Search results for: crack extension
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1273

Search results for: crack extension

1123 Racism in Drug Policies: A Report on United States Legislation

Authors: Frederick Monyepao

Abstract:

Crack cocaine first appeared on the scene in the form of cocaine freebasing in the late 1970s. Stockbrokers, investment bankers, rock stars, Hollywood elites, and a few pro athletes were regular users of the substance. As criminogenic factors associated with substance abuse began to surface, congress passed new legislation. The laws led to the increase of health coverage insurances and the expansion of hospitals. By the mid-1980s, crack use spread into America's inner cities among impoverished African Americans and Latinos. While substance abuse increased among minority communities, legislation pertaining to substance abuse evolved. The prison industry also expanded the number of cells available. A qualitative approach was taken, drawing from a range secondary sources for contextual analysis. This paper traces out the continued marginalisation and racist undertones towards minorities as perpetuated by certain drug policies. It was discovered that the new legislation on crack was instrumental in the largest incarcerations the United States ever faced. Drug offenders increased in prisons eightfold from 1986 to 2000. The paper concludes that American drug control policies are consistently irrational and ineffective when measured by levels of substance use and abuse. On the contrary, these policies have been successful as agents of social control in maintaining the stratification patterns of racial/ethnic minorities and women. To move beyond prohibition, radical law and policy reform may require a change in narratives on substance use.

Keywords: crack, drug policy, minorities, racism, substance abuse

Procedia PDF Downloads 258
1122 Job Satisfaction and Associated factors of Urban Health Extension Professionals in Addis Ababa City, Ethiopia

Authors: Metkel Gebremedhin, Biruk Kebede, Guash Abay

Abstract:

Job satisfaction largely determines the productivity and efficiency of human resources for health. There is scanty evidence on factors influencing the job satisfaction of health extension professionals (HEPs) in Addis Ababa. The objective of this study was to determine the level of and factors influencing job satisfaction among extension health workers in Addis Ababa city. This was a cross-sectional study conducted in Addis Ababa, Ethiopia. Among all public health centers found in the Addis Ababa city administration health bureau that would be included in the study, a multistage sampling technique was employed. Then we selected the study health centers randomly and urban health extension professionals from the selected health centers. In-depth interview data collection methods were carried out for a comprehensive understanding of factors affecting job satisfaction among Health extension professionals (HEPs) in Addis Ababa. HEPs working in Addis Ababa areas are the primary study population. Multivariate logistic regression with 95% CI at P ≤ 0.05 was used to assess associated factors to job satisfaction. The overall satisfaction rate was 10.7% only, while 89.3%% were dissatisfied with their jobs. The findings revealed that variables such as marital status, staff relations, community support, supervision, and rewards have a significant influence on the level of job satisfaction. For those who were not satisfied, the working environment, job description, low salary, poor leadership and training opportunities were the major causes. Other factors influencing the level of satisfaction were lack of medical equipment, lack of transport facilities, lack of training opportunities, and poor support from woreda experts. Our study documented a very low level of overall satisfaction among health extension professionals in Addis Ababa city public health centers. Considering the factors responsible for this state of affairs, urgent and concrete strategies must be developed to address the concerns of extension health professionals as they represent a sensitive domain of the health system of Addis Ababa city. Improving the overall work environment, review of job descriptions and better salaries might bring about a positive change.

Keywords: job satisfaction, extension health professionals, Addis Ababa

Procedia PDF Downloads 49
1121 Extended Strain Energy Density Criterion for Fracture Investigation of Orthotropic Materials

Authors: Mahdi Fakoor, Hannaneh Manafi Farid

Abstract:

In order to predict the fracture behavior of cracked orthotropic materials under mixed-mode loading, well-known minimum strain energy density (SED) criterion is extended. The crack is subjected along the fibers at plane strain conditions. Despite the complicities to solve the nonlinear equations which are requirements of SED criterion, SED criterion for anisotropic materials is derived. In the present research, fracture limit curve of SED criterion is depicted by a numerical solution, hence the direction of crack growth is figured out by derived criterion, MSED. The validated MSED demonstrates the improvement in prediction of fracture behavior of the materials. Also, damaged factor that plays a crucial role in the fracture behavior of quasi-brittle materials is derived from this criterion and proved its dependency on mechanical properties and direction of crack growth.

Keywords: mixed-mode fracture, minimum strain energy density criterion, orthotropic materials, fracture limit curve, mode II critical stress intensity factor

Procedia PDF Downloads 141
1120 Impact of Social Networks on Agricultural Technology Adoption: A Case Study of Ongoing Extension Programs for Paddy Cultivation in Matara District in Sri Lanka

Authors: Paulu Saramge Shalika Nirupani Seram

Abstract:

The study delves into the complex dynamics of social networks and how they affect paddy farmers’ adoption of agricultural technologies, which are included in Yaya Development program, Weedy rice program and Good Agricultural Practices (GAP) program in Matara district. Identify the social networks among the farmers of ongoing Extension Programs in Matara district, examine the farmers’ adoption level to the ongoing extension programs in Matara district, analyze the impacts of social networks for the adoption to the technologies of ongoing extension programs and give suggestions and recommendations to improve the social network of paddy farmers in Matara District for ongoing extension programs are the objectives of this research. A structured questionnaire survey was conducted with 25 farmers from Matara-North (Wilpita), 25 farmers from Matara-Central (Kamburupitiya), and 25 farmers from Matara-South (Malimbada). UCINET (Version -6.771) software was used for social network analysis, and other than that, descriptive statistics and inferential statistics were used to analyze the findings. Matara-North has the highest social network density, and Matara-South has the lowest social network density according to the social network analysis. Dissemination of intensive technologies requires the most prominent actors of the social network, and in Matara district, agricultural instructors have the highest ability to disseminate technologies. The influence of actors in the social network, the trustworthiness of AI officers, and the trust of indigenous knowledge about paddy cultivation have a significant effect on the technology adoption of farmers. The research endeavors to contribute a nuanced understanding of the social networks and agricultural technology adoption in Matara District, offering practical insights for stakeholders involved in agricultural extension services.

