addressing Crack Cocaine Addiction in Users with Co-Occurring Opioid Use Disorder

Authors: Louise Penzenstadler, Tiphaine Robet, Radu Iuga, Daniele Zullino

Abstract:

Context: The outpatient clinic of the psychiatric addiction service of Geneva University Hospital has been providing support to individuals affected by various narcotics for 30 years. However, the increasing consumption of crack cocaine in Geneva has presented a new challenge for the healthcare system. Research Aim: The aim of this research is to evaluate the impact of an outreach intervention on crack cocaine addiction in users with co-occurring opioid use disorder. Methodology: The research utilizes a combination of quantitative and qualitative retrospective data analysis to evaluate the effectiveness of the outreach intervention. Findings: The data collected from October 2023 to December 2023 show that the outreach program successfully made 1,071 contacts with drug users and led to 15 new requests for care and enrollment in treatment. Patients expressed high satisfaction with the intervention, citing easy and rapid access to treatment and social support. Theoretical Importance: This research contributes to the understanding of the challenges and specific needs of a complex group of drug users who face severe health problems. It highlights the importance of outreach interventions in establishing trust, connecting users with care, and facilitating medication-assisted treatment for opioid addiction. Data Collection: Data was collected through the outreach program's interactions with drug users, including street outreach interventions and presence at locations frequented by users. Patient satisfaction surveys were also utilized. Analysis Procedures: The collected data was analyzed using both quantitative and qualitative methods. The quantitative analysis involved examining the number of contacts made, new requests for care, and treatment enrollment. The qualitative analysis focused on patient satisfaction and their perceptions of the intervention. Questions Addressed: The research addresses the following questions: What is the impact of an outreach intervention on crack cocaine addiction in users with co-occurring opioid use disorder? How effective is the outreach program in connecting drug users with care and initiating medication-assisted treatment? Conclusion: The outreach program has proven to be an effective intervention in establishing trust with crack users, connecting them with care, and initiating medication-assisted treatment for opioid addiction. It has also highlighted the importance of addressing the specific challenges faced by this group of drug users.

Keywords: crack addiction, outreach treatment, peer intervention, polydrug use

Procedia PDF Downloads 30
4688 Convergence with IFRS: Evidence from Financial Statements

Authors: M. S. Turan, Dimple

Abstract:

Due to implementation of IFRS by several developed and developing countries, India has no option other than to converge their accounting standards with IFRS. There are over 10,000 listed companies required to implement IFRS in India. IFRS based financial information presented by a company is different from the same information provided by Indian GAAPs. In this study, we have brought out and analyzed the effect of IFRS reporting on the financial statements of selected companies. The results reveal that convergence with IFRS brought prominent positive variations in the values of quick ratio, debt/equity ratio, proprietary ratio and net profit ratio, while negative variation is brought in the values of current ratio, debt to total assets ratio, operating profit ratio, return on capital employed and return on shareholders’ equity ratios. It also presents significant changes in the values of items of balance sheet, profit and loss account and cash flow statement.

Keywords: IFRS, reporting standards, convergence process, results

Procedia PDF Downloads 295
4687 Optimization of Biodiesel Production from Sunflower Oil Using Central Composite Design

Authors: Pascal Mwenge, Jefrey Pilusa, Tumisang Seodigeng

Abstract:

The current study investigated the effect of catalyst ratio and methanol to oil ratio on biodiesel production by using central composite design. Biodiesel was produced by transesterification using sodium hydroxide as a homogeneous catalyst, a laboratory scale reactor consisting of flat bottom flask mounts with a reflux condenser and a heating plate was used to produce biodiesel. Key parameters, including, time, temperature and mixing rate were kept constant at 60 minutes, 60 oC and 600 RPM, respectively. From the results obtained, it was observed that the biodiesel yield depends on catalyst ratio and methanol to oil ratio. The highest yield of 50.65% was obtained at catalyst ratio of 0.5 wt.% and methanol to oil mole ratio 10.5. The analysis of variances of biodiesel yield showed the R Squared value of 0.8387. A quadratic mathematical model was developed to predict the biodiesel yield in the specified parameters ranges.