Keywords: agricultural extension, paddy cultivation, social network, technology adoption

Procedia PDF Downloads 38
1119 Investigation of Crack Formation in Ordinary Reinforced Concrete Beams and in Beams Strengthened with Carbon Fiber Sheet: Theory and Experiment

Authors: Anton A. Bykov, Irina O. Glot, Igor N. Shardakov, Alexey P. Shestakov

Abstract:

This paper presents the results of experimental and theoretical investigations of the mechanisms of crack formation in reinforced concrete beams subjected to quasi-static bending. The boundary-value problem has been formulated in the framework of brittle fracture mechanics and has been solved by using the finite-element method. Numerical simulation of the vibrations of an uncracked beam and a beam with cracks of different size serves to determine the pattern of changes in the spectrum of eigenfrequencies observed during crack evolution. Experiments were performed on the sequential quasistatic four-point bending of the beam leading to the formation of cracks in concrete. At each loading stage, the beam was subjected to an impulse load to induce vibrations. Two stages of cracking were detected. At the first stage the conservative process of deformation is realized. The second stage is an active cracking, which is marked by a sharp change in eingenfrequencies. The boundary of a transition from one stage to another is well registered. The vibration behavior was examined for the beams strengthened by carbon-fiber sheet before loading and at the intermediate stage of loading after the grouting of initial cracks. The obtained results show that the vibrodiagnostic approach is an effective tool for monitoring of cracking and for assessing the quality of measures aimed at strengthening concrete structures.

Keywords: crack formation, experiment, mathematical modeling, reinforced concrete, vibrodiagnostics

Procedia PDF Downloads 273
1118 Digital Structural Monitoring Tools @ADaPT for Cracks Initiation and Growth due to Mechanical Damage Mechanism

Authors: Faizul Azly Abd Dzubir, Muhammad F. Othman

Abstract:

Conventional structural health monitoring approach for mechanical equipment uses inspection data from Non-Destructive Testing (NDT) during plant shut down window and fitness for service evaluation to estimate the integrity of the equipment that is prone to crack damage. Yet, this forecast is fraught with uncertainty because it is often based on assumptions of future operational parameters, and the prediction is not continuous or online. Advanced Diagnostic and Prognostic Technology (ADaPT) uses Acoustic Emission (AE) technology and a stochastic prognostic model to provide real-time monitoring and prediction of mechanical defects or cracks. The forecast can help the plant authority handle their cracked equipment before it ruptures, causing an unscheduled shutdown of the facility. The ADaPT employs process historical data trending, finite element analysis, fitness for service, and probabilistic statistical analysis to develop a prediction model for crack initiation and growth due to mechanical damage. The prediction model is combined with live equipment operating data for real-time prediction of the remaining life span owing to fracture. ADaPT was devised at a hot combined feed exchanger (HCFE) that had suffered creep crack damage. The ADaPT tool predicts the initiation of a crack at the top weldment area by April 2019. During the shutdown window in April 2019, a crack was discovered and repaired. Furthermore, ADaPT successfully advised the plant owner to run at full capacity and improve output by up to 7% by April 2019. ADaPT was also used on a coke drum that had extensive fatigue cracking. The initial cracks are declared safe with ADaPT, with remaining crack lifetimes extended another five (5) months, just in time for another planned facility downtime to execute repair. The prediction model, when combined with plant information data, allows plant operators to continuously monitor crack propagation caused by mechanical damage for improved maintenance planning and to avoid costly shutdowns to repair immediately.

Keywords: mechanical damage, cracks, continuous monitoring tool, remaining life, acoustic emission, prognostic model

Procedia PDF Downloads 49
1117 Fracture Control of the Soda-Lime Glass in Laser Thermal Cleavage

Authors: Jehnming Lin

Abstract:

The effects of the contact ball-lens on the soda lime glass in laser thermal cleavage with a cw Nd-YAG laser were investigated in this study. A contact ball-lens was adopted to generate a bending force on the crack formation of the soda-lime glass in the laser cutting process. The Nd-YAG laser beam (wavelength of 1064 nm) was focused through the ball-lens and transmitted to the soda-lime glass, which was coated with a carbon film on the surface with a bending force from a ball-lens to generate a tensile stress state on the surface cracking. The fracture was controlled by the contact ball-lens and a straight cutting was tested to demonstrate the feasibility. Experimental observations on the crack propagation from the leading edge, main section and trailing edge of the glass sheet were compared with various mechanical and thermal loadings. Further analyses on the stress under various laser powers and contact ball loadings were made to characterize the innovative technology. The results show that the distributions of the side crack at the leading and trailing edges are mainly dependent on the boundary condition, contact force, cutting speed and laser power. With the increase of the mechanical and thermal loadings, the region of the side cracks might be dramatically reduced with proper selection of the geometrical constraints. Therefore, the application of the contact ball-lens is a possible way to control the fracture in laser cleavage with improved cutting qualities.

Keywords: laser cleavage, stress analysis, crack visualization, laser

Procedia PDF Downloads 414
1116 Finite Element Modeling of Influence of Roll Form of Vertical Scale Breaker on Decreased Formation of Surface Defects during Roughing Hot Rolling

Authors: A. Pesin, D. Pustovoytov, M. Sverdlik

Abstract:

During production of rolled steel strips the quality of the surface of finished strips influences steel consumption considerably. The most critical areas for crack formation during rolling are lateral sides of slabs. Deformation behaviors of the slab edge in roughing rolling process were analyzed by the finite element method with Deform-3D. In this study our focus is the analysis of the influence of edger’s form on the possibility to decrease surface cracking during roughing hot rolling.

Keywords: roughing hot rolling, FEM, crack, bulging

Procedia PDF Downloads 360
1115 Microscopic and Mesoscopic Deformation Behaviors of Mg-2Gd Alloy with or without Li Addition

Authors: Jing Li, Li Jin, Fulin Wang, Jie Dong, Wenjiang Ding

Abstract:

Mg-Li dual-phase alloy exhibits better combination of yield strength and elongation than the Mg single-phase alloy. To exploit its deformation behavior, the deformation mechanisms of Mg-2Gd alloy with or without Li addition, i.e., Mg-6Li-2Gd and Mg-2Gd alloy, have been studied at both microscale and mesoscale. EBSD-assisted slip trace, twin trace, and texture evolution analysis show that the α-Mg phase of Mg-6Li-2Gd alloy exhibits different microscopic deformation mechanisms with the Mg-2Gd alloy, i.e., mainly prismatic slip in the former one, while basal slip, prismatic slip and extension twin in the latter one. Further Schmid factor analysis results attribute this different intra-phase deformation mechanisms to the higher critical resolved shear stress (CRSS) value of extension twin and lower ratio of CRSSprismatic /CRSSbasal in the α-Mg phase of Mg-6Li-2Gd alloy. Additionally, Li addition can induce dual-phase microstructure in the Mg-6Li-2Gd alloy, leading to the formation of hetero-deformation induced (HDI) stress at the mesoscale. This can be evidenced by the hysteresis loops appearing during the loading-unloading-reloading (LUR) tensile tests and the activation of multiple slip activity in the α-Mg phase neighboring β-Li phase. The Mg-6Li-2Gd alloy shows higher yield strength is due to the harder α-Mg phase arising from solid solution hardening of Li addition, as well asthe strengthening of soft β-Li phase by the HDI stress during yield stage. Since the strain hardening rate of Mg-6Li-2Gd alloy is lower than that of Mg-2Gd alloy after ~2% strain, which is partly due to the weak contribution of HDI stress, Mg-6Li-2Gd alloy shows no obvious increase of uniform elongation than the Mg-2Gd alloy.But since the β-Li phase is effective in blunting the crack tips, the Mg-6Li-2Gd alloy shows ununiform elongation, which, thus, leads to the higher total elongation than the Mg-2Gd alloy.

Keywords: Mg-Li-Gd dual-phase alloy, phase boundary, HDI stress, dislocation slip activity, mechanical properties

Procedia PDF Downloads 171
1114 Effect of Prone Trunk Extension on Scapular and Thoracic Kinematics, and Activity during Scapular Posterior Tilting Exercise in Subjects with Round Shoulder Posture

Authors: A-Reum Shin, Heon-Seock Cynn, Ji-Hyun Lee, Da-Eun Kim

Abstract:

Round shoulder posture (RSP) is a position of scapular protraction and elevation, which may appear as scapular winging, and humeral internal rotation. Flexed posture (FP) may also affect RSP because FP is characterized by hyperkyphosis, forward head posture, and height reduction. The aim of this study was to investigate the effect of scapular posterior tilting exercise with prone trunk extension on round shoulder posture, activities of lower trapezius and serratus anterior, flexed posture, and thoracic erector spinae activity in subjects with round shoulder posture. Fifteen subjects with round shoulder posture were recruited in this study. Activities of lower trapezius, serratus anterior and thoracic erector spinae were measured during both scapular posterior tilting exercise and scapular posterior tilting exercise with prone trunk extension using electromyography, and round shoulder posture and flexed posture were measured immediately after each exercises using caliper. When the prone trunk extension was applied, the round shoulder posture and flexed posture significantly decreased, activities of lower trapezius and thoracic erector spinae significantly increased (p < 0.05) compared with the scapular posterior tilting exercise alone. There was no significant difference in serratus anterior activity between two exercises. Thus, prone trunk extension could be effective method to improve round shoulder posture during scapular posterior tilting exercise in subjects with round shoulder posture.

Keywords: flexed posture, prone trunk extension, round shoulder posture, scapular posterior tilting

Procedia PDF Downloads 187
1113 Numerical Prediction of Width Crack of Concrete Dapped-End Beams

Authors: Jatziri Y. Moreno-Martinez, Arturo Galvan, Xavier Chavez Cardenas, Hiram Arroyo

Abstract:

Several methods have been utilized to study the prediction of cracking of concrete structural under loading. The finite element analysis is an alternative that shows good results. The aim of this work was the numerical study of the width crack in reinforced concrete beams with dapped ends, these are frequently found in bridge girders and precast concrete construction. Properly restricting cracking is an important aspect of the design in dapped ends, it has been observed that the cracks that exceed the allowable widths are unacceptable in an aggressive environment for reinforcing steel. For simulating the crack width, the discrete crack approach was considered by means of a Cohesive Zone (CZM) Model using a function to represent the crack opening. Two cases of dapped-end were constructed and tested in the laboratory of Structures and Materials of Engineering Institute of UNAM. The first case considers a reinforcement based on hangers as well as on vertical and horizontal ring, the second case considers 50% of the vertical stirrups in the dapped end to the main part of the beam were replaced by an equivalent area (vertically projected) of diagonal bars under. The loading protocol consisted on applying symmetrical loading to reach the service load. The models were performed using the software package ANSYS v. 16.2. The concrete structure was modeled using three-dimensional solid elements SOLID65 capable of cracking in tension and crushing in compression. Drucker-Prager yield surface was used to include the plastic deformations. The reinforcement was introduced with smeared approach. Interface delamination was modeled by traditional fracture mechanics methods such as the nodal release technique adopting softening relationships between tractions and the separations, which in turn introduce a critical fracture energy that is also the energy required to break apart the interface surfaces. This technique is called CZM. The interface surfaces of the materials are represented by a contact elements Surface-to-Surface (CONTA173) with bonded (initial contact). The Mode I dominated bilinear CZM model assumes that the separation of the material interface is dominated by the displacement jump normal to the interface. Furthermore, the opening crack was taken into consideration according to the maximum normal contact stress, the contact gap at the completion of debonding, and the maximum equivalent tangential contact stress. The contact elements were placed in the crack re-entrant corner. To validate the proposed approach, the results obtained with the previous procedure are compared with experimental test. A good correlation between the experimental and numerical Load-Displacement curves was presented, the numerical models also allowed to obtain the load-crack width curves. In these two cases, the proposed model confirms the capability of predicting the maximum crack width, with an error of ± 30 %. Finally, the orientation of the crack is a fundamental for the prediction of crack width. The results regarding the crack width can be considered as good from the practical point view. Load-Displacement curve of the test and the location of the crack were able to obtain favorable results.