Keywords: ANOVA, biodiesel, catalyst, CCD, transesterification

Procedia PDF Downloads 174
4686 The Effect of Meta-Cognitive Therapy on Meta-Cognitive Defects and Emotional Regulation in Substance Dependence Patients

Authors: Sahra Setorg

Abstract:

The purpose of this study was to determine the effect of meta-cognitive therapy on meta-cognitive defects and emotional regulation in industrial substance dependence patients. This quasi-experimental research was conducted with post-test and two-month follow-up design with control and experimental groups. The statistical population consisted of all industrial Substance dependence patients refer to addictive withdrawal clinics in Esfahan city, in Iran in 2013. 45 patients were selected from three clinics through the convenience sampling method and were randomly divided into two experimental groups (15 crack dependences, 15 amphetamine dependences) and one control group (n=15). The meta-cognitive questionnaire (MCQ) and difficulties in emotional regulation questionnaire (DERS) were used as pre-test measures and the experimental groups (crack and amphetamine) received 8 MC therapy sessions in groups. The data were analyzed via multivariate covariance statistic method by spss-18. The results showed that MCT had a significant effect in improving the meta-cognitive defects in crack and amphetamine dependences. Also, this therapy can increase the emotional regulation in both groups (p<0/05).The effect of this therapy is confirmed in two months followup. According to these findings, met-cognitive is as an interface and important variable in prevention, control, and treatment of the new industrial substance dependences.

Keywords: meta-cognitive therapy, meta-cognitive defects, emotional regulation, substance dependence disorder

Procedia PDF Downloads 482
4685 Structural Behavior of Laterally Loaded Precast Foamed Concrete Sandwich Panel

Authors: Y. H. Mugahed Amran, Raizal S. M. Rashid, Farzad Hejazi, Nor Azizi Safiee, A. A. Abang Ali

Abstract:

Experimental and analytical studies were carried out to investigate the structural behavior of precast foamed concrete sandwich panels (PFCSP) of total number (6) as one-way action slab tested under lateral load. The details of the test setup and procedures were illustrated. The results obtained from the experimental tests were discussed which include the observation of cracking patterns and influence of aspect ratio (L/b). Analytical study of finite element analysis was implemented and degree of composite action of the test panels was also examined in both experimental and analytical studies. Result shows that crack patterns appeared in only one-direction, similar to reports on solid slabs, particularly when both concrete wythes act in a composite manner. Foamed concrete was briefly reviewed and experimental results were compared with the finite element analyses data which gives a reasonable degree of accuracy. Therefore, based on the results obtained, PFCSP slab can be used as an alternative to conventional flooring system.

Keywords: aspect ratio (L/b), finite element analyses (FEA), foamed concrete (FC), precast foamed concrete sandwich panel (PFCSP), ultimate flexural strength capacity

Procedia PDF Downloads 289
4684 Microwave Plasma Dry Reforming of Methane at High CO2/CH4 Feed Ratio

Authors: Nabil Majd Alawi, Gia Hung Pham, Ahmed Barifcani

Abstract:

Dry reforming of methane that converts two greenhouses gases (CH4 and CO2) to synthesis gas (a mixture of H2 and CO) was studied in a commercial bench scale microwave (MW) plasma reactor system at atmospheric pressure. The CO2, CH4 and N2 conversions; H2, CO selectivities and yields, and syngas ratio (H2/CO) were investigated in a wide range of total feed flow rate (0.45 – 2.1 L/min), MW power (700 – 1200 watt) and CO2/CH4 molar ratio (2 – 5). At the feed flow rates of CH4, CO2 and N2 of 0.2, 0.4 and 1.5 L/min respectively, and the MWs input power of 700 W, the highest conversions of CH4 and CO2, selectivity and yield of H2, CO and H2/CO ratio of 79.35%, 44.82%, 50.12, 58.42, 39.77%, 32.89%, and 0.86, respectively, were achieved. The results of this work show that the product ratio increases slightly with the increasing total feed flow rate, but it decreases significantly with the increasing MW power and feeds CO2/CH4 ratio.