Keywords: cohesive zone model, dapped-end beams, discrete crack approach, finite element analysis

Procedia PDF Downloads 139
1112 Fatigue Crack Behaviour in a Residual Stress Field at Fillet Welds in Ship Structures

Authors: Anurag Niranjan, Michael Fitzpatrick, Yin Jin Janin, Jazeel Chukkan, Niall Smyth

Abstract:

Fillet welds are used in joining longitudinal stiffeners in ship structures. Welding residual stresses in fillet welds are generally distributed in a non-uniform manner, as shown in previous research the residual stress redistribution occurs under the cyclic loading that is experienced by such joints during service, and the combination of the initial residual stress, local constraints, and loading can alter the stress field in ways that are extremely difficult to predict. As the residual stress influences the crack propagation originating from the toe of the fillet welds, full understanding of the residual stress field and how it evolves is very important for structural integrity calculations. Knowledge of the residual stress redistribution in the presence of a flaw is therefore required for better fatigue life prediction. Moreover, defect assessment procedures such as BS7910 offer very limited guidance for flaw acceptance and the associated residual stress redistribution in the assessment of fillet welds. Therefore the objective of this work is to study a surface-breaking flaw at the weld toe region in a fillet weld under cyclic load, in conjunction with residual stress measurement at pre-defined crack depths. This work will provide details of residual stress redistribution under cyclic load in the presence of a crack. The outcome of this project will inform integrity assessment with respect to the treatment of residual stress in fillet welds. Knowledge of the residual stress evolution for this weld geometry will be greatly beneficial for flaw tolerance assessments (BS 7910, API 591).

Keywords: fillet weld, fatigue, residual stress, structure integrity

Procedia PDF Downloads 114
1111 Substantial Fatigue Similarity of a New Small-Scale Test Rig to Actual Wheel-Rail System

Authors: Meysam Naeimi, Zili Li, Roumen Petrov, Rolf Dollevoet, Jilt Sietsma, Jun Wu

Abstract:

The substantial similarity of fatigue mechanism in a new test rig for rolling contact fatigue (RCF) has been investigated. A new reduced-scale test rig is designed to perform controlled RCF tests in wheel-rail materials. The fatigue mechanism of the rig is evaluated in this study using a combined finite element-fatigue prediction approach. The influences of loading conditions on fatigue crack initiation have been studied. Furthermore, the effects of some artificial defects (squat-shape) on fatigue lives are examined. To simulate the vehicle-track interaction by means of the test rig, a three-dimensional finite element (FE) model is built up. The nonlinear material behaviour of the rail steel is modelled in the contact interface. The results of FE simulations are combined with the critical plane concept to determine the material points with the greatest possibility of fatigue failure. Based on the stress-strain responses, by employing of previously postulated criteria for fatigue crack initiation (plastic shakedown and ratchetting), fatigue life analysis is carried out. The results are reported for various loading conditions and different defect sizes. Afterward, the cyclic mechanism of the test rig is evaluated from the operational viewpoint. The results of fatigue life predictions are compared with the expected number of cycles of the test rig by its cyclic nature. Finally, the estimative duration of the experiments until fatigue crack initiation is roughly determined.

Keywords: fatigue, test rig, crack initiation, life, rail, squats

Procedia PDF Downloads 491
1110 Compilation of Tall Building with Green Architecture Case Study: Babolsar City (North of Iran) at 2014-2015

Authors: Seyyed Hossein Alavi, Soudabeh Mehri Talarposhti

Abstract:

Quick development of urban population need for housing on the one hand and prevention of irregular urban extension for optimum usage of urban land, resolving problems of urban physiognomy, land using, and environmental issues and urban transport, on the other hand, proposed tall building as urban area extension requirement in developing and advanced countries. Beside the tall building, protection, and creation of green architecture is one the most important issues of today's architecture world. This research is about attending tall building with green architecture in Babolsar city 2015. For this, the issues that can make favorite conditions for green architecture has been discussed. The purpose of this discussion is skeleton extension and accessing interactions between architecture and related technologies. This discussion with using of qualitative research methods (Analytical Description) tried to studying designed performance models and also studying and analyzing the inside and foreign articles and books. Hope this research is useful in solving the existing problems in this issue.

Keywords: tall building, green architecture, skeleton extension, Babolsar city

Procedia PDF Downloads 401
1109 Fracture and Dynamic Behavior of Leaf Spring Suspension

Authors: S. Lecheb, A. Chellil, H. Mechakra, S. Attou, H. Kebir

Abstract:

Although leaf springs are one of the oldest suspension components they are still frequently used, especially in commercial vehicles. Being able to capture the leaf spring characteristics is of significant importance for vehicle handling dynamics studies. The main function of leaf spring is not only to support vertical load but also to isolate road induced vibrations. It is subjected to millions of load cycles leading to fatigue failure. It needs to have excellent fatigue life. The objective of this work is its use of Abaqus software to locate the most stressed areas and predict the areas in which it occurs in fatigue and crack of leaf spring and calculate the stress and frequencies of this model.

Keywords: leaf spring, crack, stress, natural frequencies

Procedia PDF Downloads 427
1108 Stochastic Modelling for Mixed Mode Fatigue Delamination Growth of Wind Turbine Composite Blades

Authors: Chi Zhang, Hua-Peng Chen

Abstract:

With the increasingly demanding resources in the word, renewable and clean energy has been considered as an alternative way to replace traditional ones. Thus, one of practical examples for using wind energy is wind turbine, which has gained more attentions in recent research. Like most offshore structures, the blades, which is the most critical components of the wind turbine, will be subjected to millions of loading cycles during service life. To operate safely in marine environments, the blades are typically made from fibre reinforced composite materials to resist fatigue delamination and harsh environment. The fatigue crack development of blades is uncertain because of indeterminate mechanical properties for composite and uncertainties under offshore environment like wave loads, wind loads, and humid environments. There are three main delamination failure modes for composite blades, and the most common failure type in practices is subjected to mixed mode loading, typically a range of opening (mode 1) and shear (mode 2). However, the fatigue crack development for mixed mode cannot be predicted as deterministic values because of various uncertainties in realistic practical situation. Therefore, selecting an effective stochastic model to evaluate the mixed mode behaviour of wind turbine blades is a critical issue. In previous studies, gamma process has been considered as an appropriate stochastic approach, which simulates the stochastic deterioration process to proceed in one direction such as realistic situation for fatigue damage failure of wind turbine blades. On the basis of existing studies, various Paris Law equations are discussed to simulate the propagation of the fatigue crack growth. This paper develops a Paris model with the stochastic deterioration modelling according to gamma process for predicting fatigue crack performance in design service life. A numerical example of wind turbine composite materials is investigated to predict the mixed mode crack depth by Paris law and the probability of fatigue failure by gamma process. The probability of failure curves under different situations are obtained from the stochastic deterioration model for comparisons. Compared with the results from experiments, the gamma process can take the uncertain values into consideration for crack propagation of mixed mode, and the stochastic deterioration process shows a better agree well with realistic crack process for composite blades. Finally, according to the predicted results from gamma stochastic model, assessment strategies for composite blades are developed to reduce total lifecycle costs and increase resistance for fatigue crack growth.

Keywords: Reinforced fibre composite, Wind turbine blades, Fatigue delamination, Mixed failure mode, Stochastic process.

Procedia PDF Downloads 383
1107 Tensile Behavior of Oil Palm Fiber Concrete (OPFC) with Different Fiber Volume

Authors: Khairul Zahreen Mohd Arof, Rahimah Muhamad

Abstract:

Oil palm fiber (OPF) is a fibrous material produced from the waste of palm oil industry which is suitable to be used in construction industry. The applications of OPF in concrete can reduce the material costs and enhance concrete behavior. Dog-bone test provides significant results for investigating the behavior of fiber reinforced concrete under tensile loading. It is able to provide stress-strain profile, modulus of elasticity, stress at cracking point and total crack width. In this research, dog-bone tests have been conducted to analyze total crack width, stress-strain profile, and modulus of elasticity of OPFC. Specimens are in a dog-bone shape with a long notch in the middle as compared to the end, to ensure cracks occur only within the notch. Tests were instrumented using a universal testing machine Shimadzu 300kN, a linear variable differential transformer and two strain gauges. A total of nine specimens with different fibers at fiber volume fractions of 0.75%, 1.00%, and 1.25% have been tested to analyze the behavior under tensile loading. Also, three specimens of plain concrete fiber have been tested as control specimens. The tensile test of all specimens have been carried out for concrete age exceed 28 days. It shows that OPFC able to reduce total crack width. In addition, OPFC has higher cracking stress than plain concrete. The study shows plain concrete can be improved with the addition of OPF.

Keywords: cracks, crack width, dog-bone test, oil palm fiber concrete

Procedia PDF Downloads 308
1106 Study of Elastic-Plastic Fatigue Crack in Functionally Graded Materials

Authors: Somnath Bhattacharya, Kamal Sharma, Vaibhav Sonkar

Abstract:

Composite materials emerged in the middle of the 20th century as a promising class of engineering materials providing new prospects for modern technology. Recently, a new class of composite materials known as functionally graded materials (FGMs) has drawn considerable attention of the scientific community. In general, FGMs are defined as composite materials in which the composition or microstructure or both are locally varied so that a certain variation of the local material properties is achieved. This gradual change in composition and microstructure of material is suitable to get gradient of properties and performances. FGMs are synthesized in such a way that they possess continuous spatial variations in volume fractions of their constituents to yield a predetermined composition. These variations lead to the formation of a non-homogeneous macrostructure with continuously varying mechanical and / or thermal properties in one or more than one direction. Lightweight functionally graded composites with high strength to weight and stiffness to weight ratios have been used successfully in aircraft industry and other engineering applications like in electronics industry and in thermal barrier coatings. In the present work, elastic-plastic crack growth problems (using Ramberg-Osgood Model) in an FGM plate under cyclic load has been explored by extended finite element method. Both edge and centre crack problems have been solved by taking additionally holes, inclusions and minor cracks under plane stress conditions. Both soft and hard inclusions have been implemented in the problems. The validity of linear elastic fracture mechanics theory is limited to the brittle materials. A rectangular plate of functionally graded material of length 100 mm and height 200 mm with 100% copper-nickel alloy on left side and 100% ceramic (alumina) on right side is considered in the problem. Exponential gradation in property is imparted in x-direction. A uniform traction of 100 MPa is applied to the top edge of the rectangular domain along y direction. In some problems, domain contains major crack along with minor cracks or / and holes or / and inclusions. Major crack is located the centre of the left edge or the centre of the domain. The discontinuities, such as minor cracks, holes, and inclusions are added either singly or in combination with each other. On the basis of this study, it is found that effect of minor crack in the domain’s failure crack length is minimum whereas soft inclusions have moderate effect and the effect of holes have maximum effect. It is observed that the crack growth is more before the failure in each case when hard inclusions are present in place of soft inclusions.