Keywords: dry reforming of methane, microwave discharge, plasma technology, synthesis gas production

Procedia PDF Downloads 241
4683 A Combination of Anisotropic Diffusion and Sobel Operator to Enhance the Performance of the Morphological Component Analysis for Automatic Crack Detection

Authors: Ankur Dixit, Hiroaki Wagatsuma

Abstract:

The crack detection on a concrete bridge is an important and constant task in civil engineering. Chronically, humans are checking the bridge for inspection of cracks to maintain the quality and reliability of bridge. But this process is very long and costly. To overcome such limitations, we have used a drone with a digital camera, which took some images of bridge deck and these images are processed by morphological component analysis (MCA). MCA technique is a very strong application of sparse coding and it explores the possibility of separation of images. In this paper, MCA has been used to decompose the image into coarse and fine components with the effectiveness of two dictionaries namely anisotropic diffusion and wavelet transform. An anisotropic diffusion is an adaptive smoothing process used to adjust diffusion coefficient by finding gray level and gradient as features. These cracks in image are enhanced by subtracting the diffused coarse image into the original image and the results are treated by Sobel edge detector and binary filtering to exhibit the cracks in a fine way. Our results demonstrated that proposed MCA framework using anisotropic diffusion followed by Sobel operator and binary filtering may contribute to an automation of crack detection even in open field sever conditions such as bridge decks.

Keywords: anisotropic diffusion, coarse component, fine component, MCA, Sobel edge detector and wavelet transform

Procedia PDF Downloads 150
4682 Bowen Ratio in Western São Paulo State, Brazil

Authors: Elaine Cristina Barboza, Antonio Jaschke Machado

Abstract:

This paper discusses micrometeorological aspects of the urban climate in three cities in Western São Paulo State: Presidente Prudente, Assis, and Iepê. Particular attention is paid to the method used to estimate the components of the energy balance at the surface. Estimates of convective fluxes showed that the Bowen ratio was an indicator of the local climate and that its magnitude varied between 0.3 and 0.7. Maximum values for the Bowen ratio occurred earlier in Iepê (11:00 am) than in Presidente Prudente (4:00 pm). The results indicate that the Bowen ratio is modulated by the radiation balance at the surface and by different clusters of vegetation.

Keywords: Bowen ratio, medium-sized cities, surface energy balance, urban climate

Procedia PDF Downloads 570
4681 Effects of Hydraulic Loading Rates and Porous Matrix in Constructed Wetlands for Wastewater Treatment

Authors: Li-Jun Ren, Wei Pan, Li-Li Xu, Shu-Qing An

Abstract:

This study evaluated whether different matrix composition volume ratio can improve water quality in the experiment. The mechanism and adsorption capability of wetland matrixes (oyster shell, coarse slag, and volcanic rock) and their different volume ratio in group configuration during pollutants removal processes were tested. When conditions unchanged, the residence time affects the reaction effect. The average removal efficiencies of four kinds of matrix volume ratio on the TN were 62.76%, 61.54%, 64.13%, and 55.89%, respectively.

Keywords: hydraulic residence time, matrix composition, removal efficiency, volume ratio

Procedia PDF Downloads 296
4680 Failure Criterion for Mixed Mode Fracture of Cracked Wood Specimens

Authors: Mahdi Fakoor, Seyed Mohammad Navid Ghoreishi

Abstract:

Investigation of fracture of wood components can prevent from catastrophic failures. Created fracture process zone (FPZ) in crack tip vicinity has important effect on failure of cracked composite materials. In this paper, a failure criterion for fracture investigation of cracked wood specimens under mixed mode I/II loading is presented. This criterion is based on maximum strain energy release rate and material nonlinearity in the vicinity of crack tip due to presence of microcracks. Verification of results with available experimental data proves the coincidence of the proposed criterion with the nature of fracture of wood. To simplify the estimation of nonlinear properties of FPZ, a damage factor is also introduced for engineering and application purposes.

Keywords: fracture criterion, mixed mode loading, damage zone, micro cracks

Procedia PDF Downloads 269
4679 Optimization of Biodiesel Production from Sunflower Oil Using Central Composite Design

Authors: Pascal Mwenge, Jefrey Pilusa, Tumisang Seodigeng

Abstract:

The current study investigated the effect of catalyst ratio and methanol to oil ratio on biodiesel production by using central composite design. Biodiesel was produced by transesterification using sodium hydroxide as a homogeneous catalyst, a laboratory scale reactor consisting of flat bottom flask mounts with a reflux condenser, and a heating plate was used to produce biodiesel. Key parameters, including time, temperature, and mixing rate was kept constant at 60 minutes, 60 oC and 600 RPM, respectively. From the results obtained, it was observed that the biodiesel yield depends on catalyst ratio and methanol to oil ratio. The highest yield of 50.65% was obtained at catalyst ratio of 0.5 wt.% and methanol to oil mole ratio 10.5. The analysis of variances of biodiesel yield showed the R Squared value of 0.8387. A quadratic mathematical model was developed to predict the biodiesel yield in the specified parameters ranges.