Keywords: elastic-plastic, fatigue crack, functionally graded materials, extended finite element method (XFEM)

Procedia PDF Downloads 366
1105 An Investigation of the Fracture Behavior of Model MgO-C Refractories Using the Discrete Element Method

Authors: Júlia Cristina Bonaldo, Christophe L. Martin, Martiniano Piccico, Keith Beale, Roop Kishore, Severine Romero-Baivier

Abstract:

Refractory composite materials employed in steel casting applications are prone to cracking and material damage because of the very high operating temperature (thermal shock) and mismatched properties of the constituent phases. The fracture behavior of a model MgO-C composite refractory is investigated to quantify and characterize its thermal shock resistance, employing a cold crushing test and Brazilian test with fractographic analysis. The discrete element method (DEM) is used to generate numerical refractory composites. The composite in DEM is represented by an assembly of bonded particle clusters forming perfectly spherical aggregates and single spherical particles. For the stresses to converge with a low standard deviation and a minimum number of particles to allow reasonable CPU calculation time, representative volume element (RVE) numerical packings are created with various numbers of particles. Key microscopic properties are calibrated sequentially by comparing stress-strain curves from crushing experimental data. Comparing simulations with experiments also allows for the evaluation of crack propagation, fracture energy, and strength. The crack propagation during Brazilian experimental tests is monitored with digital image correlation (DIC). Simulations and experiments reveal three distinct types of fracture. The crack may spread throughout the aggregate, at the aggregate-matrix interface, or throughout the matrix.

Keywords: refractory composite, fracture mechanics, crack propagation, DEM

Procedia PDF Downloads 49
1104 Strengthening Farmer-to-farmer Knowledge Sharing Network: A Pathway to Improved Extension Service Delivery

Authors: Farouk Shehu Abdulwahab

Abstract:

The concept of farmer-farmer knowledge sharing was introduced to bridge the extension worker-farmer ratio gap in developing countries. However, the idea was poorly accepted, especially in typical agrarian communities. Therefore, the study explores the concept of a farmer-to-farmer knowledge-sharing network to enhance extension service delivery. The study collected data from 80 farmers randomly selected through a series of multiple stages. The Data was analysed using a 5-point Likert scale and descriptive statistics. The Likert scale results revealed that 62.5% of the farmers are satisfied with farmer-to-farmer knowledge-sharing networks. Moreover, descriptive statistics show that lack of capacity building and low level of education are the most significant problems affecting farmer-farmer sharing networks. The major implication of these findings is that the concept of farmer-farmer knowledge-sharing networks can work better for farmers in developing countries as it was perceived by them as a reliable alternative for information sharing. Therefore, the study recommends introducing incentives into the concept of farmer-farmer knowledge-sharing networks and enhancing the capabilities of farmers who are opinion leaders in the farmer-farmer concept of knowledge-sharing to make it more sustainable.

Keywords: agricultural productivity, extension, farmer-to-farmer, livelihood, technology transfer

Procedia PDF Downloads 29
1103 Construction of a Fusion Gene Carrying E10A and K5 with 2A Peptide-Linked by Using Overlap Extension PCR

Authors: Tiancheng Lan

Abstract:

E10A is a kind of replication-defective adenovirus which carries the human endostatin gene to inhibit the growth of tumors. Kringle 5(K5) has almost the same function as angiostatin to also inhibit the growth of tumors since they are all the byproduct of the proteolytic cleavage of plasminogen. Tumor size increasing can be suppressed because both of the endostatin and K5 can restrain the angiogenesis process. Therefore, in order to improve the treatment effect on tumor, 2A peptide is used to construct a fusion gene carrying both E10A and K5. Using 2A peptide is an ideal strategy when a fusion gene is expressed because it can avoid many problems during the expression of more than one kind of protein. The overlap extension PCR is also used to connect 2A peptide with E10A and K5. The final construction of fusion gene E10A-2A-K5 can provide a possible new method of the anti-angiogenesis treatment with a better expression performance.

Keywords: E10A, Kringle 5, 2A peptide, overlap extension PCR

Procedia PDF Downloads 125
1102 Enhancing Sustainable Stingless Beekeeping Production through Technology Transfer and Human Resource Development in Relationship with Extension Agents Work Performance among Malaysian Beekeepers

Authors: Ibrahim Aliyu Isah, Mohd Mansor Ismail, Salim Hassan, Norsida Man, Oluwatoyin Olagunju

Abstract:

Stingless beekeeping is not only a profitable activity for Malaysian beekeepers but also for the Malaysian economy. However, natural honey has faced some difficulties, which resulted in low production due to a lack of information on improved technology as well as the capacity and potential building of stingless beekeeping farmers, which depend mostly on information received from the extension agents. Hence, it is the responsibility of the extension agents to give useful information on the available technology and develop the capacity of the farmers to make the right decision that will improve their level of production. This study assessed how technology transfer and human resource development skills influence the work performance of the extension agents toward sustainable beekeeping production among beekeepers. The study sought to establish the role of relevant technology transfer and human resource development skills in effective performance. The research design was a descriptive and quantitative survey of stingless beekeepers on technology transfer and human resource development by the extension agent. Data was obtained from 54 beekeeping farmers and was analyzed using descriptive and inferential statistics. The results revealed that technology skill, technology dissemination skill, technology evaluation skill, Decision-making process skill, Leadership development skill and work performance were rated moderate by stingless beekeeping farmers, while Social skill was rated high. A significant and positive correlation (P<0.01) existed between all variables and performance. Regression results showed that leadership development skills, Decision-making process skills, and social skills are significant (P=.05), while technology skills, technology dissemination skills, and technology evaluation skills are not significant. The highest contributing factor is social skill (β=.446). Beekeeping is a profitable project in Malaysia and can be sustained if the extension services and programs are well carried out by competent extension agents and relevant agricultural government agencies.