Keywords: ANOVA, biodiesel, catalyst, transesterification, central composite design

Procedia PDF Downloads 116
4678 Optimization of Sequential Thermophilic Bio-Hydrogen/Methane Production from Mono-Ethylene Glycol via Anaerobic Digestion: Impact of Inoculum to Substrate Ratio and N/P Ratio

Authors: Ahmed Elreedy, Ahmed Tawfik

Abstract:

This investigation aims to assess the effect of inoculum to substrate ratio (ISR) and nitrogen to phosphorous balance on simultaneous biohydrogen and methane production from anaerobic decomposition of mono-ethylene glycol (MEG). Different ISRs were applied in the range between 2.65 and 13.23 gVSS/gCOD, whereas the tested N/P ratios were changed from 4.6 to 8.5; both under thermophilic conditions (55°C). The maximum obtained methane and hydrogen yields (MY and HY) of 151.86±10.8 and 22.27±1.1 mL/gCODinitial were recorded at ISRs of 5.29 and 3.78 gVSS/gCOD, respectively. Unlikely, the ammonification process, in terms of net ammonia produced, was found to be ISR and COD/N ratio dependent, reaching its peak value of 515.5±31.05 mgNH4-N/L at ISR and COD/N ratio of 13.23 gVSS/gCOD and 11.56. The optimum HY was enhanced by more than 1.45-fold with declining N/P ratio from 8.5 to 4.6; whereas, the MY was improved (1.6-fold), while increasing N/P ratio from 4.6 to 5.5 with no significant impact at N/P ratio of 8.5. The results obtained revealed that the methane production was strongly influenced by initial ammonia, compared to initial phosphate. Likewise, the generation of ammonia was markedly deteriorated from 535.25±41.5 to 238.33±17.6 mgNH4-N/L with increasing N/P ratio from 4.6 to 8.5. The kinetic study using Modified Gompertz equation was successfully fitted to the experimental outputs (R2 > 0.9761).

Keywords: mono-ethylene glycol, biohydrogen and methane, inoculum to substrate ratio, nitrogen to phosphorous balance, ammonification

Procedia PDF Downloads 350
4677 Price to Earnings Growth (PEG) Predicting Future Returns Better than the Price to Earnings (PE) Ratio

Authors: Lindrianasari Stefanie, Aminah Khairudin

Abstract:

This study aims to provide empirical evidence regarding the ability of Price to Earnings Ratio and PEG Ratio in predicting future stock returns issuers. The samples used in this study are stocks that go into LQ45. The main contribution is to assign empirical evidence if the PEG Ratio can provide optimum return compared to Price to Earnings Ratio. This study used a sample of the entire company into the group LQ45 with the period of observation. The data used is limited to the financial statements of a company incorporated in LQ45 period July 2013-July 2014, using the financial statements and the position of the company's closing stock price at the end of 2010 as a reference benchmark for the growth of the company's stock price compared to the closing price of 2013. This study found that the method of PEG Ratio can outperform the method of PE ratio in predicting future returns on the stock portfolio of LQ45.

Keywords: price to earnings growth, price to earnings ratio, future returns, stock price

Procedia PDF Downloads 386
4676 The Determinants of Financing to Deposit Ratio of Islamic Bank in Malaysia

Authors: Achsania Hendratmi, Puji Sucia Sukmaningrum, Fatin Fadhilah Hasib, Nisful Laila

Abstract:

The research aimed to know the influence of Capital Adequacy Ratio (CAR), Return on Assets (ROA) and Size of the Financing to Deposit Ratio (FDR) Islamic Banks in Malaysia by using eleven Islamic Banks in Indonesia and fifteen Islamic Banks in Malaysia in the period 2012 to 2016 as samples. The research used a quantitative approach method, and the analysis technique used multiple linear regression. Based on the result of t-test (partial), CAR, ROA and size significantly affect of FDR. While the results of f-test (simultaneous) showed that CAR, ROA and Size significant effect on FDR.

Keywords: capital adequacy ratio, financing to deposit ratio, return on assets, size

Procedia PDF Downloads 307