Keywords: beekeeping, extension agents, human resource development, sustainable, technology transfer, work performance

Procedia PDF Downloads 35
1101 Increase in Specificity of MicroRNA Detection by RT-qPCR Assay Using a Specific Extension Sequence

Authors: Kyung Jin Kim, Jiwon Kwak, Jae-Hoon Lee, Soo Suk Lee

Abstract:

We describe an innovative method for highly specific detection of miRNAs using a specially modified method of poly(A) adaptor RT-qPCR. We use uniquely designed specific extension sequence, which plays important role in providing an opportunity to affect high specificity of miRNA detection. This method involves two steps of reactions as like previously reported and which are poly(A) tailing and reverse-transcription followed by real-time PCR. Firstly, miRNAs are extended by a poly(A) tailing reaction and then converted into cDNA. Here, we remarkably reduced the reaction time by the application of short length of poly(T) adaptor. Next, cDNA is hybridized to the 3’-end of a specific extension sequence which contains miRNA sequence and results in producing a novel PCR template. Thereafter, the SYBR Green-based RT-qPCR progresses with a universal poly(T) adaptor forward primer and a universal reverse primer. The target miRNA, miR-106b in human brain total RNA, could be detected quantitatively in the range of seven orders of magnitude, which demonstrate that the assay displays a dynamic range of at least 7 logs. In addition, the better specificity of this novel extension-based assay against well known poly(A) tailing method for miRNA detection was confirmed by melt curve analysis of real-time PCR product, clear gel electrophoresis and sequence chromatogram images of amplified DNAs.

Keywords: microRNA(miRNA), specific extension sequence, RT-qPCR, poly(A) tailing assay, reverse transcription

Procedia PDF Downloads 278
1100 Impacts of Extension Services on Stingless Bee Production and its Profitability and Sustainability in Malaysia

Authors: Ibrahim Aliyu Isah, Mohd Mansor Ismail, Salim Hassan, Norsida Bint Man

Abstract:

Global and National contributions of Extension Agents in income derive through stingless beekeeping production as acknowledged globally as a new source of wealth creation, which contributes significantly to the positive, sustainable economic growth of Malaysia. A common specie, Trigona itama, production through effective utilization of highly competent agents of extension services led to high increase of output that guaranteed high income and sustainability to farmers throughout the study areas. A study on impacts of extension services on stingless bee production and its profitability and sustainability in both Peninsular Malaysia and East (Sarawak) Malaysia was conducted with the following objectives: (i) to examined various impacts of extension services on sustainability as variables in enhancing stingless beekeeping production for positive profitability. (ii) to determine the profitability and sustainability of stingless beekeeping production in the study area through transfer of technology and human resources development. The study covers a sample of beekeepers in ten states of Peninsular Malaysia and Sarawak. The sample size of 87 respondents were selected out of the population and 54 of filled questionnaires were retrieved. Capital budgeting analysis was carried out and economic performance was evaluated. Data collected was analysed using SPSS version 23.0. Correlation and Regression analyses were used. The capital budgeting analysis and government incentive schemes was incorporated in the applied projection of stingless bee farms. The result of Net Present Value (NPV) is determined as an accepted projection to the financial appraisal. The NPV in the study indicated positive outcome of production that can generate positive income and indicated efficient yield of investment and Profitability index (PI). In summary, it is possible for the extension services to increase output and hence increase profit which is sustainable for growth and development of agricultural sector in Malaysia.

Keywords: extension services, impacts, profitability and sustainability, Sarawak and peninsular Malaysia, trigona itama production

Procedia PDF Downloads 51
1099 Fatigue Crack Growth Rate Measurement by Means of Classic Method and Acoustic Emission

Authors: V. Mentl, V. Koula, P. Mazal, J. Volák

Abstract:

Nowadays, the acoustic emission is a widely recognized method of material damage investigation, mainly in cases of cracks initiation and growth observation and evaluation. This is highly important in structures, e.g. pressure vessels, large steam turbine rotors etc., applied both in classic and nuclear power plants. Nevertheless, the acoustic emission signals must be correlated with the real crack progress to be able to evaluate the cracks and their growth by this non-destructive technique alone in real situations and to reach reliable results when the assessment of the structures' safety and reliability is performed and also when the remaining lifetime should be evaluated. The main aim of this study was to propose a methodology for evaluation of the early manifestations of the fatigue cracks and their growth and thus to quantify the material damage by acoustic emission parameters. Specimens made of several steels used in the power producing industry were subjected to fatigue loading in the low- and high-cycle regimes. This study presents results of the crack growth rate measurement obtained by the classic compliance change method and the acoustic emission signal analysis. The experiments were realized in cooperation between laboratories of Brno University of Technology and West Bohemia University in Pilsen within the solution of the project of the Czech Ministry of Industry and Commerce: "A diagnostic complex for the detection of pressure media and material defects in pressure components of nuclear and classic power plants" and the project “New Technologies for Mechanical Engineering”.

Keywords: fatigue, crack growth rate, acoustic emission, material damage

Procedia PDF Downloads 339
1098 Multiaxial Fatigue Analysis of a High Performance Nickel-Based Superalloy

Authors: P. Selva, B. Lorraina, J. Alexis, A. Seror, A. Longuet, C. Mary, F. Denard

Abstract:

Over the past four decades, the fatigue behavior of nickel-based alloys has been widely studied. However, in recent years, significant advances in the fabrication process leading to grain size reduction have been made in order to improve fatigue properties of aircraft turbine discs. Indeed, a change in particle size affects the initiation mode of fatigue cracks as well as the fatigue life of the material. The present study aims to investigate the fatigue behavior of a newly developed nickel-based superalloy under biaxial-planar loading. Low Cycle Fatigue (LCF) tests are performed at different stress ratios so as to study the influence of the multiaxial stress state on the fatigue life of the material. Full-field displacement and strain measurements as well as crack initiation detection are obtained using Digital Image Correlation (DIC) techniques. The aim of this presentation is first to provide an in-depth description of both the experimental set-up and protocol: the multiaxial testing machine, the specific design of the cruciform specimen and performances of the DIC code are introduced. Second, results for sixteen specimens related to different load ratios are presented. Crack detection, strain amplitude and number of cycles to crack initiation vs. triaxial stress ratio for each loading case are given. Third, from fractographic investigations by scanning electron microscopy it is found that the mechanism of fatigue crack initiation does not depend on the triaxial stress ratio and that most fatigue cracks initiate from subsurface carbides.

Keywords: cruciform specimen, multiaxial fatigue, nickel-based superalloy

Procedia PDF Downloads 264
1097 A Study on Performance-Based Design Analysis for Vertical Extension of Apartment Units

Authors: Minsun Kim, Ki-Sun Choi, Hyun-Jee Lee, Young-Chan You

Abstract:

There is no reinforcement example for the renovation of the vertical and horizontal extension to existing building structures which is a shear wall type in apartment units in Korea. Among these existing structures, the structures which are shear wall type are rare overseas, while Korea has many shear wall apartment units. Recently, in Korea, a few researchers are trying to confirm the possibility of the vertical extension in existing building with shear walls. This study evaluates the possibility of the renovation by applying performance-based seismic design to existing buildings with shear walls in the analysis phase of the structure. In addition, force-based seismic design, used by general structural engineers in Korea, is carried out to compare the amount of reinforcement of walls, which is a main component of wall structure. As a result, we suggest that performance-based design obtains more economical advantages than force-based seismic design.

Keywords: design for extension, performance-based design, remodeling, shear wall frame, structural analysis

Procedia PDF Downloads 203
1096 Modeling of Thermo Acoustic Emission Memory Effect in Rocks of Varying Textures

Authors: Vladimir Vinnikov

Abstract:

The paper proposes a model of an inhomogeneous rock mass with initially random distribution of microcracks on mineral grain boundaries. It describes the behavior of cracks in a medium under the effect of thermal field, the medium heated instantaneously to a predetermined temperature. Crack growth occurs according to the concept of fracture mechanics provided that the stress intensity factor K exceeds the critical value of Kc. The modeling of thermally induced acoustic emission memory effects is based on the assumption that every event of crack nucleation or crack growth caused by heating is accompanied with a single acoustic emission event. Parameters of the thermally induced acoustic emission memory effect produced by cyclic heating and cooling (with the temperature amplitude increasing from cycle to cycle) were calculated for several rock texture types (massive, banded, and disseminated). The study substantiates the adaptation of the proposed model to humidity interference with the thermally induced acoustic emission memory effect. The influence of humidity on the thermally induced acoustic emission memory effect in quasi-homogeneous and banded rocks is estimated. It is shown that such modeling allows the structure and texture of rocks to be taken into account and the influence of interference factors on the distinctness of the thermally induced acoustic emission memory effect to be estimated. The numerical modeling can be used to obtain information about the thermal impacts on rocks in the past and determine the degree of rock disturbance by means of non-destructive testing.

Keywords: crack growth, cyclic heating and cooling, rock texture, thermo acoustic emission memory effect

Procedia PDF Downloads 250
1095 A Failure Investigations of High-Temperature Hydrogen Attack at Plat Forming Unit Furnace Elbow

Authors: Altoumi Alndalusi

Abstract:

High-temperature hydrogen attack (HTHA) failure is the common phenomena at elevated temperature in hydrogen environment in oil and gas field. The failure occurred once after four years at the internal surface of Platforming elbow. Both visual and microscopic examinations revealed that the failure was initiated due to blistering forming followed by large cracking at the inner surface. Crack morphology showed that the crack depth was about 50% of material wall thickness and its behavior generally was intergranular. This study concluded that the main reason led to failure due to incorrect material selection comparing to the platforming conditions.

Keywords: decarburization, failure, heat affected zone, morphology, partial pressure, plate form

Procedia PDF Downloads 129
1094 Electromagnetic-Mechanical Stimulation on PC12 for Enhancement of Nerve Axonal Extension

Authors: E. Nakamachi, K. Matsumoto, K. Yamamoto, Y. Morita, H. Sakamoto

Abstract:

In recently, electromagnetic and mechanical stimulations have been recognized as the effective extracellular environment stimulation technique to enhance the defected peripheral nerve tissue regeneration. In this study, we developed a new hybrid bioreactor by adopting 50 Hz uniform alternative current (AC) magnetic stimulation and 4% strain mechanical stimulation. The guide tube for nerve regeneration is mesh structured tube made of biodegradable polymer, such as polylatic acid (PLA). However, when neural damage is large, there is a possibility that peripheral nerve undergoes necrosis. So it is quite important to accelerate the nerve tissue regeneration by achieving enhancement of nerve axonal extension rate. Therefore, we try to design and fabricate the system that can simultaneously load the uniform AC magnetic field stimulation and the stretch stimulation to cells for enhancement of nerve axonal extension. Next, we evaluated systems performance and the effectiveness of each stimulation for rat adrenal pheochromocytoma cells (PC12). First, we designed and fabricated the uniform AC magnetic field system and the stretch stimulation system. For the AC magnetic stimulation system, we focused on the use of pole piece structure to carry out in-situ microscopic observation. We designed an optimum pole piece structure using the magnetic field finite element analyses and the response surface methodology. We fabricated the uniform AC magnetic field stimulation system as a bio-reactor by adopting analytically determined design specifications. We measured magnetic flux density that is generated by the uniform AC magnetic field stimulation system. We confirmed that measurement values show good agreement with analytical results, where the uniform magnetic field was observed. Second, we fabricated the cyclic stretch stimulation device under the conditions of particular strains, where the chamber was made of polyoxymethylene (POM). We measured strains in the PC12 cell culture region to confirm the uniform strain. We found slightly different values from the target strain. Finally, we concluded that these differences were allowable in this mechanical stimulation system. We evaluated the effectiveness of each stimulation to enhance the nerve axonal extension using PC12. We confirmed that the average axonal extension length of PC12 under the uniform AC magnetic stimulation was increased by 16 % at 96 h in our bio-reactor. We could not confirm that the axonal extension enhancement under the stretch stimulation condition, where we found the exfoliating of cells. Further, the hybrid stimulation enhanced the axonal extension. Because the magnetic stimulation inhibits the exfoliating of cells. Finally, we concluded that the enhancement of PC12 axonal extension is due to the magnetic stimulation rather than the mechanical stimulation. Finally, we confirmed that the effectiveness of the uniform AC magnetic field stimulation for the nerve axonal extension using PC12 cells.

Keywords: nerve cell PC12, axonal extension, nerve regeneration, electromagnetic-mechanical stimulation, bioreactor

Procedia PDF Downloads 232